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 
Abstract—This paper presents a fully implantable 100-channel 

neural interface IC for neural activity monitoring. It contains 
100-channel analog recording front-ends, 10 multiplexing 
successive approximation register ADCs, digital control modules 
and power management circuits. A dual sample-and-hold 
architecture is proposed, which extends the sampling time of the 
ADC and reduces the average power per channel by more than 
50% compared to the conventional multiplexing neural recording 
system. A neural amplifier (NA) with current-reuse technique 
and weak inversion operation is demonstrated, consuming 800 
nA under 1-V supply while achieving an input-referred noise of 
4.0 µVrms in a 8-kHz bandwidth and a NEF of 1.9 for the whole 
analog recording chain. The measured frequency response of the 
analog front-end has a high-pass cutoff frequency from sub-1 Hz 
to 248 Hz and a low-pass cutoff frequency from 432 Hz to 5.1 
kHz, which can be configured to record neural spikes and local 
field potentials simultaneously or separately. The whole system 
was fabricated in a 0.18-µm standard CMOS process and 
operates under 1 V for analog blocks and ADC, and 1.8 V for 
digital modules. The number of active recording channels is 
programmable and the digital output data rate changes 
accordingly, leading to high system power efficiency. The overall 
100-channel interface IC consumes 1.16-mW total power, making 
it the optimum solution for multi-channel neural recording 
systems. 
 

Index Terms—Multi-channel neural recording system, 
biomedical application, high power efficiency, power and area 
trade-off, dual S/H, low-noise neural amplifier, current reuse, 
NEF, SAR ADC, capacitor-less LDO 

I. INTRODUCTION 

imultaneous recording of neuropotentials from the brain 
over a large number of electrodes provides an effective 
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way for neuroscientists and clinicians to study the brain state 
dynamics and understand the nature of various 
neurophysiological behaviors. It has a wide range of 
applications, where the most exciting one currently is the 
development of brain-controlled neural prostheses. Recent 
clinical trials with paralyzed human volunteers have shown 
that it is possible to restore limb movement by such 
neuroprosthetic devices [1]–[3]. This calls for the 
development of an ultra-low-power implantable neural 
recording microsystem, like the one shown in Fig. 1. It 
consists of a 1010 neural probe array, a multi-channel neural 
recording interface IC (IC1), a wireless power and data link IC 
(IC2), and a flexible cable to exchange recorded data, 
extracted DC power, and digital control and clock signals 
between IC1 and IC2. In this paper, the system and circuit 
design of the IC1 is presented.  

Effective and reliable neurological researches and diagnoses 
rely on multi-channel recordings from a large population of 
neurons. High-density recording systems with 100 channels to 
as many as 256 channels have been recently reported [4]–[7]. 
Since any amount of excessive heat dissipation by the 
recording microsystem induces damage to the surrounding 
tissue when it is implanted in the brain, the power 
consumption of the high-density recording electronics should 
be strictly restrained. In addition, implantable devices are 
usually powered through wireless power transfer links to 
obviate the need of large-capacity batteries or skin-piercing 
wires. The specific absorption rate of living tissue sets a 
stringent limit on power budget of the implant. Meanwhile, 
chip area is also an important constraint for implantable 
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Fig. 1.  Fully implantable wireless neural recording microsystem (not drawn to
scale). 
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devices to minimize surgical damage. The simultaneous 
requirements of low power consumption, minimum chip area, 
and a large number of recording sites impose a critical 
challenge to IC designers.  

A conventional multi-channel neural recording interface IC 
requires signal conditioning and digitization blocks, which are 
usually realized by low-noise preamplifiers and ADCs. A 
successive approximation register (SAR) ADC is widely 
adopted in biomedical recording systems due to its high 
energy efficiency, while providing moderate resolution and 
conversion speed. Due to chip area restraint, one ADC is 
usually shared among multiple recording channels by 
employing a time-domain multiplexer [7]–[9]. Recently 
reported sensor interface ICs have put much effort into 
reducing the power consumption of individual functional 
blocks, such as the low-noise neural amplifier and the ADC, 
which can be realized with the power consumption of a few 
W [7], [10]. However, little has been done in optimizing the 
overall system architecture to minimize the total system 
power. For example, a buffer preceding the ADC can draw 
tens of µW due to the shortened sampling time of the ADC in 
the conventional multi-channel system architecture, which 
simply overrides the consumption by the preamplifier and 
ADC and results in a high consumption of the total system 
power [7]. In [11], a design methodology for the optimized 
multi-channel neural recording IC was proposed to provide a 
systematic way to determine key system-level design 
parameters. It helps designers to achieve the minimum power-
area product for the entire IC within the limit of the 
conventional architecture. 

Some reported designs adopt data compression algorithm to 
reduce the transmitted data rate to minimize the power 
consumption [6]. However, this approach may lose some 
useful information and lead to inaccurate outcome. The 
complete raw recording data is preferred for the following 

neural activity processing and analysis. An alternative solution 
to reduce the system power is implementing one ADC for 
each analog recording channel [12]. By doing so, the sampling 
time of the ADC is greatly extended and the power 
consumption of the system is minimized. However, this 
approach will significantly increase the total chip area due to 
the large area occupied by a large number of SAR ADCs. 

In this paper, we present a 100-channel power- and area-
efficient neural interface IC for a fully implantable wireless 
neural recording microsystem. The IC contains 10 recording 
blocks and power management circuits. Each of the 10 
recording blocks consists of 10 analog recording chains, one 
SAR ADC and one digital control module. A power- and area-
efficient multi-channel system structure is proposed with dual 
sample-and-hold (S/H) circuits, leading to more than 10 times 
of power saving in the ADC buffer compared to that in the 
conventional multi-channel recording system. Meanwhile, the 
increment of the chip area is kept to a minimum. The neural 
amplifier employs current-reuse technique, achieving an input-
referred noise of 4.0 µVrms in 8-kHz bandwidth and a Noise 
Efficiency Factor (NEF) of 1.9. A 9-bit ADC with one 
redundant bit is implemented for every 10 analog recording 
chains. Three low-dropout regulators (LDOs) are integrated to 
provide separate regulated DC supplies to the analog 
recording chains, ADCs and digital control blocks. The overall 
system was fabricated using 0.18-µm standard CMOS process 
and consumes 1.16-mW total power. 

The paper is organized as follows. Section II describes the 
system architecture of the multi-channel neural interface IC. 
The detailed circuit designs of the analog recording chains, 
ADCs and LDOs are presented in Sections III, IV and V, 
respectively. Section VI reports the measurement results and 
Section VII concludes the paper. 

 
Fig. 2.  System architecture of the neural interface IC. 
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II. SYSTEM ARCHITECTURE 

Fig. 2 shows the overall system architecture of the 100-
channel neural interface IC. There are 10 neural recording 
blocks for conditioning and digitizing the captured neural 
signals. Each recording block contains 10 analog recording 
chains. After multiplexed by a time-domain multiplexer, the 
conditioned analog signals are then digitized by the following 
9-bit SAR ADC. A digital control unit in each recording block 
provides all the clock sequences and control signals. Note that 
the overall configuration and timing control is managed by the 
central digital controller residing in the IC2. The local control 
unit in each recording block of the IC1 communicates with the 
central controller through the serial peripheral interface (SPI). 
LDOs and a current reference generator provide stable DC 
power and necessary current biases to the whole neural 
interface IC. The DC supply voltages of 1.2 V and 2.2 V are 
extracted from wireless RF power in IC2 and sent to IC1 via 
the flexible cable, as illustrated in Fig. 1. Two LDOs (LDO 
Analog and LDO ADC in Fig. 2) generate 1-V regulated DC 
voltage from the 1.2-V supply, and the other LDO (LDO 
Digital) provides 1.8-V voltage from the 2.2-V DC input. 

As shown in Fig. 2, each analog recording channel consists 
of a low-noise neural amplifier, a BPF, and a unity-gain 
buffer. Usually, the bandwidth of the biomedical recording 
system is defined by the 3-dB cutoff frequency f3dB of the low-
noise preamplifier according to the equation, 

VC

m
dB AC

g
f


3                (1) 

where gm is the transconductance, CC is the compensation 
capacitor, and AV is the mid-band gain of the neural amplifier. 
Low input referred noise requires a large gm, leading to a large 
CC of tens of pF, and consequently a large chip area [13]. In 
order to solve this problem, the system bandwidth in this 
design is determined by the second stage BPF, where its input-
referred noise is not critical and hence its gm can be set much 
smaller than that of the preamplifier. By doing so, a smaller 
CC of a few pF is enough to meet the system bandwidth 
requirement [14]. 

Local field potentials (LFPs) and neural spikes are two 
types of neuropotential signals that are commonly studied to 
understand cortical activities. The LFPs have relatively large 
amplitudes of 100 Vpp to 1 mVpp and occupy a low freqency 
range from sub-1 Hz to about 100 Hz. For the neural spikes, 
they are usually observed with amplitudes of tens or hundreds 
of Vpp and frequencies ranging from 300 Hz to 5 kHz. A 
versatile recording system should be able to record either the 
LPFs or neural spikes seperately, or both simutaneouly. In the 
proposed system, both high-pass and low-pass cutoff 
frequencies of the BPF can be programmed to support 
different recording modes. In order to enhance the system 
dynamic range, a programmable gain function should be 
implemented. One method to adjust the system gain is 
changing the feedback capacitance of the BPF. However, this 
approach also changes the BPF bandwidth and hence the 
system bandwidth accordingly. In this design, the system gain 
is controlled by the neural amplifier, as its bandwidth variation 

will not affect the system performance because its bandwith is 
much larger than the system bandwidth. Since the BPF 
bandwidth is set to match the neural signal frequency, an 
dedicated buffer is implemented to drive the multiplexer and 
the sample-and-hold (S/H) circuit of the ADC. By partitioning 
the different functions of system gain adjustment, bandwith 
control, and ADC drive as described, the design focus for each 
individual block is explicit and design requirements become 
relaxed. This effectivly helps to achieve optimal system 
performance and power consumption. 

Most of the recently reported works have focused on the 
power optimization of individual circuit blocks, such as the 
neural preamplifier and ADC, which are implemented with the 
power consumption of sub-W to a few W.  However, 
without a carefully designed system architecture, some 
auxiliary circuits may easily draw excessive current and 
override the low consumption of key building blocks, resulting 
in high total power consumption. In conventional multi-
channel biomedical recording system, the ADC is usually 
shared by multiple analog recording channels to save chip 
area, as illustrated in Fig. 3(a). A typical timing diagram of 
one S/H circuit shared by 10 channels is shown in Fig. 3(b). 
According to Nyquist criterion, the effective sampling rate of 
the ADC for each channel needs to be at least 2fsignal, where 
fsignal is the maximum frequency of the input neural signal. As 
a result, the time period for ADC to finish digitization of one 
analog channel is Tch = 1 / (2fsignal  10). Taking a 9-bit ADC 
for example, the sampling time of the traditional SAR ADC is 
Tch/10, which is only 1 µs for 5-kHz input signal. This 
sampling time will decrease further if higher oversampling 
ratio or higher-resolution ADC is needed. As a result, large 
driving capability is required for the preceding buffer. As 
reported in [7] with the conventional multiplexing structure, 
the buffer draws 20.3-µA current while the preamplifier 
consumes only 2 µA. It is obvious that the buffer is a 
dominant power consumer in the system and more effort is 
needed to minimize the buffer current. One approach to extend 
the sampling time and reduce the system power is employing 
one dedicated ADC for each channel [12]. However, this will 
result in large chip area, which is not desirable for implantable 
high-density recording devices. 

In order to achieve low power and small chip area, a dual 
S/H scheme for multi-channel system is proposed, as 
illustrated in Fig. 2. There are two S/H circuits connected to 
each ADC, and they work in an alternate manner. That is, 
when one S/H is holding the output of one recording channel 
for conversion, the other S/H is sampling the output of the 
next channel. By adopting the dual S/H architecture, the 
sampling time of the ADC is extended from Tch/10 to Tch, as 
the S/H actions are conducted in parallel mode instead of 
serial mode in the conventional multi-channel system. The 
timing diagram of the proposed dual S/H ADC is shown in 
Fig. 3(c). Compared to Fig. 3(b), the extension of the sampling 
period of the proposed structure is clearly demonstrated. As 
the power consumption of the buffer dominates in the 
conventional multi-channel system with single S/H, the 
system power reduction with the dual S/H approach is 
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prominent. Using the proposed system architecture, a buffer 
with 1.2-µA current fulfills the sampling time requirement, 
leading to a less than 5 µW average power for each channel 
including the ADC. 

To further demonstrate the high power and area efficiency 
of the proposed architecture, we estimate the system power 
and chip area when one ADC is shared by 10-channel, with 
varying number of S/H circuits, and plot the results in Fig. 4. 
It shows that chip area increment is linear with the number of 
S/H circuits. However, the system power is strongly nonlinear. 

When the number of S/H circuits increases from 1 to 2, the 
system power decreases dramatically. Fig. 4 clearly 
emphasizes the optimal power-area trade-off of the proposed 
dual S/H structure. 

Besides the full-throughput operation mode with all the 
100-recording channels turned on, the neural interface IC can 
be also configured with 10, 20 or 50 active channels, while the 
rest are in sleep mode. One way to realize the partial-
throughput operation mode is to select 1, 2 or 5 ADCs 
working in full load. However, this will limit the selection 
flexibility of the recording sites, as turning off one ADC 
means all the data from the 10 analog channels attached to it 
will be lost. In this design, the 10 ADCs are always activated 
and the partial-throughput operation mode is achieved by 
varying the number of active analog recording chains attached 
to the ADC. Since the ADC supports a smaller number of 
analog channels, the clock frequency of the ADC is reduced 
accordingly. This results in better performance and lower 
power consumption of the ADCs as they now operate at much 
lower frequency compared to the full-load mode. Note that the 
sampling frequency for each analog channel is kept constant 
despite the change of the ADC clock frequency. For the 
partial-throughput operation mode, any 1, 2 or 5 channels can 
be selected freely from the 10 channels attached to the ADC, 
while the other unselected channels stay in sleep mode and 
consume about 0.5 µW per channel. 

III. ANALOG RECORDING CHAINS 

A. Low-Noise Neural Amplifier 

The neural amplifier is one of the most critical components 
in the neural recording system, and its schematic is shown in 
Fig. 5. A capacitive feedback topology with pseudo-resistors 
is chosen to achieve low power and low noise. The gain of the 
amplifier can be set at 34 dB and 40 dB by the switch 
associated with C3 (C1=20 pF, C2=C3=400 fF). Since the low-
pass cutoff frequency of the system is determined by the 
second-stage BPF, the bandwidth of the neural amplifier is set 
to be slightly larger than the signal bandwidth. 

The design of the OTA in the neural amplifier is of 
particular importance, where power consumption and input-
referred noise are the two most important factors. The NEF is 
introduced to measure the trade-off between these two factors, 
and defined by the following equation [15],  

BWkTU

I
VNEF

T

tot
inrms 




4

2
, 

     (2) 

where Vrms,in is the root-mean-square (RMS) value of the input-
referred noise, Itot is the total supply current of the amplifier, 
UT is the thermal voltage, k is the Boltzman constant, T is the 
absolute temperature, and BW is the amplifier bandwidth in 
hertz. The lower NEF means the better power-noise trade-off. 
To achieve a good noise performance with limited power 
budget, current-reuse technique is an attractive choice, where 
both NMOS and PMOS transistors are stacked in the same 
current branch to obtain double gm [16], as shown in Fig. 6. 

 
(a) 

(b) 

(c) 

Fig. 3.  (a) Conventional multi-channel recording system with a shared ADC.
(b) S/H timing diagram of the conventional system. (c) Timing diagram of the
proposed dual S/H system architecture. 
 

Fig. 4.  System power and chip area vs. number of S/H circuits. The chip area
is normalized to the system area with a single S/H circuit. The system power is
normalized to the ADC buffer power consumption in the dual S/H system. 
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Meanwhile, a subthreshold operation provides high gm 
efficiency, and has been widely adopted in biomedical 
recording systems. 

Using the EKV model [17] which is valid in all operation 
regions, the gm of a MOS transistor in deep subthreshold 
region is approximated as 

T

D
m nU

I
g                 (3) 

where n is the slope factor with a typical value of 1.5 and ID is 
the drain current. The current noise power spectral density of 
MOSFETs operating in subthreshold region [18] is modeled as 

T

D
mn nU

I
kTgkTi  442  .          (4) 

γ is the thermal noise coefficient, which is 2/3 for transistor in 
strong inversion region and 1/2 in weak inversion region. The 
input-referred voltage noise of an ideal differential pair in 
subthreshold region without current-reuse technique can be 

derived as 

D

T

m

ni
reusenoni I

nU
kT

g

i
v 8

)(

2
2

2
2

,  .          (5) 

When the current-reuse technique is applied, assuming that all 
the four input transistors have the same gm value and all the 
other conditions remain the same, the input-referred noise 
becomes 

D

T

m

ni
reuseni I

nU
kT

g

i
v 4

)2(

4
2

2
2

,  .            (6) 

It shows that the input-referred noise power is reduced by half 
when the current-reuse scheme is applied, compared to the 
circuit without it.  

In this design, a fully differential current-reuse OTA is 
employed as shown in Fig. 6. The current-reuse technique is 
employed at the input stage to achieve required noise 
performance with minimum current. The four input transistors 
are biased in weak inversion region to maximize gm/Id and 
further enhance the current efficiency. Large gate areas (W/L = 
300 µm/2 µm for NMOS and 200 µm/1 µm for PMOS) are 
chosen to suppress the 1/f noise. M5 and M6 provide a 
common-mode feedback and fix the output DC level of the 
first stage. In the second stage, PMOS transistors are chosen 
as the input pair to reduce the 1/f noise. The input-referred 
thermal noise of this OTA is given by 

f
ggg
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


 (7) 
where Δf is the bandwidth of the amplifier. It is clear that the 
large gm1,2+gm3,4 will minimize the noise contributions from 
M5–M10. Hence, 80% of the total amplifier current is allocated 
to the input stage. M1–M4 and M7–M8 are biased in weak 
inversion region to maximize the gm efficiency, while M5, M6, 
M9 and M10 are biased in strong inversion region to minimize 
their thermal noise contribution.  

When the neural amplifier is in sleep mode, its quiescent 
current is reduced from 800 nA to 160 nA. This non-zero 
sleep current maintains the DC level at each node of the OTA 
near the normal operation voltage and helps to achieve fast 
recovery when the amplifier is activated. In addition, the 
neural amplifier operating in the sleep mode has a minimum 
bandwidth of 300 Hz, which can be also used for LFP signal 
recording. 

B. Band-Pass Filter and Unity-Gain Buffer 

As discussed in Section II, the BPF determines the system 
bandwidth. At the same time, it provides an additional gain of 
10 to enhance the system dynamic range. Fig. 7(a) shows the 
schematic of the BPF, which has the AC-coupled input and 
closed-loop configuration. Both low-pass and high-pass cutoff 
frequencies of the BPF are programmable. The low-pass 
cutoff frequency is determined by the 3-dB roll-off frequency 

 

Fig. 5.  Schematic of the low-noise neural amplifier. 

 

Fig. 6.  Schematic of the low-noise OTA used in the neural amplifier. 
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of the OTA1, and is programmed by the DC bias current of 
OTA1. The low-pass cutoff frequency can be set at 300 Hz for 
LFP recording or at 5 kHz to include the neural spikes within 
the system bandwidth. 

The desired high-pass cutoff frequencies for the BPF are 
sub-1 Hz and 300 Hz to fit the recording bandwidth of LPF 
and neural spikes respectively. While it is easy to achieve an 
ultra-low high-pass cut-off frequency by employing the widely 

used pseudo-resistors, it is difficult to obtain well controlled 
300-Hz cut-off frequency as the resistance generated by the 
pseudo-resistor is highly susceptible to process variations. In 
order to solve this problem, an ultra-small-gm OTA is 
implemented in the feedback path of the BPF [19] as shown in 
Fig. 7(a). The OTA2 is connected in unity-gain configuration 
and designed with very narrow unity-gain bandwidth, such 
that the signal within the bandwidth of the OTA2 is fed back 
to the negative input node of the OTA1 and eventually 
rejected by the BPF. The bandwidth of the OTA2 is 
determined by its quiescent current, and can be controlled with 
much higher accuracy than the resistance of the pseudo-
resistors. When the switch in series with the OTA2 is 
disconnected, the high-pass cutoff frequency of the BPF is set 
to sub-1Hz, which is determined by the pseudo-resistors. 

The schematic of the OTA2 is shown in Fig. 7(b). A series-
parallel current division structure is used to achieve ultra-low 
gm [20]. The DC current in M7 is about 2 nA and the W/L ratio 
of M3 and M4 is 7 times of the W/L ratio of M5a and M6a, and 
the 6 serially connected PMOS transistors have all identical 
sizes. This results in a current of about 30 pA in the right and 
left branches. By using this ultra-low-gm OTA2, the BPF is 
designed to have a simulated high-pass cutoff frequency at 
300 Hz.  

Following the BPF is a unity-gain buffer and its OTA 
schematic is shown in Fig. 8. Both NMOS and PMOS 
transistors are adopted for the input pair to achieve rail-to-rail 
input swing. A class-AB output stage [21] is implemented by 
using a pseudo-resistor MR and a capacitor C1. This output 
topology achieves very large slew rate with small DC current, 
as the charging or discharging current to the load is not limited 
by the quiescent current of the output stage. By using the 
proposed OTA for the unity-gain buffer, combined with the 
dual S/H structure, only 1.2-A current is sufficient to fulfill 
the settling time requirement of the ADC. When the recording 
chain is put into sleep mode, the unity-gain buffer is fully 
turned off to conserve power. 

IV. SAR ADC DESIGN 

The architecture of the 9-bit alternating SAR ADC is shown 
in Fig. 9 (a). The ADC mainly consists of four building 
blocks: a time domain (TD) comparator, a capacitor array, a 
switch array, and a logic circuit. This 9-bit alternating ADC 
digitizes ten analog input signals and generates one serial 
digital output. Based on the proposed dual S/H structure, two 
S/H channels are implemented. It is achieved using two sets of 
sampling switches, TD comparators, and capacitor arrays. 
Only one set of SAR logic is implemented. The ADC first 
samples the input Vin1 from the channel 1 through the switch 
S1 onto the capacitor array CS1 while the channel 2 capacitor 
array CS2 undergoes the bit conversion of Vin2. During the next 
cycle, the channel 1 will enter the conversion phase and the 
channel 2 will go into sampling of the next analog input 
channel according to the timing diagram in Fig. 9(b). 

A non-binary redundant algorithm is utilized in the SAR 
ADC design to improve the accuracy and noise rejection 

 
(a) 

 
(b) 

Fig. 7.  (a) Schematic of the BPF. (b) Schematic of the OTA2. 

 

Fig. 8.  Schematic of the OTA used in the unity gain buffer. 
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performance [22], [23]. One redundant bit is introduced in this 
design. The capacitors in the array are sized based on the 
optimum non-binary redundant bit weights obtained through 
extensive simulation [24]. To reduce the total size of 
capacitors, the segmented capacitor array is introduced. The 
unit capacitance used is 0.24 pF occupying the area of 12 µm 
by 12 µm when implemented by the MIM capacitor. This 
value was determined considering the noise requirement as 
well as the parasitic capacitance effect. A time-domain 
comparator reported in [25] is used to further reduce the 
power consumption. The reference voltages Vref_hi and Vref_lo 
are generated from the 1-V supply using a resistive voltage 
divider and buffered using a self-regulated voltage reference 

buffer [26].   

V. POWER MANAGEMENT 

The overall system power is provided by the IC2 via 
flexible cable, as described in Section I. The rectifiers in IC2 
output two levels of DC voltage, which are then regulated by 
the low-power capacitor-less LDOs in the IC1. As shown in 
Fig. 10, the LDO has two gain stages in its current feedback 
loop to increase the loop gain which stabilizes the LDO under 
low-output-power condition, and non-linear circuits are used 
to reduce the power consumption. A flipped voltage follower 
(FVF) structure is utilized to achieve low output impedance 
and hence loop stability without the need of an off-chip 
capacitor [27]. However, such a structure has limitation in its 
loop gain which in turn limits the load regulation performance 
of the LDO and stability when the load current is very small 
(e.g. < 50 A). In order to improve the loop gain, a two-stage 
current-mode feedback loop is introduced. The output voltage 
variation is converted to current by the FVF and compared 
with a current reference using a current comparator [28]. The 
output of the current comparator controls the switching of a 
thick-gate charge pump to charge/discharge the gate voltage of 
the output driver MOSFET. The two-stage current-mode 
feedback improves the loop gain of the LDO to 50 dB.  

The current comparator [29] utilizes a source follower as 
the input stage and a CMOS inverter as the positive feedback 
to have lower input resistance and short response time. 
However, there exists a deadband region in which the two 
input transistors are both turned off and the input resistance is 
high. In this LDO, the current comparator utilizes the structure 
in [28] which solves this problem by biasing the input 
transistors to be always on.  

As the input impedance of the current comparator is low, it 
does not introduce additional low-frequency poles to the 
circuit. As a result, the LDO remains stable without an off-
chip capacitor even at no load current. Since the LDO consists 

(a) 

(b) 

 
(c) 

Fig. 9.  (a) Architecture of the 9-bit alternating SAR ADC. (b) Timing diagram
of the alternating SAR ADC. (c) Architecture of the segmented capacitor array.

 

Fig. 10.  Schematic of the output-capacitor-less LDO with high-loop-gain
current-mode feedback. 

 
Fig. 11.  Die micrograph of the neural interface IC. 
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of non-linear circuit blocks such as the current comparator and 
charge pump, it consumes very low power and achieves high 
power efficiency even under low-load condition. 

VI. MEASUREMENT RESULTS 

The 100-channel neural recording interface IC has been 
fabricated using a standard 0.18-µm CMOS process and the 

      
(a)                                                                                                                 (b) 

      
(c)                                                                                                                (d) 

Fig. 12.  (a) Frequency response of the full analog recording chain showing programmable gain. (b) Frequency response with programmable high-pass cutoff
frequency. (c) Frequency response with programmable low-pass cutoff frequency. (d) Input-referred noise of the full analog recording chain. 

 

 

Fig. 13.  Measured ADC performance. Output spectrum (SNDR and ENOB) and nonlinearity (DNL and INL). 
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die micrograph is shown in Fig. 11. The dimension of the 
fabricated IC is 4.7 mm by 6 mm, including pads. The system 
is tested under 1 V for the analog channels and ADC, and 1.8 
V for the digital control module. The measurement results of 
the overall neural interface IC are described in detail in the 
following sections. 

A. Analog Recording Chains 

The mid-band gain of the system can be set at either 54.6 
dB or 60.6 dB as plotted in Fig. 12(a). The measured high-
pass cutoff frequency is 0.38 Hz if only the pseudo-resistor 
presents in the feedback path of the BPF, and it can be altered 
to 248 Hz when OTA2 is connected. By programming the 
high-pass cutoff frequency, the LFP signal can be either 
recorded or removed. The low-pass cutoff frequency of the 

      
(a)                                                                                                             (b) 

Fig. 14.  Power breakdown of the overall neural interface IC with and without dual S/H scheme. 

 

 
(a)                                                                                                               (b) 

 
(c)                                                                                                              (d) 

Fig. 15.  in vivo testing results of the overall interface IC. (a) Stimulation artifacts and their responses. (b) Zoomed-in stimulation artifact and neural response. (c)
Spontaneous neural signal acquisition with a glass electrode from an anesthetized rat. (d) Multi-channel neural signal recording with a NeuroNexus electrode from
a freely behaving rat. 
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system is determined by the gm value of the OTA1 in the BPF, 
and can be set at 432 Hz or 5.1 kHz as shown in Fig. 12(c). As 
a result, the neural spikes and the LFP can be recorded either 
separately or simultaneously by choosing different bandwidth 
configurations. 

The input-referred noise spectrum of the overall neural 
recording channel is depicted in Fig. 12(d). The noise floor is 
about 40 nV/√Hz measured at 1 kHz, and the RMS value of 
the input-referred noise is 4.0 µVrms, when integrated from 1 
Hz to 8 kHz. The measured NEF of the whole analog chain is 
1.9, which is the lowest to the best of our knowledge. The 
NEF of the stand-alone neural amplifier will be even lower 
than this value if the noise from the BFP and the unity-gain 
buffer is not counted in. 

Considering the constantly decreasing operation voltage of 
the preamplifier, the popular NEF metric has been modified to 
the following equation [30] [31],  

)
4/

2
(2

,
2

BWkTqkT

P
VVDDNEF total

inrms 





      (8) 

which is dependent on the power consumption rather than the 
current. The NEF2VDD of this design is only 3.6, which is 
much lower or comparable to other state-of-the-art designs, 
indicating an optimal noise-power trade-off. 

B. ADC 

The measurement results of the SAR ADC are shown in 
Fig. 13. The input dynamic range of the ADC is from 250 mV 
to 750 mV. Vref_lo, Vcm and Vref_hi (Fig. 9(a)) are set to 
250 mV, 500 mV and 750 mV, respectively and the clock 

frequency for the ADC is set to 540 kHz. Fig. 13 shows the 
measured signal-to-noise-and-distortion ratio (SNDR), 
differential nonlinearity (DNL), and integral nonlinearity 
(INL) performances of the dual S/H SAR ADC for a 12-kHz 
sinusoidal input. The ADC achieves 51.5 dB of SNDR which 
corresponds to 8.3 bits of the effective number of bits 
(ENOB). The DNL and INL of the ADC are ±0.55 LSB and 
±1.2 LSB, respectively. The total power consumption of the 
ADC is 8.39 µW when it supports two analog recording 
channels. When all of the 10 analog recording channels are 
activated, the ADC clock frequency is 2.7 MHz and the ADC 
total power is 21.66 µW.  

C. System Performance 

Table I summarizes the performance of the overall 100-
channel neural interface IC and makes a comparison with 
other state-of-the-art designs. All the listed numbers for analog 
modules of this design in Table I are obtained from the output 
of the unity-gain buffer. The total power consumption of the 
overall 100-channel interface IC is only 1.16 mW including 
the loss in the power management module. The system power 
allocation with dual S/H scheme is displayed in Fig. 14(a). 
The power management module takes about 30% of the total 
power with 70% efficiency. Fig. 16 shows the line and load 
regulation of the LDO. The LDO achieves a line regulation of 
3%/V and a load regulation of 0.6 mV/mA. The 100 analog 
recording chains consume about 20% of the total power, and 
the ADCs take about 19%. The rest of power is dissipated by 
the digital modules, including the digital control blocks, 
digital buffers and I/O pads. On the other hand, if without the 

TABLE 1.  MEASURED PERFORMANCE SUMMARY AND COMPARISON OF THE PROPOSED NEURAL INTERFACE IC WITH STATE-OF-THE-ART DESIGNS. 

 

 
Harrison 

[5] 
Chae 
[7] 

Lee 
[32] 

Rabaey 
[30] 

Walker 
[33] 

Chang 
[34] 

This work 

Supply voltage 
(V) 

3.3 ±1.65 ±1.5 0.5 1.2 0.5 / 1 1 / 1.8 

Process 0.5 µm 0.35 µm 0.5 µm 65 nm 0.13 µm 0.25 µm 0.18 µm 
System gain 

(dB) 
60 57 – 60 67.8 / 78 -- 40 / 55 37.5 – 57.5 54.8 / 60.9 

High-pass 
cutoff (Hz) 

30 – 1k 0.1 – 200 0.1 – 1k DC / 300 0.3 0.5 (tunable) 0.38 / 248 

Low-pass 
cutoff (Hz) 

5k 2k – 20k 8k 300 / 10k 10k 18k (tunable) 432 / 5.1k 

Noise (µV) 5.1 4.9 4.32 4.9 2.2 4.26 / 5.62 4.0 (whole chain) 
NEF -- -- -- 5.99 5 5.2 / 1.69* 1.9 (whole chain) 

NEF2VDD -- -- -- 17.96 30 27 / 2.86* 3.6 (whole chain) 
THD -- -- -- -- -- -- 1% @ 0.9-V output 

CMRR (dB) -- 90 134 75 -- 35 > 60 
PSRR (dB) -- 80 62.7 64 -- 48 > 70 

Sampling rate 
(kS/s) 

15 640 58 – 709 20 31.25 31.25 24.5 – 245 

SNDR (dB) -- -- -- -- 60.3 45.14 51.5 
No. of bits 10 6 – 9 -- 8 10 -- 9.5 

ENOB -- -- 8.3 7.15 -- 7.2 8.3 
INL/DNL 0.6 / 0.6 -- -- -- -- 0.75 / 0.5 1.2 / 0.55 

No. of channels 100 128 32 1 96 16 100 

Total power 
(mW) 

4.3 
(one ADC) 

3 
1.2 (without 

ADC) 
0.005 6.5 0.2 

1.16 (including loss 
in power 

management) 
Chip area 

(mm2) 
27.7 

(one ADC) 
51.8 16.2 0.013 25 2.88 28.2 

*The numbers are for the preamplifier only, while the numbers in the proposed design are for the whole analog recording chain. 
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dual S/H structure, the system power can raise up to 2.5 mW 
as shown in Fig. 14(b), with about 50% of consumption is 
taken by the unity-gain buffer. This is due to the significantly 
shortened sampling time of the ADC, which necessitates high 
driving capability of the buffer. The numbers in Fig. 14(b) are 
estimated based on theoretical analysis. Compared to the 
conventional single S/H structure, the proposed dual S/H 
system architecture reduces the total system power by more 
than 50% and improves the system power efficiency 
significantly.  

D. In vivo testing 

To further verify the functionality of the fabricated neural 
recording system, in vivo neural signal acquisitions have been 
performed. First, field evoked potential recording was carried 
out and Fig. 15(a) shows the sample recordings from the 
medial perforant path-dentate gyrus monosynaptic pathway 
[35]. Two stimulus artifacts with 400-ms interval and the 
paired pulse inhibition of the negative waveform 
(characteristic of the dendritic recording in the aforesaid 
pathway) were illustrated in Fig. 15(a), and the neural 
response was observed as shown in the zoomed-in picture, 
Fig. 15(b). Second, spontaneous neural activities were also 
captured using a glass electrode from dorsal raphae nucleus 
(DRN), as shown in Fig. 15(c). The biphasic waveform and 
occurrence of doublets confirms the recording electrode 
position in the DRN [36]. The above-mentioned experiments 
were conducted in unconscious rats. Further, multi-channel 
neural signals were also recorded successfully from nucleus 
incertus (NI), in a freely moving rat chronically implanted 
with a NeuroNexus probe. The acquired neural signals are 
depicted in Fig. 15(d), where neural spikes from the NI [37] 
are clearly observed. 

VII. CONCLUSION 

This paper has demonstrated a mili-watt 100-channel neural 
recording interface IC. A dual S/H system architecture is 
proposed which extends the sampling time of the ADC by 10 
times and effectively reduces the system power by more than 
50% compared to the conventional multi-channel neural 
recording system. A three-stage analog recording chain was 
implemented, which helps to achieve optimal system 
performance. The system was designed with programmable 
gain and bandwidth so that neural spikes and LFP can be 
recorded simultaneously or separately. The current-reuse 
technique and weak-inversion operation are employed to 
achieve high power efficiency for the neural amplifier, 
resulting in a system NEF of 1.9, which is one of the lowest 
among state-of-the-art designs. A low-power ADC with a 
redundant bit was implemented and a capacitor-less LDO was 
integrated to complete the functionality of the interface IC. in 
vivo neural signals were successfully acquired using the 
developed prototype. The optimal system power and small 
chip area make the developed interface IC especially suitable 
for fully implantable multi-channel neural recording 
microsystems [38]. 
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