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Abstract

Background: All previously reported eukaryotic nuclear genome sequences have been

incomplete, especially in highly repeated units and chromosomal ends. Because repetitive DNA is

important for many aspects of biology, complete chromosomal structures are fundamental for

understanding eukaryotic cells. Our earlier, nearly complete genome sequence of the hot-spring

red alga Cyanidioschyzon merolae revealed several unique features, including just three ribosomal

DNA copies, very few introns, and a small total number of genes. However, because the exact

structures of certain functionally important repeated elements remained ambiguous, that sequence

was not complete. Obviously, those ambiguities needed to be resolved before the unique features

of the C. merolae genome could be summarized, and the ambiguities could only be resolved by

completing the sequence. Therefore, we aimed to complete all previous gaps and sequence all

remaining chromosomal ends, and now report the first nuclear-genome sequence for any

eukaryote that is 100% complete.

Results: Our present complete sequence consists of 16546747 nucleotides covering 100% of the

20 linear chromosomes from telomere to telomere, representing the simple and unique

chromosomal structures of the eukaryotic cell. We have unambiguously established that the C.
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merolae genome contains the smallest known histone-gene cluster, a unique telomeric repeat for

all chromosomal ends, and an extremely low number of transposons.

Conclusion: By virtue of these attributes and others that we had discovered previously, C. merolae

appears to have the simplest nuclear genome of the non-symbiotic eukaryotes. These unusually

simple genomic features in the 100% complete genome sequence of C. merolae are extremely useful

for further studies of eukaryotic cells.

Background
The biological sciences have been embracing a new para-
digm as a result of accruing genome information [1-13].
However, all previously reported eukaryotic nuclear
genome sequences have been incomplete, especially in
highly repeated units and chromosomal ends. Because
repetitive DNA is essential to genome function [14], and
may contribute to the diversity of isoforms [15] and the
evolution of life [16], complete chromosomal structures
are fundamental for understanding eukaryotic cells.

Our recently published nuclear-genome sequence of the
ultra-small, hot-spring red alga, Cyanidioschyzon merolae
10D, revealed some unique features, such as very few
introns, only three copies of ribosomal (r)DNA, and a
small total number of genes [9,10]. However, because
uncertainties remained regarding the features of certain
important repeated elements, such as histone-gene clus-
ters and telomeres [9], this sequence, like all previous
eukaryotic nuclear-genome sequences, was incomplete.
Given the functional significance of such elements [14], it
was obviously desirable to complete the sequence and
resolve all ambiguities before attempting to summarize all
of the unique features of the C. merolae genome. There-
fore, we aimed to complete all previous gaps and
sequenced all the remaining chromosomal ends, to con-
struct the first nuclear genome sequence that is 100%
complete. The results demonstrated that C. merolae pos-
sesses the simplest nuclear genome known among non-
symbiotic eukaryotes.

Results and Discussion
A 100%-complete genome sequence

Completing the nuclear genome sequence, from telomere
to telomere, without gaps or ambiguities, required two
distinct subprojects: (i) filling in all 46 previously existing
gaps between contigs, and (ii) sequencing the 34 (of 40)
chromosome ends that had not been sequenced previ-
ously by the shotgun method [9]. Using PCR with
sequence-specific primers to amplify portions of the C.
merolae bacterial artificial chromosomes (BACs) that con-
tained gap regions of interest, and then sequencing the
resulting subclones, we have reduced the number of gaps
between contigs from 46 to zero (Figure 1). A variety of
methods (Additional files 1, 2) were then used to
sequence all of the chromosomal ends that had not been

sequenced previously (Figure 1). The global size of the 46
gaps that we have sequenced in this study is 46 469 base
pairs. These sequences are G+C-rich (61%) compared
with that of the whole nuclear genome (55%), and six of
the 46 have extremely high G+C contents (70–76%). Fur-
thermore, sequences corresponding to 13 previous gaps
have extremely high nucleotide identity (99.4–100%) to
other genomic regions. It turns out that the nuclear
genomic sequence previously reported [9] contains misas-
sembled and/or incorrect sequences of >20 kbp in total.
The resulting complete genome sequence contains
16546747 base pairs and covers 100% of the chromo-
somal genome, from telomere to telomere. The numbers
of base pairs in each of the 20 nuclear chromosomes are
given in Table 1. These 20 linear nuclear chromosomes
plus the two circular organellar DNA molecules [17,18]
comprise the entire genome of the organism, and contain
16728945 base pairs (Table 1).

Histone-gene cluster

The total number of histone genes varies greatly by spe-
cies. Animal genomes typically have several hundred to
several thousand histone genes organized as a set of tan-
demly repeating quintets of the five major histone gene
types [19,20]. In contrast, histone genes are located on
more than one chromosome in some organisms, such as
the ultra-small green alga Ostreococcus [12] and the flow-
ering plant Arabidopsis [4]. In our previous study, the com-
plete organization of the histone cluster area in the C.
merolae genome was left unresolved, because of several
gaps within this region of sequence [9]. However, our
present complete sequence establishes that all C. merolae
histone genes are localized on chromosome 14 and form
a small cluster (around 48 kbp long) that includes two
copies of the three core histone genes (H2A, H2B and H4),
three copies of the H3 gene, and a single copy of the
linker-histone H1 gene (Figure 2). In Saccharomyces cerevi-
siae [2], Schizosaccharomyces pombe [6], Dictyostelium discoi-
deum [11], Encephalitozoon cuniculi [5] and Ostreococcus
tauri [12] the histone genes also exhibit small copy num-
bers (up to three), as in C. merolae, but they are dispersed
across more than two chromosomes. Thus, the C. merolae
histone genes are present in the most compact cluster yet
described.
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Telomeres and subtelomeric regions

Whole-genome shotgun sequencing suggested that the
repeat unit in C. merolae telomeres is AATGGGGGG [9],
but in that study only six of the 40 chromosome ends
were examined [9] (Figure 1). Here the sequencing of all
remaining termini confirmed that AATGGGGGG is the
telomere repeat sequence in all C. merolae chromosomal
ends. In most plants, the telomeres are composed of many
copies of the sequence TTTAGGG [21], and the C. merolae
telomere sequence, AATGGGGGG, has never yet been
found elsewhere.

Telomere length varies among plants from approximately
0.5 kbp in the green alga Chlorella vulgaris to 150 kbp in
tobacco [22,23]. Telomere restriction fragment analyses
using the (CCCCCCATT)3 probe revealed AATGGGGGG
repeats varying from 400 to 700 bp in the total chromo-
somal ends in the C. merolae genome (data not shown).
Our Southern blot analysis using a specific genomic probe
suggested that C. merolae chromosome 15 has around a
400-bp telomere repeat sequence at the left end (see Addi-
tional file 3). However, the longest telomeric repeats that
could be sequenced in this study were 2.5 repeats (AAT-
GGGGGGAATGGGGGGAATGGG) in the right end of
chromosome 1, possibly because long stretches of AAT-
GGGGGG repeats are difficult to clone or sequence using
conventional techniques used in this and previous studies
[9].

The putative telomerase catalytic subunit, telomerase
reverse transcriptase (TERT) is transcribed (CMD110C) in

C. merolae [9]. In the C. merolae genome, we found two
possible telomerase RNA subunit genes in chromosomes
13 and 16, based on two transcripts, CMM123T and
CMP131T, which included UUCCCCCCAUU and CCAU-
UCCCCCCAUU sequences, respectively. The telomerase
RNA template sequence (CCCCCCAUU) has been
detected in only these two hypothetical non-coding RNA
genes among all the predicted genes in the present 100%
complete nuclear genome. These are the first convincing
candidate telomerase-RNA subunit genes in plant and
algal lineages.

Based on the end sequencing of all 40 chromosomal ter-
mini completed here, all of the subtelomeric regions in
the C. merolae nuclear genome have been unveiled (Figure
3). Eight types of homologous DNA elements (up to 20
kbp), with unique gene contents, were found adjacent to
the telomere repeats in the 40 chromosomal ends (Figure
3). Two of the eight types exist in only two ends; element
H for 3L (left end of chromosome 3) and 16R, and ele-
ment L for 3R and 11R. PH elements are the most frequent
and are recognized in 6L, 7R, 8L, 8R, 11L, 14R, 18R and
19R, whereas nine termini (namely, 2L, 6R, 12R, 13L,
13R, 15L, 15R, 16L and 20R) showed no homology to
other terminal regions. This situation is different from
that of S. cerevisiae, in which core X elements exist in all
chromosomal ends [24]. In the ultrasmall, obligate intra-
cellular parasite E. cuniculi (Microsporidia) [5] and the
nucleomorphs (the reduced nuclei of the eukaryotic
endosymbionts) of the cryptophyte Guillardia theta and
chlorarachniophyte Bigelowiella natans [25-27], both of

Bird's-eye view of the 100% complete structures of 20 C. merolae chromosomesFigure 1
Bird's-eye view of the 100% complete structures of 20 C. merolae chromosomes. This shows regions that were filled 
in the present study ('Gap' and 'Chromosomal end'), telomere repeats, the histone cluster area, localization of transposable 
elements ('Class I' and 'Class II') and putative centromeric regions [9].
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the subtelomeric regions of all chromosomes harbor
rRNA genes. However, such features are not recognized in
Cyanidioschyzon (Figures 1, 3) and the ultra-small green
Ostreococcus [12], and thus seem to represent some evolu-
tionary convergence resulting from the intracellular para-
sitism or endosymbiosis in E. cuniculi and the
nucleomorphs.

Transposable elements

The number of transposable elements in various eukaryo-
tes differs widely [28-30], and of all the non-symbiotic
and non-pathogenic eukaryotes previously studied, yeast
and pufferfish have the fewest: about 3% of the genome
[29,30]. However, transposons constitute only about
0.7% of the C. merolae genome (by assuming that the aver-
age gene size of RT- and transposase-related elements are
4 kbp and 3 kbp, respectively). The completed C. merolae
genome sequence contains only 26 class I elements (retro-
transposons) and eight class II elements (transposons)
[31] (Figure 1). The transcripts of three of the 26 retro-
transposons contained an intact reverse transcriptase
open-reading frame, and a BLASTX search suggested that
all 26 of the retrotransposons were most closely related to
non-long terminal repeat (non-LTR) retrotransposons.
So, although LTR retrotransposons are widely distributed
in plants and animals [31], we could not find any of them
in the C. merolae genome. All eight of the transposase-
related elements of C. merolae were most closely related
(E-value = 0.071–6 × 10-7) to transposase sequences of
bacterial transposons. In short, C. merolae is one of the
two non-symbiotic eukaryotes with an extremely low
abundance of transposable elements (Table 2). In the

Table 1: Key features of the 22 chromosomes constituting the 

three genomes of the hot-spring red alga Cyanidioschyzon 

merolae 10D

Genome/
Chromosome

No. of 
nucleotides(bp)

Shape of 
chromosome

No. of 
protein-
coding genes

Nucleus*

1 422 616 Linear 102

2 457 013 Linear 125

3 481 791 Linear 144

4 513 455 Linear 140

5 528 682 Linear 161

6 536 163 Linear 131

7 584 452 Linear 173

8 739 753 Linear 213

9 810 151 Linear 231

10 839 707 Linear 247

11 852 849 Linear 236

12 859 119 Linear 258

13 866 983 Linear 249

14 852 727 Linear 256

15 902 900 Linear 265

16 908 485 Linear 261

17 1 232 258 Linear 355

18 1 253 087 Linear 360

19 1 282 939 Linear 384

20 1 621 617 Linear 484

Total 16 546 747 4 775

Unassigned 0 0

Plastid [17] 149 987 Circular 208

Mitochondrion [16] 32 211 Circular 34

Total of 3 genomes 16 728 945 5 017

*Based on the present 100% nuclear genome sequence.

Strategy for finishing the analysis of the C. merolae histone gene cluster on chromosome 14, and a map of histone genes resolved within the clusterFigure 2
Strategy for finishing the analysis of the C. merolae histone gene cluster on chromosome 14, and a map of histone genes 
resolved within the cluster. The black and the white squares in genes represent CDS and 5'-/3'-untranslated regions, respectively. H4-
a, histone H4-a; H2B-a, histone H2B-a; ADF, actin-depolymerizing factor; S/TPK, RIO-like serine/threonine protein kinase; 40S-S13, 40S 
ribosomal protein S13; H3-b, histone H3-b; PTR, possible transcribed region; H2A-b, histone H2A-b; H3-c, histone H3-c; TIM50, mito-
chondrial preseqence translocase subunit Tim50; BAT, brabched-chain-amino-acid transaminase, mitochondrial precursor; H1, histone 
H1; ASM, similar to N6-adenine-specific methylase; Hyp, hypothetical transcript; TPR, hypothetical protein, conserved (containing tetratr-
icopeptide repeats); CAB-CP24, similar to chlorophyll a/b-binding protein, CP24; H2B-b, histone H2B-b; Hyp, hypothetical protein; H4-b, 
histone H4-b.
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endosymbiotic reduced eukaryotes, Encephalitozoon
cuniculi and nucleomorphs [5,25-27], however, transpos-
able elements seem lacking in chromosomes.

In contrast to this, 253 copies of a novel interspersed
repetitive element were found in the C. merolae genome.
All copies have a truncated ORF that is weakly related
(BLASTX E-value = 10-5-4 × 10-2) to a putative protein,
WSV486, that is encoded in the genome of the shrimp
spot syndrome virus [32]. These repetitive elements have
an average size of 3.2 kbp, are distributed randomly on all
chromosomes, and altogether comprise about 5% of the
genome. Because these elements exhibit transcriptional
activity [9], they may contribute to genomic or cellular

functions in C. merolae in the same manner as repetitive
DNA does in other eukaryotes [14].

Conclusion
The smallest known histone-gene cluster, a unique telom-
eric repeat, a very low density of transposable elements,
and other previously described simple features of the C.
merolae nuclear genome [9,10] (Table 2) are very distinc-
tive, and constitute the simplest set of genomic features
found in any non-symbiotic eukaryote yet studied. Such
simple features are generally considered to result from
consequences of reductive evolution of an ultra-small
eukaryote [12]. However, none of these features is shared
by the similarly ultra-small green alga, Ostreococcus, in

Complete gene contents at the terminal regions of C. merolae chromosomesFigure 3
Complete gene contents at the terminal regions of C. merolae chromosomes. T, P, L, H, C, F, E, A, O, D, R, I and M 
represent genes for the trefoil factor, NADPH:protochlorophyllide oxidoreductase, L-lactate dehydrogenase, hedgehog pro-
tein, subunit 6a of chaperonin containing TCP1, subunit ATP5 of F1FO ATP synthase, ubiquitin conjugating enzyme E2, copper-
containing amine oxidase, anion transporter, dTDP-glucose 4,6-dehydratase, dTDP-4-dehydrorhamnose reductase, iron per-
mease, and dolichyl-phosphate-mannose:protein mannosyltransferase, respectively. Detailed information is available on the C. 
merolae Genome Project website http://merolae.biol.s.u-tokyo.ac.jp/. Homologous DNA elements are shown as red lines with 
designations.
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which 39% of the genes contain introns, histone genes are
dispersed across at least six chromosomes, and 417 trans-
posable elements and 8166 protein-coding genes are dis-
tributed among the chromosomes [12] (see Table 2).
These may suggest differences in modes of genome reduc-
tion between ancestors of Cyanidioschyzon (red algae) and
Ostreococcus (green plants). On the other hand, algae liv-
ing in acidic hot springs (pH 1.5, 45°C) might be candi-
dates for retaining ancient plant attributes, because the
volcano activity is thought to have been providing such an
extreme environment throughout Earth's history. Very
recently, Cunningham et al [33] reported that C. merolae
contains perhaps the simplest assortment of chlorophylls
and carotenoids found in any eukaryotic photosynthetic
organism. In addition, the C. merolae plastid genome con-
tains a large number of genes, which is thought to be a
primitive feature, because reversal of plastid-gene loss is
generally considered to be impossible [34,35]. Thus, our
hypothesis is that some of the unusual or simple genomic
characteristics of C. merolae may represent primitive fea-
tures that have been conserved in Cyanidioschyzon, but
have become extensively modified during the evolution of
other plant lineages. Alternatively, the unique genomic
features of C. merolae (Table 2) may reflect adaptation to
the extreme environment. However, genome information
for other hot-spring red algae is very limited. The recently
released nuclear genome sequence of another hot-spring
red alga Galdieria has not revealed the chromosomal struc-
tures of its components, such as rDNA units or histone
cluster area. [36]. Further information on the complete
nuclear genomes of other plants, including other hot-
spring red algae, red macro-algae, and other members of
plant and algal lineages, will be needed to determine
whether C. merolae actually has primitive genomic fea-
tures.

Three kinds of genomes are found in many eukaryotic
cells: nuclear, mitochondrial, and plastid [37]. Based on
the present nuclear genome data and the previously pub-
lished mitochondrial and plastid genome sequences
[18,19], all major types of eukaryotic genetic information
are present in C. merolae. In addition, as revealed by the
present 100% complete genome, C. merolae contains unu-
sually simple sets of genes and sequences (Table 2). For
example, because almost all protein-coding nuclear genes
of C. merolae lack introns (Table 2), the complete
sequence of the genome provided here can be used
directly to deduce the sequences of all of its proteins,
which will make it extremely valuable for future proteom-
ics research. Therefore, C. merolae represents an ideal
model organism for studying the fundamental relation-
ships among the chloroplast, mitochondrial and nuclear
of genomes. The complete nuclear genome sequence
reported here will greatly improve the precision of biolog-
ical analyses of C. merolae, including studies of chromo-
some structure and gene structure/annotation.
Furthermore, because C. merolae inhabits hot springs
(45°C) [9], most of its proteins must be unusually heat-
stable, and so its proteome may well provide important
new insights into the structural basis for heat stability of
proteins.

Methods
Filling gaps between contigs/fragments

Previously constructed C. merolae BAC clones [9] were
used for filling in previously existing gaps between con-
tigs. PCRs of BAC clones containing unsequenced regions
were carried out using Taq polymerase with GC buffer
(Takara LA Taq; Takara Bio Inc., Osaka, Japan) and spe-
cific primers complementary to sequences flanking the
gaps. DNA walking annealing control primer technology

Table 2: Comparison of the nuclear genomes of Cyanidioschyzon, Ostreococcus (an ultra-small green alga), Arabidopsis (a flowering 

plant) and Ashbya (a filamentous fungal pathogen).

Organism No. of protein-
coding genes

Genes with 
introns (%)

No. of rRNA 
gene units

No. of 
chromosomes 
with histone 
genes

Transposable 
elements in 
genome (%)

Telomere 
repeat 
sequences

Arabidopsis 26207 79 ~800 5≤ ~15 TTTAGGG

Ostreococcus 8166 39 4 6≤ ~10 TTTAGGG

Cyanidioschyzon 4775 0.5 3 1 0.7 AATGGGGGG

Ashbya 4718 5 ~50 4≤ 0.1> CGCTGAGAGA
CCCATACACCA
CAC

Bold type indicates the smallest number in non-symbiotic eukaryotes.
Two non-symbiotic eukaryotes, Schizosaccharomyces pombe and the filamentous fungus Ashbya gossypii, have nuclear protein-coding genes that are as 
small in number as those of C. merolae.
The number of protein-coding genes in the nuclear genome of S. pombe [6] increased to 5004 http://www.sanger.ac.uk/Projects/S_pombe/
genome_stats.shtml.
Although A. gossypii was reported to contain 4718 protein-coding nuclear genes [13], the genome project of this fungus is now in progress http://
agd.unibas.ch/; thus it possibly contains more than 4775 protein-coding genes.

http://www.sanger.ac.uk/Projects/S_pombe/genome_stats.shtml
http://www.sanger.ac.uk/Projects/S_pombe/genome_stats.shtml
http://agd.unibas.ch/
http://agd.unibas.ch/
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(DNA Walking SpeedUp™ Kit; Seegene, Seoul, Korea) was
also used to directly amplify unknown sequences adjacent
to known sequences within a contig. PCR products were
sequenced by cycle sequencing (Big-Dye Terminator Cycle
Sequencing Kit v 3.1; Applied Biosystems, Foster City, CA,
USA), except for a single gap in chromosome 10, which
was filled by a sequencing reaction performed using in
vitro transcription (CUGA Sequencing Kit; Nippon
Genetech Co., Ltd., Tokyo, Japan).

Sequencing of each chromosomal end

PolyC-tailing and the anchor primer method, the inverse
PCR method and the asymmetric PCR method were used
for sequencing the ends of chromosomes. For details, see
Additional files 1 and 2.

Assembling sequence data and gene annotation

Assembling of sequence data and two strategies for gene
prediction have been described previously [9].

Complete determination of the histone cluster area

To determine the complete sequences of the histone clus-
ter area in the C. merolae genome, we carried out NotI and
ApaI subcloning of the BAC clone GESZ2-b20, which
included possible histone clusters in chromosome 14 [9].
Restriction-enzyme analysis, Southern blot analysis with
histone-related probes and end sequencing of the sub-
clones revealed relative positions of the subclones on
chromosome 14 (Figure 2). Six gaps between contigs/frag-
ments in the histone cluster area [9] were filled using
primer walking of the subclones. For details, see Addi-
tional files 1 and 4.

Accession numbers

The 100% chromosome sequences are accessible under
the DDBJ with accession numbers AP006483–AP006502
(chromosome 1–20). Sequences and annotation are avail-
able at http://merolae.biol.s.u-tokyo.ac.jp/.
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