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1 Introduction

Moduli stabilisation in string theory has a long history and its understanding is crucial for

the study of top-down phenomenology. One of the main breakthroughs came in 2003 with

the KKLT model [1] and in 2005 with the Large Volume Scenario [2]. Both methods to sta-

bilise moduli rely on computing leading-order corrections to ten-dimensional supergravity

solutions with orientifold sources and three-form fluxes in type IIB supergravity [3–5]. De-

spite the long history of this field there has never been any genuine top-down understanding

of these mechanisms to stabilise moduli. The arguments always involved a mixture between

top-down and bottom-up viewpoints. This is not a problem per se, but it can lead to a false

sense of freedom to tune parameters in the bottom-up effective field theory. It is therefore

desirable to find at least one concrete top-down description of moduli-stabilisation.

Recently the field of moduli stabilisation has regained attention due to a growing

suspicion that string theory may fail to accommodate any de Sitter (dS) vacuum [6–8].

This suspicion is mainly based on three things. Firstly on the lack of explicit dS examples

string constructions such as classical type II supergravity and tree-level heterotic string
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theory [9–12] (see [7] for a review). Secondly, on non-trivial generalisations of the Dine-

Seiberg argument [13] (see also [14]).1 And thirdly, on the old debate concerning the

quantum breakdown of dS space (due to backreacting particle creation) [16–22].2

This revival of interest has provided a healthy spark of ideas to construct new possible

dS vacua (or more general accelerating cosmologies) [27–32] or revisit existing ones [33–

36]. In this paper we direct our attention to the consistency of the KKLT model; both the

construction of the AdS vacuum and its potential uplift to a meta-stable dS vacuum. In

particular the uplift procedure has been heavily criticised on two fronts. First the stability

of the anti-branes themselves came under intense scrutiny in [37–39]. It is our opinion that

the arguments pointing towards the instability of anti-branes have been to a large extent

addressed and refuted in [40–43] (see however [44, 45]). The second concern, raised in [33]

(see also [46]), has to do with the interaction between the open string degrees of freedom

of the anti-brane and closed string degrees of freedom of the background. This interaction

is only possible in a compact model where the two effects cannot be separated indefinitely.

The authors of [33] suggested that it should be possible to study the interaction using

classical ten-dimensional supergravity including the energy-momentum of a gaugino con-

densate on D7-branes that live in the UV.3 However, there is some confusion regarding

the gravitational backreaction of the gaugino condensate in ten-dimensional supergravity.

This was discussed in [33, 34] and we refer the reader to those references for further elu-

cidations. The main observation of [33] was that the ten-dimensional energy-momentum

tensor behaves such that a dS vacuum is not attainable with a single gaugino conden-

sate. From a four-dimensional viewpoint this effect can be understood as a flattening of

the potential caused by a backreaction of the supersymmetry-breaking ingredients on the

volume modulus.

Later, it was shown in [34] that there is a loophole in the argument of [33] due to a

subtlety in the computation. Unfortunately the issue could not be settled in [34] since some

of the terms in the energy-momentum tensor were divergent and a regularisation is needed

that could influence the fate of the flattening effects. Recently Hamada et al. [48] (see

also [49]) proposed how to perform this regularisation by adding a quartic fermion term to

the action. In this note we redo the computations in [33, 34] including this new term. We

find that indeed the four-dimensional curvature is expressed entirely in terms of regular

background fluxes and the gaugino condensate, but we fail to find the KKLT effective

theory and explain why. The computation can rather straightforwardly be extended to

include anti-branes.

Simultaneously with this work two other works appeared [50, 51] about the same

problem and one of these works [51] comes to a very different conclusion then us. We

discuss in section 6 on the relation between our work and these two other papers. The

difference relates to manner the energy-momentum tensor is computed and the alternative

method of [51] and [50] does reproduce qualitatively the KKLT effective field theory and

finds no dangerous flattening effects when anti-branes are added.

1See [15] for early suggestions of a refined form of the dS swampland bounds.
2See [23–26] for some critical remarks on these ideas.
3Other somewhat orthogonal worries about the consistency of uplifting were expressed in [36, 47].
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2 The framework

The KKLT proposal [1] to stabilize moduli in a supersymmetric AdS vacuum rests on

reasonable assumptions about quantum corrections to the classical flux compactifications

of [3, 5]. These corrections have been argued for using four-dimensional effective field the-

ories described within N = 1 supergravity. The quantum correction used by KKLT is the

leading non-perturbative quantum effect to the superpotential W . Perturbative correc-

tions to W are absent because of non-renormalisation theorems whereas it is argued that

(non-)perturbative corrections in the Kähler potential K can sometimes be self-consistently

ignored.4 The non-perturbative quantum correction arises as a result of gauginos living on

a stack of D7-branes condensing in a confining vacuum of the four-dimensional gauge the-

ory. In what follows we assume, like KKLT, that the underlying Calabi-Yau manifold only

admits a single Kähler deformation. It then follows that there is only one (holomorphic)

4-cycle wrapped by the D7-branes.

At first sight the gaugino condensation obscures a dimensional oxidation of the KKLT

model. However, it has been suggested in [33] that it should nonetheless be possible

using ten-dimensional supergravity with D7 probe actions included. The way the gaugino

condensate couples to gravity and other closed strings could then be understood simply

by keeping explicit non-zero gaugino bilinears of the fermionic part of the D7 action and

compute its contribution to the ten-dimensional energy-momentum tensor [52–56].

Like [33] we compute the trace over the four-dimensional part of the (trace-reversed)

Einstein equation. We will perform this computation in detail in next section but here we

will discuss the form of the resulting expression,

R4 =

∫
6

√
g6 E [F 2, λ2] , (2.1)

where R4 is the curvature scalar of the four large dimensions,
∫ √

g6 integration over the

compact dimensions and E [F 2, λ2] represents some function of the background fluxes (F 2)

and the gaugino bilinear (λ2). We find that our approach is consistent with an AdS

spacetime but further relations between the fields are required to make a quantitative

comparison with the KKLT result. Strictly speaking the method of the trace-reversed

Einstein equation allows to compute only the curvature of a vacuum solution which is

related to the on-shell potential. The relation between fields required to make a comparison

to KKLT is only obtained from the off-shell potential which we do not derive here.

Adding anti-branes to this computation is straightforward as explained in [33, 34]. One

can show it simply adds the following term to the right hand side of equation (2.1):

R4 =

∫
6

√
g6

(
E [F 2, λ2]− 2nTδ6

)
, (2.2)

where T is the warped tension of a stack of anti-D3 branes and n the number of anti-

D3’s. This seems a contradiction since this term contributes negatively compared to the

4The Large Volume Scenario [2] uses perturbative corrections to the Kähler potential to stabilize the

volume modulus at exponentially large value in a non-supersymmetric vacuum.
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rest, so how can it uplift? In fact [33] realised that, in the right approximation scheme,

the anti-brane term is completely subdominant compared to the bulk piece E and should

be ignored.

This naive “paradox” arises because (2.2) computes an on-shell four-dimensional po-

tential instead of a full off-shell expression.5 The way uplifting should work from this

viewpoint is rather different. Uplifting works by a shift of the volume modulus ρ induced

by the supersymmetry-breaking, altering the value of E and potentially flipping its sign.

To make that point very explicit let us for simplicity assume that the term E has two pieces

E [F 2, λ2; ρ] = E+[F 2, λ2; ρ] + E−[F 2, λ2; ρ], (2.3)

where E− is negative definite and E+ positive definite and we introduced the symbolic

dependence on ρ. In the supersymmetric vacuum we obviously have E+[ρ] < −E−[ρ].

But when ρ shifts to ρ + δρ due to supersymmetry breaking we expect that the value

of R4 and therefore E [ρ + δρ] is less negative. A dS is reached by making sure that

E+[ρ+ δρ] > −E−[ρ+ δρ].

Apart from the ρ-dependence the only quantities appearing in E are the background

fluxes and gaugino vev. We can assume that their values have not altered when breaking

supersymmetry. This is a crucial assumption that is at the core of the KKLT model. In

other words the fluxes F 2 are the ones of the GKP solution in the background. One could

worry about this assumption since there are two sources for deviations from the GKP

solution: 1) near the anti-D3 branes non-ISD fluxes are sourced whereas the original GKP

construction only allowed for ISD fluxes [5]. But as we emphasised earlier this is a local

backreaction effect, and any extra terms in the Einstein equation that are otherwise missed

in the approximation will only contribute negatively. 2) Near the 7-branes also non-ISD

fluxes are sourced. Even worse, these fluxes are divergent, similar to what was believed to

be the case for anti-D3 branes [37, 39] but later shown not too happen because of brane

polarisation [41, 42]. In fact the discussion of anti-D3 flux singularities parallels that of

D7 gaugino-induced flux singularities. Whereas brane polarisation cures the singularities

for anti-D3 branes, it was shown in [48] that quartic gaugino-terms, previously ignored, do

the same for D7-branes.

The essence of this paper is the computation of the right hand side of equation (2.2)

incorporating the quartic gaugino term of [48] and is outlined in the next section.

3 A subtlety in the semi-classical Einstein equations

At this point a note of caution is required. While this paper was finalised we learned of

two other papers [50, 51] that appeared about the same problem. Their results differ from

ours and the reason is rather straightforward. The difference relies in how one computes

the semi-classical Einstein equation in 10-dimensions:

Gµν = 〈Tµν〉. (3.1)

5See [33, 34] for a more elaborate explanation.

– 4 –



J
H
E
P
0
6
(
2
0
2
0
)
0
7
4

Our method relies upon the following procedure. We first compute the form of the tensor

Tµν in 10 dimensions by varying the action with respect to the 10d metric keeping all other

fields fixed and keep the fermion bilinears arbitrary. Subsequently we use the 4d gauge

theory results for the vevs of the fermion bilinears to fix the expression of Tµν . Notice that

since the 4d vevs of the fermion bilinears have an explicit dependence on the volume of the

compact space, there is an implicit dependence on the 10d metric. Hence this procedure

will lead to different result than if one instead first replaces the fermion bilinears in the

10d action with the 4d vevs and then compute the variation of the action with respect to

the volume. In section 6.2, we demonstrate that this difference in the order of variations

leads to the results of Hamada et al. [51]. Note that our method gives a manifest local

description in 10d whereas there seems to be no ten-dimensional, manifestly local, covariant

description in the approach of [50, 51].

The main advantage of the approach followed by [51] is that it seems to directly

reproduces the 4d computation done by KKLT. In this work we prefer to remain agnostic

about the correctness of the 4d result for multiple reasons which we now explain. First

of all the motivation of our paper is to establish (or refute) the KKLT model from a 10d

perspective, before and after uplift. Hence we cannot assume the 4d EFT as a prior.

Alternatively one can regard the spirit of this work to be a test for the proposal that a 10d

derivation of KKLT can be found using fermion bilinear vevs in 10D as the only relevant

extra contribution to the “GKP” background. Whether semi-classical 10d supergravity

with localised 7-brane sources is the appropriate description of the four-dimensional gauge

theory in its confining phase is an open question. In this paper we report our results

assuming that for the sake of determining the vacuum, it is adequate. Secondly, the

precise way in which gaugino condensates couple to gravity is not understood, even in four

dimensions. KKLT makes a proposal to simply sum the background GVW superpotential

with the field theory superpotential. This is reasonable, but we are not aware of a derivation

of this and caveats can be around the corner. For instance, since gaugino condensation is a

consequence of long-wavelength fluctuations of fields, one expects it to be sensitive to the

background it is supposed to live on. Hence gaugino condensation can look different in AdS

or some other curved space. In other words: how exactly gaugino condensation couples

to gravity can be more complicated than simply adding it into the supergravity F-term.

Furthermore, the classical gravity background breaks supersymmetry via its fluxes. This

means that there is an explicit SUSY breaking occuring in theory once we incorporate the

gravitational degrees of freedom and hence the assumptions of having SUSY of the off-shell

Lagrangian, required for computing gaugino condensation, is not obvious. In what follows

we lay out the details of the computation of the 4d piece in the 10d Einstein equation (3.1).

As we will show, our results are not incompatible with an AdS solution but we are unable

to determine a quantitative value for the vacuum energy that can be compared with the

KKLT results. This will be discussed further in section 6.

4 The four-dimensional cosmological constant

In this section we utilise the approach of [5] to compute the four-dimensional curva-

ture when compactifying ten-dimensional type IIB supergravity with fluxes and D7-brane
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sources with non-vanishing gaugino bilinear. In doing so, we assume a maximally symmet-

ric four-dimensional spacetime. The ten-dimensional metric reads6

ds2
10 = e2Ads2

4 + e−2Ads2
6 , (4.1)

where ds2
4 is a maximally symmetric on a four-dimensional spacetime, with a constant

curvature scalar R4. The warp factor A only depends on the coordinates of the transverse

manifold M6 equipped with the metric e−2Ads2
6. Maximal symmetry demands that the ten-

dimensional axion-dilaton τ and 3-form field strength G3 only have legs and dependence

along M6. The type IIB 5-form F5 is self-dual and given by

F5 = (1 + ?10)dC4 , C4 = α vol4 , (4.2)

where α is a function on M6. The inclusion of three-form fluxes induces three-brane charge

that contributes to the tadpole which must be cancelled by the inclusion of local sources

such as O3/O7 planes. Taking these ingredients into account, [5] found a consistency

condition demanded by the trace-reversed Einstein equation that takes the form7

46Φ− = R4 +
e2A

Im τ
|G−

3 |
2 + e−6A|dΦ−|2 , (4.3)

where

Φ± = e4A ± α , G±
3 =

1

2
(?6 ± i)G3 . (4.4)

This equation can also be derived directly from the type IIB action (together with O3/O7

source terms) upon varying with respect to the warp factor A (see appendix B). The

power of this equation becomes apparent when one integrates (4.3) over M6. The left-

hand-side integrates to zero which implies that the four-dimensional curvature scalar R4 is

non-positive. The GKP vacua are the ones with R4 = G−
3 = Φ− = 0.

We now derive the equation corresponding to (4.3) when N > 1 D7-branes are included

with non-vanishing fermion bilinear. At this stage we will be agnostic about the value

of the fermion-bilinear, and assume that it will take some non-vanishing value at low

energies where the gauge group condenses. In the procedure outlined we combine the

ten-dimensional type IIB action with the effective action of D7-branes. The bosonic D7-

brane action

SD7 = −2πN

∫
Σ8

d8x(Imτ)−1
√
|P [g]|+ 2πN

∫
Σ8

P [C8] , (4.5)

does not contribute to (4.3) since “it is BPS” with respect to the background.8 One can

verify this claim by using the ansatz (4.1) and noticing that the warp factor drops out. Even

though the bosonic action does not play an important role in our discussion, the fermion

6Note that the four-dimensional metric ds24 is not in four-dimensional Einstein frame because the volume

modulus has not been properly factored out. This does not cause any issue with our computation in this

section since we assume that all moduli are stabilised by the gaugino condensate. We will return to this

issue when we make an explicit comparison to KKLT in section 5.
7Here 46Φ− = − ?6 d ?6 dΦ− and all inner products of forms are ten-dimensional, i.e. they include warp

factors.
8BPS is used in a loose form since fluxes can already break supersymmetry of the GKP background.
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terms do. Indeed the gauge theory living on the D7-brane world volume descends to an

N = 1 gauge theory in four dimensions with various matter couplings. In particular the

eight-dimensional world-volume fermions give rise to the N = 1 gaugini in four dimensions.9

The fermionic D7-brane action contains an interaction term beween the gaugino bilinear

λλ ≡ tr(λα̇λα̇) and the three-form G3 [57] (see [58] for an early discussion)

Sferm
D7 = π

∫
?10

(
G3 · I +G3 · Ī

)
, I =

e−4A

√
Im τ

λ̄λ̄

16π2
Ω δ(Σ8) . (4.6)

The contribution of the fermionic terms to (4.3) turns out to be singular due to the

backreaction of the fermion bilinears on the three-form fluxes [33, 34]

G3 ∼ (Im τ)Ī , (4.7)

where I is the source appearing in (4.6) and carries an explicit delta function. In fact,

even the on-shell action is UV divergent due to this singular backreaction. In [48] it was

suggested that the singular backreaction is ultimately a result of omitting a four-fermion

term in the D7-brane action. Currently the four-fermion terms are not known for the D-

brane action and so [48] suggested to fix their form such that the singularities would be

cancelled. The suggestion of [48] was inspired by a similar problem appearing in Hořava-

Witten theory [59–61] which was resolved by a four-fermion term that appears together

with the M-theory 4-form in a perfect square. This was in direct analogy with a similar

square structure that appears in heterotic supergravity [49, 62]. It is therefore reasonable

to assume that the fermionic D7-brane coupling (4.6) together with the kinetic terms for

G3 should be combined with the four-fermion terms to form a perfect square [48, 49].

Indeed this goes a long way to prevent singular on-shell action as a result of backreaction

the fermion bilinear.

The perfect square replaces the original action for G3 and the fermionic coupling by

S3 = −π
∫
?10

∣∣G3 − (Im τ)P(Ī)
∣∣2

(Im τ)
, (4.8)

The projector P is defined to eliminate the coexact piece of the form it acts on. It does

not affect the G3 equation of motion but is the final piece of the puzzle to ensure that the

on-shell action is regular [48]. Upon expanding the square the action consists of three terms:

S3 = −π
∫
?10
|G3|2

(Im τ)
+ π

∫
?10

(
G3 · P(I) +G3 · P(Ī)

)
− π

∫
?10(Im τ)|P(I)|2 . (4.9)

The first term is the standard bulk term for G3, the second term is the fermionic action of

the D7-brane considered before in [33, 34, 54], with the exception that the three-form I is

now projected to the set of closed forms. The last term is the new quartic fermion term.

We are now ready to re-derive the equation (4.3) with the D7-brane fermion contribution.

The explicit computation is carried out in appendix B and the result is

46Φ− = R4 + e−6A|dΦ−|2 + e2A

(
|G−

3 |2

Im τ
− 3

4
Re
(
G3 · P(I)

)
+

Im τ

4
|P(I)|2

)
. (4.10)

9We refer to [33, 34] for an explicit map beween the eight-dimensional fermions and the gaugino.
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This expression is exact and despite its appearance is completely regular.10 In order to

demonstrate this and further analyse equation (4.10) we must now make simplifying ap-

proximations.

First we rewrite the delta function appearing in the source term I in terms of a Green’s

function. Schematically we write

∂2G

∂z∂z̄
= δ(Σ8)− 1

V2
, (4.11)

where z and z̄ are complex coordinates on the transverse two-cyle and V2, a volume factor

of that two-cycle, is introduced to make this equation consistent. We see that the 3-form

I ∼ δ(Σ8)Ω is not closed and so the role of the projector P in this case is to add terms of

the form (∂z∂zG)Ω such that the resulting expression is closed. Explicitly we have [48]

P(Ī) =
e−4A

√
Im τ

λλ

16π2

(
d
∂G

∂z
∧ Ω̄2 +

1

V2
Ω̄

)
, (4.12)

where Ω2 is the holomorphic two-form on the holomorphic four-cycle. Notice that we have

made a crucial assumption here which we will continue making in the following. Namely

we have assumed that close to the seven-branes where most of our analysis takes place, we

can treat the warp factor as constant. Furthermore we assume the so-called Sen limit [63]

where the stack of 7-branes consists of an O7 with 4 parallel D7-branes on top, in this case

the 7-brane stack does not source a gradient for τ and so it can be taken to be a constant.11

These assumptions allow us to determine the backreacted three-forms in the same spirit

as [54]. For notational simplicity we write

P(I) = Ising + Ireg , (4.13)

where Ising is the exact part of P(I) in (4.12) which is also singular, and Ireg is the harmonic

part which is regular. Finally in order to solve for G3 we assume that the background close

to the seven-branes is only slightly perturbed from the standard GKP background for which

Φ− = e4A − α = 0. By our previous assumption that e4A is constant, this implies that the

Chern-Simons terms in the action does not enter in the equations of motion for G3. With

these approximations, the solution to the equation of motion for G3 derived from action

eq. (4.8) takes a simple form12

G3 = (Im τ)Ising +G0
3 , (4.14)

10Equation (4.10) does have delta-function sources on the right-hand-side but is regular upon integra-

tion. This should be compared to the situation without quartic fermion terms where even the integrated

expression was singular due to δ2 terms appearing.
11One could wonder whether in this case the orientifold projection does not eliminate the backreaction

of the gaugino bilinears on the three-forms. We do not address this question here, but argue that our

setup is sufficiently close to the Sen limit such that the gradients of τ do not enter without eliminating the

three-form backreaction altogether.
12Under these assumptions, the Chern-Simons action does not contribute to the G3 equations of motion.

The details of the fate of the Chern-Simons action in our set-up are discussed in appendix C. Note that since

Ireg is harmonic with these assumptions, it can always be combined with an arbitrary harmonic contribution

that can be added to a solution to the equations of motion to produce another solution to the equations of

motion and we denote the entire harmonic contribution as G0
3.
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where G0
3 is harmonic and quantised. We can now evaluate the expression (4.10) which

constrains the four-dimensional cosmological constant. Substituting the solution of the G3

equation of motion (4.14), and after some algebra outlined in appendix B we find

0 =

∫
?6

(
R4 +

e2A

Im τ
|G0,−

3 |
2 − 3e2A

4
Re
(
G0

3 · Ireg
)

+
e2A

4
(Im τ)|Ireg|2

)
, (4.15)

The equation only contains the background flux G0
3 and the fermion condensate through the

regular part Ireg. We notice that all singular terms have been eliminated from the expres-

sion as a result of our approximations. We expect that more generally the expression (4.10)

will be regular also when the approximations are relaxed.

Equation (4.15) is the main result of our paper. From it we can extract the four-

dimensional curvature R4. However we notice that as it stands the curvature is not re-

stricted to be negative for all possible configurations of the fields. In the next section we

discuss a schematic comparison to the four-dimensional KKLT vacuum before any anti-D3

branes are included.

5 Comparing to KKLT

We now compare our results with the four-dimensional effective theory considered by

KKLT [1]. This theory is specified in terms of a Kähler potential K and superpotential

W , given by

K = −3 log(2Im ρ)− log(2Im τ) , W = W0 +A exp(2πiρ/N) , (5.1)

where ρ is the complex volume modulus, related to the volume of the internal manifold by

Im ρ ∼ V2/3
6 and W0 is the constant Gukov-Vafa-Witten superpotential (after integrating

out the complex-structure moduli). In order to compare our ten-dimensional result (4.15)

with the effective theory (5.1) we translate two results from the four-dimensional effective

field theory back to ten dimensions. In particular we view the fluxes G0
3 as the ISD ones,

before the inclusion of the non-perturbative effects. Therefore G0,−
3 vanishes and G0

3 · Ω
can be related to W0

13 ∫
?6(G0

3 · Ω) = W0 . (5.2)

In KKLT the gaugino condensate λλ is related to the non-perturbative effects appearing

in the four-dimensional superpotential (5.1). We use the standard gauge theory expression

for the fermion bilinear in the confining vacuum (here in string units) [64]

〈λλ〉 = 16πi eK/2 ∂ρW = −32π2

N

Ae2πiρ/N

(2 Im ρ)
3
2

(Im τ)−
1
2 , (5.3)

where, like KKLT [1] we used that the complex volume modulus ρ equals the complex

gauge coupling of the four-dimensional gauge theory. We also rescaled with the string

13We would like to thank Pablo Soler for correcting a phase factor convention.
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coupling as in [51]. We note that A is determined by the dynamically generated scale of

the IR theory and is left unspecified.

We emphasise here that the exponential dependence of the volume modulus is crucial

in the 4d EFT and its off-shell scalar potential. When balanced with the small flux con-

tribution W0, this exponential stabilises the Kähler modulus at a somewhat large volume

and exponentially small values of the 4d scalar potential. The 10d supergravity analysis

performed here, where we opted for a local description of the gaugino condensate, does not

reproduce this exponential behaviour. This is reminiscent from the fact that this procedure

requires to plug in the vev after varying the action with the metric (which only renders

polynomial dependences). Nevertheless we proceed in further rewriting eq. (4.15).14 Using

the map between the four-dimensional theory and the ten-dimensional quantities we find

the following result

∫
?6Re

(
G0

3 · Ireg
)

=
e−4ARe

(
W0λ̄λ̄(Im ρ)

3
2

)
16π2V2

√
Im τ

, (5.4)

where we made use of eq. (5.2).

More explicitly, we can insert the expression for Ireg in (4.12) and make use of the

rescalings of R4 and λλ as above to find

R4 = − 2

V2
2

(Im ρ)3

∣∣∣∣ λλ16π2

∣∣∣∣2 +
3

4

1

V2

√
Im τ

Re

(
W0

λλ

16π2

)
. (5.5)

We will also extract the volume dependence out of V2 = Ṽ2(Im ρ)
1
2 so that we can rewrite

eq. (5.5) with the explicit volume dependence

R4 = − 2

Ṽ2
2

(Im ρ)2

∣∣∣∣ λλ16π2

∣∣∣∣2 +
3

4

1

Ṽ2

√
(Im ρ)(Im τ)

Re

(
W0

λλ

16π2

)
. (5.6)

Without further information we are unable to relate the two terms in (5.6). Based on the

four-dimensional effective theory, we expect the two terms to be related to each other on

shell but without solving the equations of motion we are unable to verify this. In particular,

this equation does not directly reveal the sign of the curvature. A negatively curved AdS

solution is however certainly not ruled out. One way to progress would be to perform

the supersymmetry analysis directly in ten dimensions but this is beyond the scope of our

work. For comparison we give here the EFT value of the curvature obtained from the

four-dimensional KKLT model before anti-D3 branes are included (in Planck units):

RKKLT
4 = 4VKKLT = −12eK |W |2 = −16π2

3
(Im ρ)2

∣∣∣∣ λλ16π2

∣∣∣∣2 . (5.7)

14It is important to note the λ appearing in equation (5.3) is a canonically normalised gaugino in Einstein

frame. As mentioned in footnote 6, the 4d metric must be rescaled in order to go to proper 4d Einstein

frame. This amounts to a rescaling of the metric g4 → (Im ρ)−3/2g4 which leads to the rescaling of the

curvature R4 → (Im ρ)3/2R4. In this new frame the fermion gaugino term is not canonical and so we

must also rescale the gaugino λ → (Im ρ)9/8λ such that λλ → (Im ρ)9/4λλ. It also amounts to rescaling

Ω→ (Im ρ)
3
4 Ω and A ·B → (Im ρ)−

3
2A ·B where A, B are three-forms.
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Finally, let us recall that the anti-D3 brane tension contributes only negatively to

R4. An uplifting to dS is supposed to occur through the mediation of gaugino terms that

contribute positively to R4. Such positive terms can only arise from the term Re
(
G0

3 · Ireg
)

being non-zero in a supersymmetry breaking vacuum.

6 Discussion

6.1 Summary and discussion of results

In this paper, we have revised the computations of [34] taking into account the flux renor-

malisation mechanism provided by the quartic gaugino term on D7-branes, as proposed

in [14]. We must rely on a number of assumptions necessary to directly use the techniques

of [14], namely constant axion-dilaton, warping, and C4-potential, and most importantly

we used that the harmonic 3-form flux is the GKP flux. Consistent with the result of [34]

we are unable to establish the sign of the four-dimensional curvature from ten-dimensional

analysis alone. We explicitly showed that within our assumptions the quartic gaugino

terms proposed by [48] are sufficient to regularize the singularities encountered in [33, 34].

A worthwile direction for future research would be to see if one can still obtain a

definite result after when it comes to de Sitter solution using anti-D3 brane uplift terms. It

is tempting to speculate what happens. For that we go back to equation (4.10). Note that

this equation was derived without any of the simplifying approximations and is hence valid

in general circumstances. We have argued that the renormalisation due to the four-fermion

term is such that the only 3-form fluxes appearing in (4.10) are the background fluxes, ie

those of the classical GKP solution. This means we can put |G0,−
3 |2 = 0 since the flux

appearing will be ISD. This is expected to be broken by the gaugino condensate but the

deviations from the ISD background are mostly “self-energy” that has been removed by

the renormalisation procedure. Once anti-branes are added they will also create some local

non-ISD fluxes down the throat. But we will neglect these since they anyway come with a

negative contribution to R4 and so will not help in getting de Sitter. The main question

then is whether the only positive contribution to the vacuum energy∫
?6 Re

(
G3 · P(I)

)
, (6.1)

can dominate over the rest. This question seems to be very difficult to answer, and most

likely requires a full solution the entire system of the ten-dimensional equations of motion

which surely is out of reach.

One way to approach this problem is make a precise analysis of the term (6.1) for

a supersymmetric configuration. This could be done by analysing the ten-dimensional

supersymmetry variations in presence of the gaugino bilinear. This is a very interesting

exercise which we plan to carry out in the future.

Finally we wish to iterate the statements in [33, 34]: to have certainty that uplift-

ing AdS vacua with small supersymmetry-breaking ingredients does not lead to runaways

instead of meta-stable dS vacua, one should achieve the following parametric scaling:

m2L2 � 1 . (6.2)
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In this equation m2 is the mass squared of the lightest modulus in the AdS vacuum and

L the AdS length. Interestingly not a single clear top-down AdS vacuum in string the-

ory achieves this. The only cases known to us are “stringy-inspired” like racetrack fine-

tuning [65] or non-geometric fluxes [66, 67]. It was conjectured in [35] that racetrack

fine-tuning is in the Swampland15 whereas reference [34] conjectured this to be true for

all vacua obeying (6.2). Since the conjecture of [34] forbidding (6.2) is a statement about

AdS vacua and not dS vacua we believe it should be easier to verify than the actual no-dS

conjecture of [6–8], and it would count as non-trivial evidence in support of the no-dS con-

jecture.

6.2 Comparison with recent papers

Simultaneous with the appearance of this work, two other papers appeared discussing the

same problem [50, 51]. Reference [51] set out to do similar computations as done here but

came to a different conclusion. We differ from [51] in the way the energy-momentum tensor

in ten dimensions is computed. This is also discussed in reference [50].

We demonstrate the difference in the language of [51]. There the trace reversed Einstein

equations are computed with variations w.r.t. the volume instead of the warp factor. Below

we mention why this choice is important to reach the results presented in [51]. Concretely,

the 4d curvature can be computed by using the following equation [51]:16

2πV6V4R4 = −
(

(Im ρ)
δ

δ(Im ρ)
− 1

)
S. (6.3)

We only look at the terms in the action involving the gaugino condensate where we inte-

grated over 6D space:

Sλλ = 2π

∫
?4

1

2

[
−8(Im ρ)

1
2

∣∣∣∣ λλ16π2

∣∣∣∣2 + (Im τ)−
1
2

(
(Im ρ)

1
4
λ̄λ̄

16π2
W0 + c.c.

)]
(6.4)

Here we have written the volume dependence coming from the 6D metric explicitly and

ignored the warping dependence.

As we have mentioned, our approach is as follows: we vary the D7 brane action to ob-

tain its energy-momentum tensor. Subsequently we fill in the vev of the gaugino condensate

〈λλ〉, whose value is set by non-perturbative physics. This is how the semi-classical limit

is usually defined: one inserts the quantum vevs of operators into the classical EM ten-

sor. Following this approach, one finds by evaluating (6.3) and (6.3) that the 4d curvature

satisfies:

V6R4 = −2(Im ρ)
1
2

∣∣∣∣ λλ16π2

∣∣∣∣2 +
3

4
(Im τ)−

1
2 Re

(
(Im ρ)

1
4
λ̄λ̄

16π2
W0

)
(6.5)

This result agrees with (4.15).

However a subtlety arises which relates to the dependence of the gaugino vev on the

gauge coupling (5.3). Since the coupling equals the inverse volume of the 4-cycle wrapped

15See [26, 68] for some criticism on this.
16We use a different convention for the Einstein-Hilbert action than [51]. This amounts for a difference

of a factor 2 in the r.h.s. of (6.3).
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by the D7 branes, a dependence of the vev 〈λλ〉 on the ten-dimensional metric is induced.

This dependence cannot be understood classically in four or ten dimensions. One could

imagine reversing the order and plug the metric dependence of the gaugino condensate into

the ten-dimensional action before computing the energy-momentum tensor. This introduces

extra terms due to derivatives on the condensate, i.e. this approach would result in a 4d

curvature of the form.

V6R4 =− 2(Im ρ)
1
2

∣∣∣∣ λλ16π2

∣∣∣∣2 +
3

4
(Im τ)−

1
2 Re

(
(Im ρ)

1
4
λ̄λ̄

16π2
W0

)
+ 4(Im ρ)

3
2

∂

∂Im ρ

∣∣∣∣ λλ16π2

∣∣∣∣2 − (Im τ)−
1
2 Re

(
(Im ρ)

5
4

(
∂

∂Im ρ

λ̄λ̄

16π2

)
W0

) (6.6)

Working with this equation, reference [51] finds a qualitative match with the four-

dimensional KKLT potential and further concludes there is no obstruction to uplifting

to meta-stable dS vacua. We want to emphasize that it is not clear how the semi-classical

method really works in this case.

In a rather different wording reference [50] warned for this sublety and concludes that

perhaps the ten-dimensional approach is not attainable after all. We remain agnostic about

that point but emphasize the following; if a ten-dimensional viewpoint is to make sense

then we want to emphasize the following two things: 1) Inserting the four-dimensional

information about the gauge coupling dependence into the ten-dimensional action implies

one is not following a genuine ten-dimensional and local approach after all. 2) A semi-

classical limit should be something universal. In other words when one couples classical

gravity to quantum matter then the approach is that the quantum vevs are inserted into

the classical EM tensor. The latter tensor is a universal object in the theory and how to

compute the tensor does not depend on the quantum effects of the matter sector.

This does not imply we disagree with the outcome of the results in [51], but we want

to emphasize our motivations for following the other path and what the consequences are.

Finally note that, if the second part of reference [50] turns out to be correct, then dS

uplifts are questionable already for a simpler reason related to having controlled uplifts

and throat volumes that fit into the compact CY space.
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A Conventions

The type IIB supergravity action (in units where 2π`s = 1) is

S = 2π

∫
?10

(
R10 −

dτ · dτ̄
2(Im τ)2

− G3 ·G3

2(Im τ)
− 1

4
|F5|2

)
− π

2i

∫
C4 ∧G3 ∧G3

Im τ
, (A.1)

where R10 is the ten-dimensional Ricci scalar calculated using the metric gMN with deter-

minant g10. The axion-dilaton is denoted by τ = C0 + ie−φ and the NSNS and RR 3-form

field strengths have been combined into a single complex 3-form

G3 = F3 − ie−φH = dC2 − τdB2 , H = dB2 , F3 = dC2 −HC0 . (A.2)

Throughout the paper we use short-hand notation to denote form contractions, let ωp and

ψp denote two p-forms, then

?10 ωp ∧ψp = ωp ·ψp ?10 1 , ωp ·ψp =
1

p!
ωM1M2···Mpψ

M1M2···Mp , |ωp|2 = ωp ·ωp . (A.3)

The complex-conjugation in the last expression is to allow for the possibility that ωp is a

complex p-form.

B Variation of the action

In this appendix we derive eq. (4.10) step-by-step. We also fill in some of the gaps of

the subsequent calculations in section 4. First we show that we can obtain equation (4.3)

directly by varying the ten-dimensional type IIB supergravity action with respect to the

warp factor A, as defined in (4.1). After establishing this, we include the D7-branes and

redo the same computation.

The ten-dimensional action for the Ansatz (4.1), (4.2) can be found to be:

SIIB = 2π

∫
d10x
√
−g4
√
g6e

−2A I , (B.1)

where

I = e−2AR4 + e2A
(
R6 + 246A− 8|dA|26)

)
− e2A |dτ |26

2(Imτ)2
− e6A |G3|26

2Imτ
+ e−6A |dα|26

2
. (B.2)

The | · · · |26 denote metric contractions using purely the six-dimensional metric ds2
6 without

the warp factor. We now compute a variation with respect to A. We find:

0 = R4 −46e
4A + e−6A|de4A|2 + e2A |G3|2

2Imτ
+ e−6A|dα|2 . (B.3)

This is simply the trace-reversed ten-dimensional Einstein-equation traced over the four-

dimensional indices. Adding the Bianchi identity, we recover equation (4.3):

46Φ− = R4 + e2A |G
−
3 |2

Imτ
+ e−6A|dΦ−|2 . (B.4)
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We did not include any sources, but including O7/O3 planes does not modify the final

result. Now we would now like to add D7-branes to the configuration. As explained in

the main text, the inclusion of the D7-brane implies that we should perform the replace-

ment (4.8) and vary that with respect to the warp factor. We have two crucial remarks.

The careful reader will notice that I as defined in (4.6) contains a warp factor dependence

of e−4A. This factor should not be varied when deriving the equivalent to (B.3), since it

does not arise from a metric in the action. On the other hand, the delta function and the

holomorphic three-form do have a warp factor dependence. The holomorphic three-form

goes like e−3A and the delta function like e2A. We can therefore write the perfect square

action as

S3 = −2π

∫
d10x
√
−g4
√
g6

e4A

2Im τ

∣∣∣G3 − e−A(Im τ)P̃(Ī)
∣∣∣2
6
, (B.5)

where we have made the warp-factor dependence explicit by momentarily writing P(I) =

e−AP̃(Ī). Using this we find

− e4A

8π
√
−g4
√
g̃6

δS3

δA
=

e2A

2Im τ

∣∣G3 − (Im τ)P(Ī)
∣∣2

+
e2A

4
Re
[(
G3 − (Im τ)P(Ī)

)
· P(I)

]
(B.6)

= e2A

(
|G3|2

2Im τ
− 3

4
Re (G3 · P(I)) +

Im τ

4
|P(I)|2

)
. (B.7)

We should replace the |G3|2-term in (B.3) by (B.7). This modifies (B.4) to exactly (4.10)

which reads:

46Φ− = R4 + e−6A|dΦ−|2 + e2A

(
|G−

3 |2

Im τ
− 3

4
Re
(
G3 · P(I)

)
+

Im τ

4
|P(I)|2

)
.

If one now writes P(I) = Ising + Ireg as in (4.13) and substitutes the solution to the

equation of motion G3 = (Im τ)Ising + G0
3 (while making the approximation that Φ− = 0

and warping, C4-potential and axion-dilaton are constant) into (B.6), one finds together

with the other terms in the IIB action and the Bianchi identity the following equation:

0 =R4 +
e2A

2Im τ

∣∣G0
3 − (Im τ)Ireg

∣∣2 +
e2A

4Im τ
Re

[(
G0

3 − (Im τ)Ireg
)
· (Im τ)

(
Ising + Ireg

)]
+

e2A

2Im τ

(
|G0,−

3 |
2 + 2Re

(
G0,−

3 · Ising,−
)
− |G0,+

3 |
2 − 2Re

(
G0,+

3 · Ising,+
))

(B.8)

The substitution already took into account that the Bianchi identity does not contribute

δ2 singularities, which is discussed in appendix C. Recall that Ising is by definition exact, so

its inner product with a harmonic form (G0
3 or Ireg) is therefore zero when the expression

is integrated over (the (A)ISD-parts vanish in the same fashion). In this way, we arrive at

0 =

∫
?6

(
R4 +

e2A

Im τ
|G0,−

3 |
2 − 3e2A

4
Re
(
G0

3 · Ireg
)

+
e2A

4
(Im τ)|Ireg|2

)
. (B.9)
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C (Non)renormalisation of the Chern-Simons action

The effective bulk action of IIB string theory contains a Chern-Simons term,

SCS = − π
2i

∫
C4 ∧G3 ∧G3

Im τ
. (C.1)

This term is topological and does not affect the Einstein equation directly. Still one can be

concerned and wonder whether we should renormalise the Chern-Simons action or not. If

we should, the renormalisation could introduce metric dependence and affect our results.

Under the assumptions of constant C4 and axion-dilaton made in the main body of the

text, we should not renormalise the Chern-Simons term. Not renormalising produces no

disasters and thus there is perhaps no obvious need for renormalisation. Let us check this.

At first, it may appear that filling the solution for G3 into the Chern-Simons action

will produce a badly divergent action. However, this is not the case. Filling the on-shell

value of G3 into the Chern-Simons action yields

SCS,on-shell =− πgs
2i

∫ {
C4 ∧G0

3 ∧G0
3 + (Im τ)C4 ∧G0

3 ∧ Ising + (Im τ)C4 ∧ Ising ∧G0
3

}

− πgs
2

∫ (
|Ising−|2 − |Ising +|2

)
(Im τ)2C4 ∧ ?̃61 , (C.2)

where we introduced the symbols Ising± = 1
2(?6 ± i)Ising. The last two terms in this

expression seem divergent while all other terms are clearly finite upon evaluation of the

integral. Interestingly the two divergent terms exactly cancel against each other and the

on-shell action is well-behaved. To see this, note that near a D7-brane we can locally write

the internal manifold asM = Σ2×Σ4, with Σ2 transverse and Σ4 parallel to the D7-brane.

We then have

Ising ∼ d

(
∂G

∂z

)
∧ Ω̄2

=

(
∂2G

∂z∂z

)
dz ∧ Ω̄2 +

(
∂2G

∂z∂z̄

)
dz̄ ∧ Ω̄2 (C.3)

with G the Green’s function, which varies transverse to the D7-brane, and dz and dz̄ are

defined on Σ2. It is clear that the first of these terms is (1, 2) while the second is (0, 3).

First we notice that the two terms have the same magnitude:∫
?6

∣∣∣∣( ∂2G

∂z∂z

)
dz ∧ Ω̄2

∣∣∣∣2 =

∫
?6

∣∣∣∣( ∂2G

∂z∂z̄

)
dz̄ ∧ Ω̄2

∣∣∣∣2 , (C.4)

which follows from integration by parts and the reality of G. Then we use that the first

term in (C.3) corresponds to the IASD part of Ising, while the second term corresponds to

the ISD part. It is immediate that the (0, 3) term is ISD as the unique (0, 3) form at our

disposal is Ω̄ and this is ISD in our convention. That the (1, 2) form is IASD follows from

the fact that it is primitive and primitive (1, 2) forms are IASD in our convention. The

primitivity can be seen by decomposing J as

J = JΣ2 + JΣ4 , (C.5)
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with the two terms defined in the obvious way. Using this, evaluation yields(
∂2G

∂z∂z

)
dz ∧ Ω̄2 ∧ J = 0 . (C.6)

We thus see that Ising + and Ising− have the same magnitude. Therefore, the two prob-

lematic terms in (C.2) cancel against each other and the on-shell Chern-Simons action is

finite without the introduction of any renormalisation counterterms.
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[58] P.G. Camara, L.E. Ibáñez and A.M. Uranga, Flux-induced SUSY-breaking soft terms on

D7-D3 brane systems, Nucl. Phys. B 708 (2005) 268 [hep-th/0408036] [INSPIRE].

[59] P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary,

Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].
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