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Abstract

Objective

To prospectively evaluate a logistic regression-based machine learning (ML) prognostic

algorithm implemented in real-time as a clinical decision support (CDS) system for symp-

tomatic persons under investigation (PUI) for Coronavirus disease 2019 (COVID-19) in the

emergency department (ED).

Methods

We developed in a 12-hospital system a model using training and validation followed by a

real-time assessment. The LASSO guided feature selection included demographics, comor-

bidities, home medications, vital signs. We constructed a logistic regression-based ML algo-

rithm to predict “severe” COVID-19, defined as patients requiring intensive care unit (ICU)

admission, invasive mechanical ventilation, or died in or out-of-hospital. Training data

included 1,469 adult patients who tested positive for Severe Acute Respiratory Syndrome
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Coronavirus 2 (SARS-CoV-2) within 14 days of acute care. We performed: 1) temporal vali-

dation in 414 SARS-CoV-2 positive patients, 2) validation in a PUI set of 13,271 patients

with symptomatic SARS-CoV-2 test during an acute care visit, and 3) real-time validation in

2,174 ED patients with PUI test or positive SARS-CoV-2 result. Subgroup analysis was con-

ducted across race and gender to ensure equity in performance.

Results

The algorithm performed well on pre-implementation validations for predicting COVID-19

severity: 1) the temporal validation had an area under the receiver operating characteristic

(AUROC) of 0.87 (95%-CI: 0.83, 0.91); 2) validation in the PUI population had an AUROC of

0.82 (95%-CI: 0.81, 0.83). The ED CDS system performed well in real-time with an AUROC

of 0.85 (95%-CI, 0.83, 0.87). Zero patients in the lowest quintile developed “severe” COVID-

19. Patients in the highest quintile developed “severe” COVID-19 in 33.2% of cases. The

models performed without significant differences between genders and among race/ethnici-

ties (all p-values > 0.05).

Conclusion

A logistic regression model-based ML-enabled CDS can be developed, validated, and

implemented with high performance across multiple hospitals while being equitable and

maintaining performance in real-time validation.

Introduction

The dynamic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection

raised concerns regarding resource availability throughout medical systems, including inten-

sive care unit (ICU) healthcare providers, personal protective equipment, total hospital, and

ICU beds, and mechanical ventilators. On March 11th, 2020, the World Health Organization

declared the Coronavirus disease 2019 (COVID-19) a pandemic. The COVID-19 pandemic

has caused over 249 million confirmed infections and over 5 million confirmed deaths as of

November 9th, 2021 [1]. One of the initial large observational studies, published from China,

revealed that approximately 15% of the confirmed cases required hospitalization, 5% needed

ICU admission, and 2.3% died [2]. A multihospital United States (U.S.) based cohort study

identified that the 30-day mean risk standardized event rate of hospital mortality and hospice

referral among patients with COVID-19 varied from 9% to 16%, with better outcomes occur-

ring in community’s with lower disease prevalence [3]. A large cross-sectional study found

racial and ethnic disparities in rates of COVID-19 hospital and ICU admission and in-hospital

mortality in the US [4].

Since the beginning, global efforts by the scientific community to understand SARS-CoV-2

and the COVID-19 from the bench to the bedside have been remarkable [5]. Stratifying disease

severity is an essential aspect of patient care; however, during a pandemic, its role becomes

paramount and expands to improving patient safety while also optimizing hospital resource

utilization. Several studies have developed emergency department (ED) evaluation systems

with variable goals and methods [6–12]. These models successfully evaluated the possibility of

isolating COVID-19 patients in ED, the epidemiology and COVID-19 clinical data, the
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advantage of distinguishing life-threatening emergencies, and the likelihood of COVID-19

diagnosis [6–12].

Most predictive models for COVID-19 severity involved patients with a positive polymerase

chain reaction (PCR) test, not in patients with suspected COVID-19. A systematic evaluation

of COVID-19 predictive models aimed at identifying clinical deterioration found that the

majority of published studies included patients with confirmed infection [13], making them

less useful in the clinic or emergency departments when diagnosis remains uncertain. The

majority of predictive models for patients with suspected COVID-19 infection aimed to diag-

nose COVID-19, and very few predicted severity [14]. One systematic review of the prognostic

models emphasized the high risk of bias while not recommending their use in clinical practice

yet [15]. Since limitations mark the systematic reviews of the prognostic models, and a group

of researchers from the United Kingdom (UK) developed a COVID-19 precise living docu-

ment [16]. Another group of researchers proposed an open platform for such reviews that will

be continuously updated using artificial intelligence and numerous experts [17]. The QCOVID

is a published living risk prediction algorithm that performed well for predicting time to death

in patients with confirmed or suspected COVID-19 [18].

We hypothesize that a logistic regression-based machine learning (ML) tool for patients

with suspected or confirmed COVID-19 can accurately and equitably predict the development

of “severe” COVID-19. The objective of this study was to conduct a 12-site prospective obser-

vational study to evaluate the real-time performance of a ML-enabled COVID-19 prognostic

tool delivered as clinical decision support (CDS) to ED providers to facilitate shared decision-

making with patients regarding ED discharge.

Methods

Study design and setting

This is a retrospective and prospective multihospital observational study that developed,

implemented, and evaluated a prognostic model in patients with PCR-confirmed COVID-19

diagnosis or suspected COVID-19 (person under investigation [PUI]) in a 12-hospital system.

This study was approved and determined as non-human research by the University of Minne-

sota Institutional Review Board (STUDY00011742).

Selection of participants

Patients were included if they were PCR confirmed COVID-19 positive or symptomatic PUI

with a patient status of emergency, observation, or inpatient at a participating center. We only

included patients who did not opt out of research on admission. Patients were excluded if they

did not have at least one recorded ED vital sign (heart rate, respiratory rate, temperature, oxy-

gen saturation, or systolic blood pressure) or missing comorbidity data. A complete set of vital

signs was deemed necessary given our model was intended to be implemented and utilized

across patients receiving a complete evaluation which would include at least one complete set

of vital signs.

Feature selection and model development

A team of subject matter experts with expertise treating patients with COVID-19 and research

experience in COVID-19 identified features hypothesized to be associated with development

of “severe” disease (S1 Table). To reduce the likelihood of over-fitting a Least Absolute Shrink-

age and Selection Operator (LASSO)-logit model was used to facilitate feature selection from

this list with the tuning parameter determined by the Bayesian information criterion (BIC) as
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previously done by our group [19, 20]. LASSO is a penalized regression method that can facili-

tate factor selection by excluding factors with a minor contribution to the model [21]. S1 Table

lists the features selected for the final model following LASSO selection.

Final features selected by LASSO included age (years), male [3, 22], race or ethnicity, non-

English speaking [23, 24], overweight or obese (body mass index [BMI] > 25) [19, 25, 26],

three month prior home medications [27] (defined as whether a patient was prescribed a med-

ication within 3 months or before and after the index acute care visit) and chronic comorbidi-

ties [3, 28] extracted from ICD10 codes (S2 Table) collected in the 5 years prior to the index

visit: Finally, we included the following vital signs: maximum heart rate (HR), respiratory rate

(RR), temperature within the first 24 hours, and minimal peripheral arterial oxygen saturation

(SpO2) and systolic blood pressure (SBP) within the first 24 hours. We included in the final list

of features for LASSO only the variables available on presentation to ED.

Model construction

The purpose of this model generation was to develop a prognostic model that could predict

patients who developed a severe case of COVID-19. Due to ease of interpretation and the

importance to provide the basis to the clinician and patients for model predictions, a multivar-

iable logistic regression model was trained using the features selected from LASSO. This

model was developed using only data from the training dataset. A risk score was calculated in

the validation cohorts based on the sum of the beta coefficients. The AUROC was calculated

for all validation cohorts to evaluate discrimination in the validation datasets.

Outcomes

Our primary outcome was “severe” COVID-19 infection, defined as intensive care unit (ICU)

admission, need for invasive mechanical ventilation (ventilator use), or in-hospital or out-of-

hospital mortality (defined using state death certificate database) [2, 29, 30]. The secondary

outcomes were individual, and combinations of the dependent variables mentioned above.

Training and test datasets

The training data set included 1,469 patients who were PCR-positive for SARS-CoV-2 within

14 days of an acute care, hospital-based visit including emergency department, observation,

and inpatient encounters between March 4th to August 21st, 2020. The test set included 158

patients (random 90:10 selection of the training set).

Validation datasets

We included three validation sets:

1. A temporal validation COVID-19 PCR-positive dataset comprised of 414 patients who

tested positive for SARS-CoV-2 between August 22nd to October 11th, 2020. The purpose of

this validation was to simulate real-time performance had the system gone “live” between

August 22 and October 11th, 2020.

2. A PUI data set comprised of 13,271 patients who had a SARS-CoV-2 test with a “symptom-

atic” designation ordered and a result pending during the first 24 hours of an acute care,

hospital-based visit irrespective of the results between May 4th and October 11th, 2020. The

symptomatic designation for patients with fever, cough, dyspnea, sore throat, muscle aches,

vomiting, diarrhea was based on clinical judgment and prioritized testing for faster turn-

around time beginning May 4th, 2020.
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3. A real-time data set included 2,174 patients with an ED visit and symptomatic test or a posi-

tive SARS-CoV-2 PCR test following implementation of the prognostic model in Emer-

gency Departments (EDs) from November 23rd, 2020 to January 21st, 2021.

Analysis

The patients’ characteristics between data sets were compared using ANOVA and chi-square

respectively for continuous versus categorical variables. Odds ratios (OR) and 95% Confidence

Intervals were also reported. The sensitivity, specificity, positive predictive value (PPV), negative

predictive value (NPV), likelihood ratios, false negative and false positive rate, and the area

under the receiver operating characteristics (AUROC) were summarized for the model perfor-

mance. Statistical significance was defined with the alpha set to 0.05, all tests were two-tailed.

Statistical analyses were performed using Stata MP, version 16 (StataCorp, College Station, TX).

The real-time model was evaluated across gender and racial/ethnic groups to compare per-

formance across different groups and ensure the model performed equitably.

Model implementation

Implementation into an Electronic Health Record (EHR) occurred for ED patients on Novem-

ber 23rd, 2020. The logistic prognostic model was exported as a predictive model markup lan-

guage (PMML) file. An EHR reporting workbench was developed to facilitate inputs into the

model. All the inputs were mapped using corresponding ICD-10 codes (S2 Table), pharmaceu-

tical subclasses, RxNorm codes [31], and EHR documentation flowsheets (for vitals). The out-

put was delivered as a clinical decision support system to ED providers. For visualization

purposes, the COVID-19 severity risk score was multiplied by 100 and cut points that identi-

fied patients with Low Risk (low probability of primary outcome) and High Risk (high proba-

bility of primary outcome). Visualization (S1 Fig) was highlighted on the patient sidebar,

available to all ED providers and nurses, as well as physicians and staff involved in triage,

patient flow, and capacity management.

Results

Descriptive results

A total of 2,041 patients were included in the final model training (1,469), testing (158), and

temporal validation (414) (Fig 1). Table 1 listed patients’ characteristics in each cohort. Overall,

significant difference in all variables in demographics, use of home medications, comorbidi-

ties, and 24-hour vitals existed across training and validation cohorts, except for loop diuretic,

inflammatory bowel disease, and rheumatoid arthritis. Compared to COVID-19 PCR-positive

patients in the training set, the patients in the temporal validation set and PUI set were slightly

younger (median age of 52.2 and 49.1 years vs. 53.6 years) and had lower rates of ICU admis-

sion (18.1% and 10.8% vs 23.4%), ventilator use (3.4% and 5.3% vs. 11.1%), and mortality

(1.7% and 3.5% vs. 8.5%). Compared to the training set, the real-time data set was older

(median age of 56.9 years) and had lower rates of ICU admission, ventilator use and mortality

(9.4%, 3.5%, and 6.8%), respectively.

Table 2 described the odds ratios used in the logistic regression model generation. Other as

race and inflammatory bowel disease, are the two variables with the highest odds ratios that

reached statistical significance. Warfarin is the variable with lowest odds ratios that reached

statistical significance. The model included factors that increase the odds of COVID-19 sever-

ity, such as age, male, Asian or Hispanic race, obesity, use of calcium channel blocker,
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rivaroxaban, oral steroids, clopidogrel, aspirin, and a loop diuretic, hypertension, type 2 diabe-

tes mellitus, venous thromboembolism, pacemaker/automatic implantable cardioverter-defi-

brillator, pulmonary hypertension, chronic kidney disease, inflammatory bowel disease,

maximum temperature, heart rate, respiratory rate in 24 hours, and factors that decrease the

odds, such as the use of hydrochlorothiazide, angiotensin-converting enzyme inhibitor, angio-

tensin II receptor blockade, warfarin, rheumatoid arthritis, minimum peripheral oxygen satu-

ration, systolic blood pressure in 24 hours.

In the validation cohorts, the risk score was used to identify a clinically useful threshold to

predict the institutional metric. Multiple thresholds were defined, and 2x2 contingency tables

including sensitivity, specificity, PPV, and NPV were created for each threshold. The system

leadership reviewed the various thresholds and based on clinical resources, defined an appro-

priate threshold. The multidisciplinary team reviewed the model performance, including sen-

sitivity, specificity, PPV, NPV, likelihood ratios across multiple thresholds to facilitate rapid

implementation. Cut-off points flagging high and low-risk patients were chosen in collabora-

tion with both system leadership following engagement with front-line providers. The goal for

low-risk cut-off was to have a high sensitivity at the expense of specificity to reduce potential

errors associated with inappropriate discharge home. The goal for high-risk cut-off was a

higher specificity to balance the need for close monitoring with resource scarcity, including

ICU and step-down capacity.

Pre-implementation validation: Temporal validation and in PUI

The model produced an AUROC of 0.87 (95% CI: 0.83, 0.91) for predicting the primary out-

come (ICU admission, ventilator use, or death) using the temporal validation cohort (S2 Fig).

None of the patients with the lowest 20% of the scores (0–0.0104) had ICU admission, ventila-

tor use, or died, compared to 62%, 15.9%, and 7.3%, respectively, for patients with the highest

20% of the scores (0.168–1.0) (S3 Table). At a cut point of>0.1, the model had a sensitivity of

73.7% and specificity of 79.9% in predicting the composite outcomes (S4 Table).

This model was further tested in the PUI cohort that included 13,271 patients who had a

SARS-CoV-2 test with a “symptomatic” designation ordered in ED. Of note, the accumulative

Fig 1. Study diagram detailing the selection of patients for model generation.

https://doi.org/10.1371/journal.pone.0262193.g001
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Table 1. Characteristics of the patients included in a training set, temporal validation set, PUI set, and real-time validation set.

Training Set Test Set Retro-Validation Set PUI Set Live-Validation p-value

N = 1,469 N = 158 N = 414 N = 13,271 N = 2,174

Age − median (IQR) 53.6 (34.8–

70.0)

52.5 (35.7–

67.0)

52.2 (32.6–70.6) 49.1 (31.3–

66.8)

56.9 (35.4–72.4) <0.001

Male − N (%) 726 (49.4%) 76 (48.1%) 197 (47.6%) 5,967 (45.0%) 981 (45.1%) 0.010

Race − N (%) † <0.001

White 570 (38.8%) 57 (36.1%) 213 (51.4%) 9,045 (68.2%) 1,509 (69.4%)

Black 454 (30.9%) 45 (28.5%) 86 (20.8%) 2,115 (15.9%) 239 (11.0%)

Asian 138 (9.4%) 22 (13.9%) 23 (5.6%) 1,003 (7.6%) 145 (6.7%)

Hispanic 164 (11.2%) 18 (11.4%) 41 (9.9%) 191 (1.4%) 84 (3.9%)

Declined 121 (8.2%) 15 (9.5%) 38 (9.2%) 422 (3.2%) 163 (7.5%)

Other 22 (1.5%) 1 (0.6%) 13 (3.1%) 495 (3.7%) 34 (1.6%)

Non-English Speaking − N (%) 480 (32.7%) 54 (34.2%) 107 (25.8%) 1,548 (11.7%) 411 (18.9%) <0.001

Obesity − N (%) 1,127 (76.7%) 126 (79.7%) 318 (76.8%) 9,936 (74.9%) 1,456 (67.0%) <0.001

Calcium Channel Blocker (home med w/in 3 months) − N

(%)

89 (6.1%) 6 (3.8%) 20 (4.8%) 782 (5.9%) 208 (9.6%) <0.001

HCTZ (home med w/in 3 months) − N (%) 41 (2.8%) 4 (2.5%) 16 (3.9%) 483 (3.6%) 121 (5.6%) <0.001

Beta-Blocker (home med w/in 3 months) − N (%) 172 (11.7%) 18 (11.4%) 50 (12.1%) 1,786 (13.5%) 426 (19.6%) <0.001

Ace Inhibitor (home med w/in 3 months) − N (%) 73 (5.0%) 4 (2.5%) 34 (8.2%) 952 (7.2%) 218 (10.0%) <0.001

ARB (home med w/in 3 months) − N (%) 91 (6.2%) 6 (3.8%) 23 (5.6%) 830 (6.3%) 193 (8.9%) <0.001

Metformin (home med w/in 3 months) − N (%) 69 (4.7%) 6 (3.8%) 20 (4.8%) 591 (4.5%) 149 (6.9%) <0.001

Warfarin (home med w/in 3 months) − N (%) 49 (3.3%) 3 (1.9%) 10 (2.4%) 392 (3.0%) 93 (4.3%) 0.013

Rivaroxaban (home med w/in 3 months) − N (%) 14 (1.0%) 3 (1.9%) 3 (0.7%) 209 (1.6%) 48 (2.2%) 0.014

Oral Steroids (home med w/in 3 months) − N (%) 86 (5.9%) 16 (10.1%) 18 (4.3%) 1,087 (8.2%) 219 (10.1%) <0.001

PPI (home med w/in 3 months) − N (%) 217 (14.8%) 16 (10.1%) 61 (14.7%) 2,303 (17.4%) 487 (22.4%) <0.001

Clopidogrel (home med w/in 3 months) − N (%) 20 (1.4%) 3 (1.9%) 9 (2.2%) 170 (1.3%) 61 (2.8%) <0.001

Corticosteroid Inhaler (home med w/in 3 months) − N (%) 83 (5.7%) 9 (5.7%) 21 (5.1%) 992 (7.5%) 187 (8.6%) 0.002

Aspirin (home med w/in 3 months) − N (%) 193 (13.1%) 18 (11.4%) 65 (15.7%) 1,444 (10.9%) 370 (17.0%) <0.001

Loop Diuretic (home med w/in 3 months) − N (%) 104 (7.1%) 5 (3.2%) 21 (5.1%) 963 (7.3%) 181 (8.3%) 0.17

Hypertension − N (%) 632 (43.0%) 68 (43.0%) 173 (41.8%) 5,162 (38.9%) 1,170 (53.8%) <0.001

T1DM − N (%) 98 (6.7%) 13 (8.2%) 22 (5.3%) 580 (4.4%) 161 (7.4%) <0.001

T2DM − N (%) 373 (25.4%) 33 (20.9%) 96 (23.2%) 2,329 (17.5%) 521 (24.0%) <0.001

Coronary Artery Disease − N (%) 201 (13.7%) 18 (11.4%) 59 (14.3%) 1,665 (12.5%) 410 (18.9%) <0.001

VTE − N (%) 149 (10.1%) 10 (6.3%) 18 (4.3%) 928 (7.0%) 225 (10.3%) <0.001

Heart Failure − N (%) 176 (12.0%) 16 (10.1%) 39 (9.4%) 1,413 (10.6%) 318 (14.6%) <0.001

COPD − N (%) 121 (8.2%) 13 (8.2%) 32 (7.7%) 1,331 (10.0%) 318 (14.6%) <0.001

Asthma − N (%) 213 (14.5%) 18 (11.4%) 57 (13.8%) 2,382 (17.9%) 418 (19.2%) <0.001

Pacemaker/AICD − N (%) 42 (2.9%) 3 (1.9%) 11 (2.7%) 429 (3.2%) 99 (4.6%) 0.017

Pulmonary HTN − N (%) 74 (5.0%) 7 (4.4%) 12 (2.9%) 448 (3.4%) 128 (5.9%) <0.001

CKD − N (%) 249 (17.0%) 30 (19.0%) 48 (11.6%) 1,590 (12.0%) 434 (20.0%) <0.001

Atrial Fib/Flutter − N (%) 173 (11.8%) 16 (10.1%) 33 (8.0%) 1,196 (9.0%) 308 (14.2%) <0.001

CVA − N (%) 149 (10.1%) 16 (10.1%) 38 (9.2%) 1,164 (8.8%) 298 (13.7%) <0.001

IBD − N (%) 17 (1.2%) 1 (0.6%) 5 (1.2%) 217 (1.6%) 38 (1.7%) 0.49

Rhematoid Arthritis − N (%) 35 (2.4%) 2 (1.3%) 8 (1.9%) 317 (2.4%) 57 (2.6%) 0.89

Malignancy − N (%) 117 (8.0%) 9 (5.7%) 33 (8.0%) 1,234 (9.3%) 273 (12.6%) <0.001

Sleep Apnea − N (%) 163 (11.1%) 16 (10.1%) 47 (11.4%) 1,629 (12.3%) 344 (15.8%) <0.001

Max HR in 24 hr − mean (SD) 98.9 (20.7) 101.2 (23.3) 95.8 (19.5) 95.4 (20.4) 98.5 (21.1) <0.001

Max RR in 24 hr − mean (SD) 25.5 (13.3) 24.6 (10.4) 23.4 (9.1) 22.1 (8.4) 23.9 (10.0) <0.001

Max Temp in 24 hr − mean (SD) 99.7 (1.6) 99.6 (1.7) 99.5 (1.6) 98.8 (1.4) 99.0 (1.4) <0.001

(Continued)
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COVID positive rate in the PUI data set was 26.8% (3,561 of 13,271 patients). A total of 68% of

patients were discharged before the test resulted in our medical system. The model produced

an AUROC of 0.82 (95% CI: 0.81, 0.83) for predicting the composite outcomes in the PUI

cohort (S3 Fig). For patients with the lowest 20% of the scores (0.00062–0.0074), only 1.0%

had ICU admission, 0.3% ventilator use, and 0.2% died, compared to 31.6%, 13.8%, and

11.9%, respectively, for patients with the highest 20% of the scores (0.168–1.0) (S5 Table). At

the cut point of>0.1, the model had a sensitivity of 52.2% and specificity of 88.1% in predict-

ing composite outcomes (S5 Table).

Real-time validation

Critically, we implemented this model to predict the composite outcomes to evaluating the

COVID-19 severity and assessed the model’s real-time performance. The COVID positive rate in

the real-time validation set was 61.2% (1,331 of 2,174 patients). This real-time cohort had a

median age of 56.9 years (IQR: 35.4–72.4), had an ICU admission rate of 9.4%, ventilation rate of

3.5%, and mortality rate of 6.8%. The model had an AUROC of 0.85 (95% CI, 0.83, 0.87) to pre-

dict the primary outcome in the real-time data set. (Fig 2). The rates of ICU admission, ventilator

use, and death in patients with the lowest 20% of the scores (0.001–0.009) were zero, significantly

lower compared to those rates (32.7%, 15.5%, and 22.0%, respectively) for patients with the high-

est 20% of the scores (0.20–0.99) (Table 3). At the cut point of>0.1, the model had a sensitivity

of 78% and a specificity of 71% in the real-time data set (Table 4). To evaluate the probabilities in

the real time world we depicted the calibration plot for the real-time validation set. (S4 Fig).

Model performance on individual and combined outcomes and across

minorities

The AUROC of all cohorts predicting various outcomes combined and individual are listed in

Table 5. The performance remained strong for predicting secondary outcomes in combina-

tions of ICU admission, need for mechanical ventilation, and mortality.

Table 1. (Continued)

Training Set Test Set Retro-Validation Set PUI Set Live-Validation p-value

N = 1,469 N = 158 N = 414 N = 13,271 N = 2,174

Min SpO2 in 24 hr − mean (SD) 92.1 (8.2) 91.8 (8.1) 93.1 (6.1) 94.7 (5.4) 92.8 (6.7) <0.001

Min SPB in 24 hr − mean (SD) 112.1 (22.7) 110.5 (20.7) 114.9 (21.2) 122.7 (20.6) 116.6 (21.3) <0.001

ICU Admission − N (%) 346 (23.6%) 34 (21.5%) 75 (18.1%) 1,428 (10.8%) 100 (9.4%) <0.001

Mechanical Ventilation − N (%) 164 (11.2%) 17 (10.8%) 14 (3.4%) 478 (5.3%) 37 (3.5%) <0.001

Died − N (%) 125 (8.5%) 14 (8.9%) 7 (1.7%) 460 (3.5%) 73 (6.8%) <0.001

Bad Outcome� − N (%) 382 (26.0%) 38 (24.1%) 76 (18.4%) 1,627 (12.3%) 247 (11.4%) <0.001

�Primary outcome is defined as ICU admission, need for mechanical ventilation, or death.

Continuous, normally distributed variables (mean and SD will be reported) were compared using ANOVA.

Continuous, non-normally distributed variables (median and IQR reported) were compared using Wilcoxon rank-sum (2 groups) or Kruskal-Wallis (>2 groups) test.

Categorical and binary groups were compared using Pearson’s chi-squared test.

Abbreviations: HCTZ: hydrochlorothiazide; ACE: angiotensin-converting enzyme; ARB: angiotensin receptor blocker; PPI: proton pump inhibitor; T1DM: Type 1

diabetes mellitus; T2DM: Type 2 diabetes mellitus; VTE: venous thromboembolism; COPD: chronic obstructive pulmonary disease; AICD: automatic implantable

cardioverter-defibrillator; HTN: hypertension; CKD: chronic kidney disease; CVA: cerebrovascular accident; Afib: atrial fibrillation; Aflutter: Atrial flutter; IBD:

inflammatory bowel disease; hr: hour; Max: maximum; Min: minimum; HR: heart rate; RR: respiratory rate; Temp: temperature; SpO2: peripheral oxygen saturation;

SBP: systolic blood pressure; ICU: intensive care unit.

https://doi.org/10.1371/journal.pone.0262193.t001
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Table 2. Odds ratios of variables in the model.

Variables Odds Ratio 95% CI p-value

Age 1.03 1.02, 1.04 <0.001

Male 1.95 1.33, 2.84 0.001

Race

Black 0.94 0.54, 1.62 0.817

Asian 1.59 0.77, 3.26 0.208

Hispanic 1.49 0.67, 3.30 0.329

Declined 1.36 0.62, 2.97 0.437

Other 4.13 1.39, 12.33 0.011

Non-English speaking 1.17 0.69, 1.99 0.560

Obesity 1.41 0.89, 2.22 0.140

Calcium channel blocker (home med w/in 3 months) 1.37 0.67, 2.76 0.386

HCTZ (home med w/in 3 months) 0.60 0.21, 1.69 0.330

Beta-blocker (home med w/in 3 months) 1.00 0.54, 1.84 0.991

ACE inhibitor (home med w/in 3 months) 0.49 0.20, 1.18 0.112

ARB (home med w/in 3 months) 0.83 0.40, 1.71 0.606

Metformin (home med w/in 3 months) 0.86 0.38, 1.98 0.727

Warfarin (home med w/in 3 months) 0.25 0.10, 0.68 0.006

Rivaroxaban (home med w/in 3 months) 1.34 0.38, 4.69 0.644

Oral steroids (home med w/in 3 months) 1.45 0.69, 3.03 0.328

PPI (home med w/in 3 months) 0.99 0.60, 1.63 0.970

Clopidogrel (home med w/in 3 months) 1.95 0.60, 6.32 0.266

Corticosteroid inhaler (home med w/in 3 months) 1.12 0.53, 2.38 0.769

Aspirin (home med w/in 3 months) 1.39 0.82, 2.34 0.217

Loop diuretic (home med w/in 3 months) 1.58 0.85, 2.93 0.150

Hypertension 1.44 0.91, 2.27 0.119

T1DM 0.83 0.40, 1.72 0.620

T2DM 1.44 0.93, 2.23 0.103

Coronary artery disease 0.66 0.39, 1.12 0.125

VTE 1.37 0.81, 2.34 0.244

Heart failure 1.01 0.57, 1.79 0.965

COPD 0.96 0.53, 1.75 0.896

Asthma 1.00 0.58, 1.74 0.992

Pacemaker/AICD 2.07 0.90, 4.79 0.088

Pulmonary HTN 1.44 0.70, 2.96 0.323

CKD 1.62 0.99, 2.66 0.056

Afib/Aflutter 1.04 0.60, 2.78 0.897

CVA 1.27 0.75, 2.16 0.370

IBD 3.95 1.10, 14.23 0.036

Rheumatoid arthritis 0.62 0.23, 1.72 0.363

Malignancy 1.03 0.57, 1.87 0.928

Sleep apnea 0.87 0.51, 1.49 0.616

Max HR in 24 hr 1.01 1.00, 1.02 0.275

Max RR in 24 hr 1.02 1.01, 1.03 0.001

Max Temp in 24 hr 1.34 1.20, 1.51 <0.001

Min SpO2 in 24 hr 0.94 0.92, 0.96 <0.001

(Continued)
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Furthermore, the model performed equitably across gender/racial/ethnic minorities

(Table 6). The AUROC for Blacks and Asians are 0.94 (95% CI: 0.82.1.0) and 0.94 (95% CI:

0.90. 0.99), compared to that for Whites 0.82 (95% CI: 0.78, 0.86) (p>0.05) (Table 6). There is

no statistical difference between the model performance in female versus male patients

(p>0.05).

Table 2. (Continued)

Variables Odds Ratio 95% CI p-value

Min SPB in 24 hr 0.98 0.97, 0.99 <0.001

Abbreviations: CI: confidence interval; w/in: within; HCTZ: hydrochlorothiazide; ACE: angiotensin-converting

enzyme; ARB: angiotensin receptor blocker; PPI: proton pump inhibitor; T1DM: Type 1 diabetes mellitus; T2DM:

Type 2 diabetes mellitus; VTE: venous thromboembolism; COPD: chronic obstructive pulmonary disease; AICD:

automatic implantable cardioverter-defibrillator; HTN: hypertension; CKD: chronic kidney disease; CVA:

cerebrovascular accident; Afib: atrial fibrillation, Aflutter: atrial flutter, IBD: inflammatory bowel disease; hr: hour;

Max: maximum; Min: minimum; HR: heart rate; RR: respiratory rate; Temp: temperature; SpO2: peripheral oxygen

saturation; SBP: systolic blood pressure.

https://doi.org/10.1371/journal.pone.0262193.t002

Fig 2. ROC curve for real-time validation (n = 2,174).

https://doi.org/10.1371/journal.pone.0262193.g002
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Discussion

We developed and implemented a ML-enabled model to predict increased risk for COVID-19

severity to support the ED physicians’ clinical decision-making across our 12-sites medical sys-

tem. Despite the significant variabilities of the factors, our model performed well in a large

PUI study population. This approach is beneficial for clinical decision-making in ED where

the COVID-19 PCR test results are inconsistently resulted. Importantly, we evaluated our

model real-time in PUI patients seeking acute care in ED after the score became available in

the EHR and the model performance remained strong. The difference in ICU admission rate,

ventilator use, and mortality rate between the training set and the temporal, PUI, and real-

time validation sets can be explained by the temporal improvement in COVID-19 patients’

outcomes that was noted in other studies [4, 32, 33]. The COVID-19 ICU admission and

patient survival improved in our study over time as it did in other reports, perhaps because of

Table 3. Distribution of outcomes by score ranges in quintile for the real-time validation data set (n = 2,174).

Score Range ICU, n (%) Vent, n (%) Death, n (%) Primary outcome (%) n

Lowest 20% scores 0.001–0.009 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 435

20–40% 0.009–0.02 8 (4.1%) 5 (2.6%) 1 (0.5%) 8 (1.8%) 435

40–60% 0.02–0.06 21 (10.1%) 5 (2.5%) 4 (2.0%) 23 (5.3%) 435

60–80% 0.06–0.20 59 (22.2%) 14 (5.6%) 21 (8.4%) 72 (16.6%) 435

Highest 20% of scores 0.20–0.99 105 (32.7%) 46 (15.5%) 65 (22.0%) 144 (33.2%) 434

Abbreviations: ICU: Intense Care Unit; Vent: Ventilator.

https://doi.org/10.1371/journal.pone.0262193.t003

Table 4. Clinical performance of the logistical model for predicting COVID-19 severity� in the real-time validation data set (n = 2174).

Cut point True + False + True - False - Sensitivity Specificity NPV PPV LR + LR -

>0.03 238 1032 983 12 95% 49% 0.19 0.99 1.86 0.10

>0.05 228 828 1187 22 91% 59% 0.22 0.98 2.22 0.15

>0.07 214 699 1316 36 86% 65% 0.23 0.97 2.47 0.22

>0.09 197 618 1397 53 79% 69% 0.24 0.96 2.57 0.31

>0.1 194 587 1428 56 78% 71% 0.25 0.96 2.66 0.32

>0.11 189 553 1462 61 76% 73% 0.25 0.96 2.75 0.34

>0.13 178 495 1520 72 71% 75% 0.26 0.95 2.90 0.38

>0.15 166 459 1556 84 66% 77% 0.27 0.95 2.91 0.44

>0.17 158 415 1600 92 63% 79% 0.28 0.95 3.07 0.46

>0.19 150 387 1628 100 60% 81% 0.28 0.94 3.12 0.50

�COVID-19 severity is defined as ICU admission, need for mechanical ventilation, or death.

https://doi.org/10.1371/journal.pone.0262193.t004

Table 5. AUROC of all cohorts for predicting the individual and composite outcomes.

Cohort ICU + Vent + Death outcome Vent + Death outcome ICU outcome Vent outcome Death outcome

Test set 0.86 0.88 0.84 0.86 0.86

Temporal validation set 0.87 0.93 0.87 0.93 0.91

PUI set 0.82 0.85 0.82 0.80 0.85

Real-time set 0.85 0.86 0.78 0.79 0.83

Abbreviations: ICU: intensive care unit; Vent: ventilator.

https://doi.org/10.1371/journal.pone.0262193.t005
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better understating of the diseases and improvement of treatment as the pandemic progresses

[4, 33] In our study, for a cutoff of 0.1 for COVID-19 severity, our model had a sensitivity of

73.7% and specificity 79.9% in the prospective validation set, 52.2% and 88.1%, respectively in

the PUI set, and 78% and 71%, respectively in the real-time validation set. These results show

good discrimination for patients with scores associated with increased rates of the primary

outcome. Furthermore, the performance of the models were robust to the secular improve-

ments in outcomes throughout validation.

Our model purpose was to estimate the risk of severe disease using ML as CDS in patients

with or suspicion of COVID-19 presenting in ED. Furthermore, our goal was to use this model

as CDS and facilitate the shared decision making between ED providers and patients regarding

ED discharge and home saturation monitoring. The variables included (demographics, comor-

bidities, home medication, vital signs) are readily available in the ED. The laboratory values

which are not always obtainable in ED were not included in the final model, which seemed to be

feasible as described in a recent ML model published in the literature [34]. The variables associ-

ated with a significantly higher risk for COVID-19 severity in our model were male gender,

older age, other as race, increased temperature, increased respiratory rate, decreased oxygen sat-

uration, inflammatory bowel disease. Comparable to our model, vital signs, age, BMI, and

comorbidities were the most important predictors in other investigations and reviews [35, 36].

Oxygen saturation and patient’s age were strong risk factors for deterioration and mortality in

COVID-19 in a systematic evaluation of predictive models [13]. The use of warfarin appeared to

be protective for our study’s composite outcome, similar to another report [37]. Hypercoagula-

bility and need for anticoagulation were well recognized in COVID-19 and likely from increased

immune response [38, 39]. We included variables that were not significant on univariate analysis

as well as variables that were protective. These variables made our model valuable in real life

when many covariates and confounding factors exist and increased the model calibration.

It is imperative that ML models are evaluated for equity across gender, race and ethnicity.

We included gender, race and ethnicity in our model given the association between minority

populations and male gender and worse COVID-19 outcomes [23, 24, 40–42]. While others

chose to create a different prognostic model for males and females, we decided to include all

[18]. The male gender was a significant predictor in our study, and the AUROC in male

patients showed good performance without statistical difference compared to the female gen-

der AUROC. While including race has led to over and undertreatment of minority popula-

tions [43, 44], due to sampling bias, others argue that creating a “race un-aware” model also

pertains risk in specific situations [45]. One particular situation is when race/ethnicity is asso-

ciated with increased risk of the outcome, like other as race in our study that showed increase

Table 6. Sensitivity analysis across gender/racial/ethnic minorities.

Variable AUROC 95% CI�

Female 0.88 0.85–0.92

Male 0.84 0.79–0.89

White 0.82 0.78–0.86

Black 0.94 0.82–1.0

Asian 0.94 0.90–0.99

Hispanic 0.96 0.91–1.0

Declined 0.85 0.77–0.92

Other 0.97 0.91–1.0

�All p-values were > 0.05.

https://doi.org/10.1371/journal.pone.0262193.t006
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risk of COVID-19 severity. By creating a model without race or ethnicity, the model is trained

to reflect the majority population and will inherently underappreciate the risk across minority

populations [45]. Our model performed equitably across racial/ethnic minorities and did not

increase the risk of widening the disparate outcomes observed throughout the pandemic [24,

46, 47]. By increasing treatment and resource allocation to non-whites, we hypothesize that

this will increase equitable treatment allocation and attenuate disparate care.

Unlike most prognostic models predicting the COVID-19 diagnosis [35, 48–50], our study

aimed to implement and assess the predictive model in patients with suspected COVID-19 dis-

ease, or PUI. It is worth noting that 68% of our patients were discharged before the test

resulted in our medical system. During this uncertainty period, many ED physicians are

required to make clinical and triage decisions. Previous predictive models for patients with

suspected COVID-19 infection have used imaging, demographics, signs and symptoms, vital

signs to predict the likelihood of COVID-19 diagnosis, but they have not sought to predict the

severity of the disease [12, 14, 51]. The Epic Deterioration Index (EDI) is a proprietary emer-

gency deterioration index that has been developed in 3 US hospitals in US between 2012 and

2016; although it is not specific for COVID-1, it has been introduced in over 100 US hospitals

to predict COVID-19 deterioration [30].

Multiple prognostic models for COVID-19 have been previously developed [14, 18, 30, 52,

53]. However, previous models suffer from multiple limitations. For example, many prior

prognostic models included very limited training dataset [54, 55]. The largest study to date

published in Great Britain used the 4 C Mortality Score to stratify the severity of the COVID-

19 [56]. In contrast to our model, the 4 C includes some laboratory values (urea level and C-

reactive protein) not always available in ED, and used data from COVID-19 positive patients

admitted to the hospital: AUROC 0.79, (95% CI 0.78–0.79). A systematic external validation of

22 prognostic models in a cohort of 411 patients with COVID-19 found that NEWS2 score

that predicted ICU admission or death within 14 days for symptoms onset: AUROC 0.78 (95%

CI 0.73–0.83) achieved the highest AUROC [13]. The EDI has been recently tested on 392

COVID-19 hospitalized patients in single center and found an AUROC 0.79 (95% CI, 0.74–

0.84) [30]. Our model performance for predicting COVID-19 severity in our prospective vali-

dation, PUI, and real-time data sets is more robust than in the above mentioned external vali-

dation of the prognostic models. Data from the national Registry of suspected COVID-19 in

Emergency care (RECOVER network) comprising 116 hospitals from 25 states in the US pro-

duced a 13 variable score that can predict the probability of infection in patients presenting

with suspected COVID-19 in ED [57]. The large RECOVER registry used patient data such as

age, temperature, oxygen saturation, symptoms, and ethnicity readily available in ED; how-

ever, the score was developed with retrospective data and it was not tested in real time [57].

Strengths and limitations

Our study has several strengths. First, it was validated on patients with COVID-19 diagnosis

and patients with suspected COVID-19. Second, the logistic regression-based ML used data

readily available in ED. Third, we included variables that were non-significant or were protec-

tive in univariate analysis, making the logistic regression-based ML more suitable for real-life

when many confounders exist. Fourth, it was tested in real-time in patients with suspected

COVID-19 who presented in the acute care setting as a CDS for ED providers and patients.

Finally, our model was tested for gender and race/ethnicity differences and performed equita-

bly to avoid disparities.

These findings must be viewed within the context of the following limitations. First, this

study was done within a single healthcare system. Despite a large catchment area that includes
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surrounding states, these results are specific to the regional patient population in which the

models were derived until they have been validated in other populations with different demo-

graphics and socioeconomic backgrounds. Second, our model over-predicted the disease sever-

ity making it a valuable tool for patient safety and less for resource utilization. Third, the

accuracy of patient comorbidities and medications available in ED relies on the history from

EHR, not consistently updated during the acute care visit. Fourth, as seen in the calibration

plot, the model does suffer from at the high-risk end, this is likely due to imbalance of the data-

set without a large degree of “bad outcomes”. Future studies will seek to increase sample size

and further include external institutions which will aid in further optimization of the model

along with addressing the generalizability, respectively. Lastly, this study sought to develop,

validate, and implement a prediction model to support clinical decision-making. Importantly,

the model was never intended to replace clinical judgment, rather it was intended to comple-

ment and better inform providers and patients, specifically when there is a large degree of clin-

ical uncertainty. The effect on clinical decisions and the long-term effect on patient safety

remained to be determined and were beyond the scope of this analysis.

Conclusions

COVID-19 has burdened healthcare systems from multiple different facets, and finding ways

to alleviate stress is crucial. CDS through ML-enabled predictive modeling may add to patient

care, reduce undue decision-making variations, and optimize resource utilization, especially

during a pandemic. We present a 12-hospital successful development and implementation of a

COVID-19 prediction model that performs well across gender, race, and ethnicity for three

different outcomes. The severity of illness primary outcome performed well in the PUI popula-

tion despite being developed on a COVID-19 positive population. The effect on patient out-

comes and resource use are needed to assess further the benefits of the model presented here.
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