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Abstract

Background: Histopathological assessment has a low potential to predict clinical outcome in patients with the

same stage of colorectal cancer. More specific and sensitive biomarkers to determine patients’ survival are needed.

We aimed to determine gene expression signatures as reliable prognostic marker that could predict survival of

colorectal cancer patients with Dukes’ B and C.

Methods: We examined microarray gene expression profiles of 78 archived tissues of patients with Dukes’ B and

C using the Illumina DASL assay. The gene expression data were analyzed using the GeneSpring software and R

programming.

Results: The outliers were detected and replaced with randomly chosen genes from the 90 % confidence interval

of the robust mean for each group. We performed three statistical methods (SAM, LIMMA and t-test) to identify

significant genes. There were 19 significant common genes identified from microarray data that have been

permutated 100 times namely NOTCH2, ITPRIP, FRMD6, GFRA4, OSBPL9, CPXCR1, SORCS2, PDC, C12orf66, SLC38A9,

OR10H5, TRIP13, MRPL52, DUSP21, BRCA1, ELTD1, SPG7, LASS6 and DUOX2. This 19-gene signature was able to

significantly predict the survival of patients with colorectal cancer compared to the conventional Dukes’ classification

in both training and test sets (p < 0.05). The performance of this signature was further validated as a significant

independent predictor of survival using patient cohorts from Australia (n = 185), USA (n = 114), Denmark (n = 37) and

Norway (n = 95) (p < 0.05). Validation using quantitative PCR confirmed similar expression pattern for the six selected

genes.

Conclusion: Profiling of these 19 genes may provide a more accurate method to predict survival of patients with

colorectal cancer and assist in identifying patients who require more intensive treatment.
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Background
Colorectal cancer is one of the major causes of cancer

mortality in both sexes worldwide. The reported number

of CRC patients has increased to 1.4 million and associ-

ated with 694 000 deaths globally in 2012 [1]. CRC is

staged according to the extent whether it has spread

through the wall of colon and rectum or to other parts

of the body [2]. The prognosis is influenced by the stage

of CRC at the time of diagnosis [3]. Based on the

National Cancer Institute's Physician Data Query system,

the 5-year survival rate for Dukes’ A patients was 80 to

95 %, Dukes’ B 55 to 80 %, Dukes’ C 33 to 55 % and

Dukes’ D less than 15 % [4]. These data showed the cor-

relation between survival and staging where the higher

stage of CRC patients is associated with a lower survival

rate. However, a previous study reported that the sur-

vival rate of Dukes’ B patients with high risk pathological

factors or low nodes involvement was lower than Dukes’

C patients who had one positive node [3]. Thus, the

current staging method needs to be improved to provide

a more accurate prognostication for CRC patients. The

common practice in managing Dukes’ B patients is a

combination of surgery, chemotherapy and/or radiation

therapy [5]. Whether this should be applied for all cases

is still debatable [3]. The adjuvant chemotherapy may

benefit the Dukes’ B patients with high risk features but

this is still not routinely recommended. This is due to

less benefit obtained from the adjuvant chemotherapy as

10-20 % of patients will develop recurrence [6]. For

Dukes’ C patients, the adjuvant chemotherapy became a

standard treatment after showing a 40 % reduction of

recurrence rate [7]. Another study in 2004 has demon-

strated that the overall 5-year survival rate was poor in

patients with Stage IIb compared to those with stage IIIa

[4]. However, this result may be due to the misclassifica-

tion of staging which leads to poor survival in untreated

patients with micrometastasis [4]. Clearly, there are

pitfalls in using the current staging system for prognosti-

cation purposes.

Nowadays, the development of high throughput tech-

nologies such as RNA sequencing [8, 9] and microarray

[10, 11] become popular to generate gene expression

profiling in understanding of cancer. Microarray tech-

nology is still valuable and promising technology for

many years as it is more affordable compared to the

RNA sequencing. Eschrich et al. (2005) used cancer

tissues from patients with Dukes’ B, C and D, who have

been follow-up for at least 36 months. They found a

43-gene signature that categorize patients into good and

poor survival with 93 % sensitivity and 84 % specificity

[12]. But, a large scale validation could not be performed

due to the limitation to make decision for adjuvant treat-

ments [11, 13]. Several studies that analyzed patients

with Stage II and III CRC have developed molecular

classifiers that could stratify patients into high and low-

risk groups [14–16]. However, these studies are still in

the research phase were not been translated into clinical

practice [17]. Furthermore, some studies have used a

small number of samples and lack of validation in inde-

pendent samples to enhance the power of the gene

signatures [18]. Our aim for this study was to determine

gene expression signatures that could predict survival of

CRC patients with Dukes’ B and C CRC, hoping that a

set of gene signatures will be able to classify patients

into those with good or poor survival as well as to more

accurately targeted therapy.

Methods

Clinical samples

This is a retrospective study using 78 formalin-fixed par-

affin embedded (FFPE) tissues of patients with Dukes’ B

(n = 37) and Dukes’ C (n = 41) CRC patients diag-

nosed between January 2002 to December 2007 at the

Universiti Kebangsaan Malaysia Medical Centre. These

samples comprised of patients who survived less than five

years (denoted as the poor survival group) and patients

who survived more than five years (good survival group).

The samples were anonymised throughout this study.

Inclusion criteria included the absence of preoperative

chemotherapy or radiotherapy. Information about age,

gender, race, histology, family history, organ sites and

clinical outcomes were recorded. For each patient, their

medical records and follow-up data were carefully

reviewed to confirm their clinical outcomes and the cause

of death if the patients were deceased. The survival of

patients was calculated from December 2012 minus the

date of the first surgery for those still alive while for those

who did not survive, it included the date of death minus

the date of the first surgery.

RNA extraction

Tissue sections of 4-7 μm in thickness were prepared

(>80 % representative), stained with hematoxylin and

eosin (H&E) and evaluated by the pathologist in charge.

RNA was deparaffinized and extracted using High Pure

RNA Paraffin Kit (Roche Applied Science, Mannheim,

Germany). Proteinase K was added and homogenization

was performed for16 h. All steps followed the manufac-

turer’s protocol. Samples were then stored at –80 °C

until they were used. Quantity and purity of the total

RNA was determined by the NanoDrop ND-1000 spec-

trophotometer (Thermo Fisher Scientific, Waltham,

MA). Samples with purity between 1.8 to 2.0 (A260/

A280) were selected. Quality assessment of total RNA

was done using the Bioanalyzer 2100 RNA 6000 Nano

kit (Agilent Technologies, Inc., CA, USA) and samples

with RNA Integrity Number (RIN) of more than two

were selected for the quantitative PCR.
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cDNA mediated annealing, selection, extension and

ligation (DASL) assay

Quantitative PCR analysis was performed as the pre-

qualifying step prior to cDNA synthesis using the

Corbett Rotor-Gene 6000 thermal cycler (Corbett Life

Science, Sydney, Australia). Forward and reverse primers

for the housekeeping gene RPL13A were obtained from

AITbiotech Singapore. PCR amplification with CT value

of 29 cycles or less was used in DASL assay (Illumina,

San Diego, CA, USA). The assay was conducted accord-

ing to the manufacturer’s protocol. Raw data files (.idat

files) were analyzed using the GenomeStudio software

(Illumina, San Diego, CA, USA) to check the data qual-

ity control for assessing results of gene expression

microarray experiment.

Microarray analysis

Sample Probe Profile from the GenomeStudio was

imported to the third party software called Genespring

GX 12.0.2 (Agilent Technologies, Inc., CA, USA).

Seventy-eight samples were exploitable with 20793

entities. The data were normalized using quantile al-

gorithm and log-transformed. Baseline transformation

of the normalized signal was performed to the me-

dian of all samples. Samples were assigned into their

survival groups. Hierarchical clustering was per-

formed using Pearson's correlation coefficient and Ward’s

criterion.

Outlier diagnosis for microarray analysis

It is well known that microarray gene-expression data

are often contaminated by outliers due to many steps in-

volved in the experimental process from hybridization

to image analysis [19, 20]. Most of the popular algo-

rithms for microarray gene-expression data analysis

are very much sensitive to outliers [19]. So gene-

expression data analysis by these algorithms may pro-

duce misleading results in the presence of contami-

nated observations.

We identified the contaminated observations for

each gene using β-weight function [21, 22] and re-

placed them with the values belonging to the 90 %

robust confidence interval (rCI) of the respective

group mean. The 90 % rCI for the j-th group mean

(μi
(j)) of i-th gene is defined by
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as β-weight function that we used for outlier detection as

mentioned earlier. This weight function produces weights

between 0 and 1 for any observation detected. It produces

smaller weights only for contaminated observations. So, in

this study we consider an observation (xik
(j)) as a contaminated

observation when

ψβ x jð Þ
ik

�

�

�

�

θ̂ jð Þ
i;β

� �

< 0:2 ð4:1Þ

and replaced it with a value belonging to the 90 %

rCI of mean μ jð Þ
i

� �

as the defined eq. (1). The β-

estimators as defined in eqs. 2 and 3 are highly ro-

bust against outliers [21, 22].

Detection of differentially expressed (DE) gene

We permutated 100 times from one data the microarray data

obtained from78 patients. All patients were divided into two

subsets of equal numbers i.e., training and test sets. We used

the bootstrapped data with three statistical methods (SAM,

LIMMA and t-test) to each training and test set to detect sig-

nificantly DE genes between good and poor survival group.

Survival analysis

Cox proportional hazards model and Elastic net estimation

To estimate the relationship between the survival time

and the gene expression levels, we used n as a sample of

n size and X1, . . .,Xp of p genes to denote the gene

expression level. The survival data for the ith patient

denoted by (Ti, δi, xi1, xi2, . . . xip), where i = 1, 2, . . ., n,Ti

is the survival time of i patient, δi is censoring
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indicator (0 if alive, 1 death) and xi = {xi1, xi2, . . ., xip} is

the vector of the gene expression level of p genes (covari-

ates). We also used the Cox regression model for the

hazard of CRC death at time t which is defined by

λ tð Þ ¼ λo tð Þ exp β1X1 þ β2X2 þ ⋅⋅⋅þ βpXp

� �

¼ λ0 tð Þ exp βTX
� 	

;

where λ0(t) is an unspecified baseline hazard function,

β = {β1, β2, · · ·,βp} is the vector of regression coeffi-

cients and X = {X1, . . .,Xp} is the vector of gene ex-

pression levels with the corresponding sample values

of xi = {xi1, . . ., xip} for the ith sample. The the risk

score of patient was calculated from the function:

Risk Score ¼ f Xð Þ ¼ βTX ð5Þ

Based on the available sample data, the Cox’s partial

likelihood can be written as
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where D is the set of indices of the events (e.g., deaths)

and Rr denotes the set of indices of the individuals at

risk at time tr − 0. The Elastic Net [23] uses a mixture of

the L1 (lasso) and L2 (ridge regression) penalties. In the

Elastic Net, the usual partial log-likelihood is penalized

by the L1 and L2 norms of the regression coefficients

with weights λ1 and λ2, respectively, i.e.,:
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where λ1 and λ2 are tuned by maximizing l(β), and l(β) is

the cross-validated partial log-likelihood (CVL). LASSO

and Ridge regression are described by Eq. (2) with λ1 or λ2
non-zero, respectively. The λ1 + λ2 Elastic Net involves 2D

optimization of the penalties. The penalty parameters were

tuned 50 times using different folding of the data for calcu-

lating CVL, and the penalty parameters with maximum

CVL were selected by pensim R package, available at

http://cran.r-project.org/web/packages/pensim/index.html.

We performed the Elastic Net [23] using the opt2D

function of the “pensim” R package to predict the survival

of CRC patients from microarray data. Using a 10-fold

cross-validation, with 50 starts parallelized to 8 processors

using the opt2D function, we obtained regression coeffi-

cients (β) with the optimal penalty parameter for the pe-

nalized Cox model, and calculated the risk score for each

patient using eq. (5) where βi is the estimated regression

coefficient of each gene in the training data set and Xi is

the Z-transformed expression value of each gene. The

estimated regression coefficient of each survival related

gene given by Elastic Net in eq. (6) in the training data set

was also applied to calculate a risk score for each patient

in test data set. The linear risk score with greatest cross-

validated partial log-likelihood was selected for validation

in the test set. We classified all patients into the 2 groups

high and low risk groups using the cut-off value (median

risk score) in the training set. Patients were assigned to

the "high-risk" group if their risk score was more than or

equal to cut-off value of risk score, whereas those with less

than the cutoff values were assigned as "low-risk". The

patients in high-risk group are expected to have a poor

outcome. The statistical significance of the predictions

was then assessed by the likelihood ratio test on the Cox

proportional hazards model. The probe sets were scaled

to z-scores per feature for all datasets. An individual

patient (test patient) can be checked to predict whether

the patient should receive further treatment or no treat-

ment by the fitted risk score (eq. 5), where X = {X1, . . .,Xp}

takes the expression values of selected p = 19 genes from

the test patient in the real life daily practice.

The values of specificity and sensitivity of the 19-genes

was calculated based on the analysis of gene expression

from this study as compared to the selected genes from

other publications [14, 15].

Independent external validation

We compared our microarray data with the published

datasets obtained from Stage II and III CRC patients

from four separate international studies (Australia, USA,

Denmark and Norway) [11, 14, 15, 24]. The datasets

were accessed online from Gene Expression Omnibus

(GEO) (GSE14333, GSE17536/GSE17537, GSE31595 and

GSE30378). The platform used was Affymetrix HG-U133

Plus2.0. The raw fluorescence intensity data within CEL

files were pre-processed with Robust Multichip Average

(RMA) algorithm [8], as implemented with R packages

from Bioconductor (http://www.bioconductor.org), and

the data were log-transformed. Clinical information of the

publicly available microarray data sets was obtained from

the published articles and websites. In addition, the data

were normalized per gene in each data set by transforming

the expression of each gene to obtain a mean of 0 and SD

of 1 (Z-transformation) for this study.

Validation using quantitative PCR (qPCR)

Six genes (FRMD6, SLC38A9, TRIP13, MRPL52, ELTD1

and ITPRIP) were randomly selected for the validation

of the microarray data. Results were normalized with

RPL13A gene. The extracted total RNA was converted

to cDNA using Verso cDNA Synthesis kit (Thermo

Scientific, UK). For qPCR, 25 μl reactions were set up

using 12.5 μl of 2X Solaris qPCR Master Mix, 1.25 μl of

Solaris Primer/Probe Set (20X), 1 μl of cDNA template

and water to make up to total volume 25 μl. The qPCR

reactions were performed using the Rotor-Gene 6000
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thermal cycler (Corbett Life Science). Cycling program

involved one cycle of enzyme activation at 95 °C for

15 min, 40 cycles consist of denaturation at 95 °C for

15 s and annealing/extension at 60 °C for 60 s.

Results

Clinical and pathological features

Clinical and pathological features of 78 patients were

separated into poor and good survival groups of patients

who survived less than five years and more than five

years respectively. In this study, the 5 year survival rate

among patients of Dukes’ B was 59.5 % while Dukes’ C

was 36.5 %. It was in concordance to the United State

data [4]. The differences in clinical parameters between

Dukes’ B and C patients were not statistically significant

(Fisher’s exact test p = 0.173) (Table 1). Kaplan Meier

curves were constructed based on Dukes’ staging and

the survival time showed no statistically significant

difference (log rank p = 0.242, data not shown). Fig. 1

showed the H&E staining results of patient Dukes’ B and C.

Identification of DE genes between good and poor

survival groups

Based on the eqs. (4 & 4.1), we identified 7.7 % of 20793

probes as contaminated probes (Additional file 1). Then,

we updated all contaminated expressions for each gene

using the reasonable values belonging to the 90 % rCI of

their respective group means as discussed earlier.

Thus, a total of 1500 top-ranked DE genes (using

smaller adjusted p-values) was selected from each of

training and test datasets by each of three statistical tests

(See Methods). Overlapping genes obtained by three

statistical test were again overlapped between each of

the training and test datasets (Additional file 1). Finally

we obtained 19 significant DE genes (NOTCH2, ITPRIP,

FRMD6, GFRA4, OSBPL9, CPXCR1, SORCS2, PDC,

C12orf66, SLC38A9, OR10H5, TRIP13, MRPL52, DUSP21,

BRCA1, ELTD1, SPG7, LASS6 and DUOX) for further

investigation (Table 2).

Figure 2 shows an example of the hierarchical cluster-

ing of microarray results based on 19 DE genes from a

pair of training set 1 and test set 1.

Predicting survival of cancer patients from CRC gene

expression data

We performed the Elastic Net [23] to the training

dataset and compute the risk scores using eq. (5)

based on the model estimates to the training dataset

and the test dataset. After calculating the risk score

for each patient from the 19-gene expression signa-

ture as mentioned before, we divided the training set

into high and low risk groups based on the cutoff

value (-0.07) of the risk score. The likelihood ratio

test was used to compare differences in overall survival

between high and low risk groups in the training set 1

(likelihood ratio test, p <0.05; HR =27, (95 % CI, 5.165 –

140.5)) and test set 1 (likelihood ratio test, p <0.05,

HR = 12, (95 % CI, 2.861 – 47.21)). Both Kaplan

Meier survival plots (Fig. 3a and b) for training and

test set 1 showed that this risk classification was sig-

nificantly associated with the overall survival time.

Similar results were observed in the other training

and test sets. We also compared other two methods

such as LASSO and Ridge regression with Elastic Net

regression for prediction accuracy in our data. The

prognostic index (risk score of 19 gene signature) was

significantly associated with overall survival time in

multivariate analysis (Table 3).

This study showed that the sensitivity and specifi-

city of the 19-genes were 86.84 % and 87.50 % re-

spectively which were acceptably higher than the

ColoGuideEx with 72.22 % and 71.43 % respectively

for 13-genes signature [14]. Meanwhile, ColoGuidePro

[15] has the upmost value of analysis with 94.44 %

and 90.48 % for 7-genes respectively. To identify

genes that may predict overall survival, a univariate

Cox proportion hazard regression analysis was per-

formed with each of 19 differentially expressed genes

in CRC in a cohort of 78 patients (Table 4). Table 4

Table 1 Clinical and pathological features

Good survival
n = 39

Poor survival
n = 39

No (%) No (%) p value

Dukes’ B 22 (56.41) 15 (38.46) 0.173 **

C 17 (43.59) 24 (61.54)

Gender Male 20 (51.28) 20 (51.28) 1.000 **

Female 19 (48.72) 19 (48.72)

Age (year) ≤50 4 (10.26) 5 (12.82) 0.235 **

>50 35 (89.74) 34 (87.18)

Race Chinese 29 (74.36) 24 (61.54) 0.226 *

Malay 9 (23.08) 15 (38.46)

Indian 1 (2.56) 0

Tumor differentiation Well 26 (66.67) 15 (38.46) 0.051 *

Moderately 5 (12.82) 15 (38.46)

Poorly 1 (2.56) 2 (5.13)

Mucinous 2 (5.13) 4 (10.26)

No record 5 (12.82) 3 (7.69)

Clinical outcome Alive 34 (87.18) 0 0.000 **

Dead 5 (12.82) 39 (100.00)

Organ Colon 25 (64.10) 21 (53.85) 0.357 **

Rectum 14 (35.90) 18 (46.15)

* = p value was calculated using Pearson Chi-Square

** = p value was calculated using Fisher’s Exact Test

[Relevant location: Page 13]
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shows that most of the genes including validated 5 genes

(FRMD6, MRPL52, TRIP13, ELTD1 and SLC38A9) were

significantly correlated with the overall survival of the

CRC patients. The five validated genes were significantly

correlated with the overall survival with hazard ratios of

1.259 [p =0.001; 95 % confidence interval (CI): 1.092 to

1.452], 0.848 (p = 0.001; 95 % CI: 0.767 to 0.939),

0.881 (p = 0.008; 95 % CI: 0.802 to 0.968), 1.155 (p = 0.021;

95 % CI): 1.021 to 1.307) and 0.919 (P = 0.050; 95 % CI:

0.845 to 1) respectively.

To determine whether these 19 genes can be inde-

pendent prognostic markers, multivariate analysis was

also performed including other clinical parameters (age,

gender and stage) as shown in Table 4. The results

showed that five genes (NOTCH2, GFRA4, OSBPL9,

MRPL52 and LASS6) as independent predictors with

hazard ratios of 1.56 (P = 0.009, 95 % CI: 1.034 to

1.913), 0.871 (p = 0.010, 95 % CI: 0.547 to 1.005), 0.818

(p = 0.047, 95 % CI: 0.640 to 1.045), 0.865 (p = 0.019,

95 % CI: 0.697 to 1.075) and 0.788 (P = 0.035, 95 % CI:

Fig. 1 a Cancerous tissue section of patients Dukes' B well-differentiated adenocarcinoma. Hematoxylin (purple) stains chromatin in the nucleus

and eosin (pink orangish) gives color to the protein that resides in the cytoplasm of muscle cells. Tumor cells appear to thicken and be seen

spreading muscular propia but did not penetrate serous layer. b. Well differentiated adenocarcinoma Dukes’ C tissue section invaded into muscular

propia and involved lymph nodes

Table 2 Microarray-based changes in gene expression of the 19 genes

Probe ID Gene symbol aFold change Gene name Expression in poor survival group
(Up-regulated/Down-regulated)

7000692 MRPL52 -4.32 (-2.59) mitochondrial ribosomal protein L52 Down-regulated

5700373 TRIP13 -3.49 (-3.22) thyroid hormone receptor interactor 13 Down-regulated

2690324 ITPRIP 1.36 (1.23) inositol 1,4,5-triphosphate receptor interacting protein Up-regulated

7000184 SLC38A9 -3.89 (-3.08) solute carrier family 38, member 9 Down-regulated

5420070 FRMD6 3.65 (2.63) FERM domain containing 6 Up-regulated

4230739 SORCS2 2.96 (3.58) sortilin-related VPS10 domain containing receptor 2 Up-regulated

6040070 ELTDI 3.68 (2.59) EGF, latrophilin and seven transmembrane domain containing 1 Up-regulated

1190176 NOTCH2 3.37 (2.62) Notch homolog 2 Up-regulated

2570196 CPXCR1 -2.62 (-2.18) CPX chromosome region, candidate 1 Down-regulated

840367 OR10H5 -2.20 (-1.93) olfactory receptor, family 10, subfamily H, member 5 Down-regulated

3450575 PDC -3.06 (-1.75) phosducin Down-regulated

2710564 DUOX2 2.22 (3.01) dual oxidase 2 Up-regulated

4560474 GFRA4 -2.91 (-1.63) GDNF family receptor alpha 4 Down-regulated

5690064 LASS6 -2.69 (-2.45) LAG1 homolog, ceramide synthase 6 Down-regulated

3780725 OSBPL9 -2.04 (-2.45) oxysterol binding protein-like 9 Down-regulated

5090025 C12orf66 -1.15 (-1.11) chromosome 12 open reading frame 66 Down-regulated

5870121 SPG7 3.64 (4.57) spastic paraplegia 7 (pure and complicated autosomal recessive) Up-regulated

620398 DUSP21 -3.53 (-2.92) dual specificity phosphatase 21 Down-regulated

540411 BRCA1 -3.88 (-3.07) breast cancer 1, early onset Down-regulated

This table shows the probe ID, gene symbols and expression of the 19 genes in the poor survival group compared to the good survival group. aFold change:

training set (test set)

[Relevant location: Page 13]
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0.631 to 0.984) respectively. To improve the prognostic

capability, a risk score was calculated based on the

expression level of NOTCH2, GFRA4, OSBPL9,

MRPL52 and LASS6 and corresponding regression

coefficients. A patient’s risk score was calculated as the

sum of the expression values of these genes. The results

confirmed that the patients in the low-risk score group

also had a better prognosis than those in the high-risk

score group in the test set. This data suggest that the

risk score based on these five genes can be used to

stratify patients (Fig. 3c).

Survival analysis of the 19-gene signature using the USA,

Australia, Denmark and Norway datasets

We assessed the predictive power of the 19 gene signa-

tures on the four cohort datasets from the USA (n =

114), Australia (n = 185), Denmark (n = 37) and Norway

(n = 95). All the microarray data were obtained using the

Affymetrix platform and we confirmed that the risk

classification using the 19 genes were replicated in all

three datasets. We found 17 out of 19 gene signatures

were present in the datasets from the USA, Australia

and Norway while 18 out of 19 genes were present in

the dataset from Denmark.

The Kaplan Meier survival curves for the high and low

risk score groups are shown in Fig. 3d-f. Patients with

high risk scores showed significantly poorer overall

survival than the patients with low risk scores for the

USA dataset (likelihood ratio test p-value <0.01; HR =

4.9 (95 % CI, 1.827 – 12.99)), for the Australian data-

set, (likelihood ratio test p-value <0.01; HR = 1.8

(95 % CI, 1.268 – 2.533)) and for the dataset from

Denmark (likelihood ratio test p-value <0.01; HR = 8.6

(95 % CI, 1.842 – 40.05)). Interestingly, we observed

that the median risk score for all external validation

datasets as well as our training dataset situated be-

tween -0.099 and -0.038. We again compared LASSO

and Ridge with Elastic Net regression for prediction

patients into high and low risk survival groups in

external datasets from different countries. The prog-

nostic index was significantly associated with overall

survival time in most of the external datasets in

multivariate analysis (Table 3). We observed that the

LASSO and Ridge methods fail to obtained prognostic

index to measure the association, while the elastic net

was significantly associated with overall survival time

in the Norway dataset (Table 3).

Validation of the microarray data

Validation using qPCR demonstrated similar trends

between poor and good survival groups when compared

with the microarray data. All up-regulated genes

(FRMD6, ELTD1 and ITPRIP) and down-regulated genes

(MRPL52, TRIP13 and SLC38A9) were confirmed by

qPCR according to 2-∆∆CT method as seen in Fig. 4.

Fig. 2 Hierarchical clustering of gene expression datasets. Hierarchical clustering of 78 CRC samples in training and test sets which graphically

displays the intensity of the gene expression for each gene. Samples were clustered based on the 19 significant genes. The color of each square

boxes represents the ratio of gene expression. Red boxes indicates up regulated genes while green boxes represents down regulated genes.

The column represent individual tissue samples while rows represent individual of genes
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Fig. 3 Survival analysis. Kaplan–Meier survival analysis using six different microarray datasets (Training and test sets (Illumina-based), dataset from

Denmark (Affymetrix), dataset from the USA (Affymetrix) and dataset from Australia (Affymetrix)). The 19-gene signature segregates patients into

two risk groups (red, high risk; black, low risk). The p values correspond to the likelihood ratio test comparing the survival curves
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Discussion
Microarray profiling allows the analysis of thousands of

genes and the identification of differentially expressed

genes which could then be used to characterize colorec-

tal cancer from a molecular perspective. We performed

a microarray study using the DASL assay on CRC

patients with Dukes’ B and C to predict patient’s sur-

vival. This assay was designed with multiple probes per

transcript to generate reproducible gene expression pro-

files from partially degraded RNA in archival tissues

which had the advantage of information on the patients’

survival. The quality of microarray data for downstream

analysis is important in order to answer correctly the

research questions. Outlier detection in microarray data

is desirable to avoid noise and statistical damage with

the aim to minimize the risk of misinterpreting the bio-

logical events.

This study has successfully stratified colorectal cancer

using a 19-gene signature and provides a molecular

staging approach of patients into low risk and high risk

groups. The final aim is to use this identifier in a

personalized approach for CRC patients as there are

weaknesses in using histopathological examination alone

to prognosticate patients’ survival. The overall survival

rate for CRC patients has increased, however, the indi-

vidual survival rate for patients with Dukes’ B and C is

still low. A previous study developed a molecular classi-

fier based on a core set of 43 genes to predict the 3-year

survival for patients [12]. The gene signatures were also

validated on a different population using a different plat-

form. In this study, we identified gene signatures which

could predict the 5-year survival rate. This is important

to allow the best plan of treatment to be given to patients

while at the same time reducing unnecessary toxicity and

aggressive side effects.

The Oncotype Dx and Coloprint for colorectal cancers

are two different assays developed based on quantitative

multi-gene RT PCR assay and oligonucleotide micro-

array respectively. Both assays were developed to im-

prove risk stratification of relapse for patients with Stage

II CRC. Oncotype Dx has a limitation in which identified

genes were derived from four separate studies on

individual genes and not determined using the whole

genome microarray method. Therefore, the assay could

probably miss important genes that may be involved in

determining cancer relapse. Another disadvantage of the

assay is the difficulty in assigning patients into groups of

risk prediction due to the narrow range of prediction

scores. These challenges hinder the effective use of this

assay in clinical practice [25]. The gene expression data

from Coloprint was not made publicly available hence

the evaluation of the classifier cannot be performed [14].

A recent study developed 113 gene signatures from a

published gene expression profile to predict prognostic

risk [26]. Prognostic index for patients was calculated to

discriminate patients into high- and low risk group. To

show the prognostic significance, validation was done

using independent data sets from different countries

using the same platform. In this study, we completed the

whole genome microarray and calculated a risk score for

each patient. We used the median risk score as a cutoff

point in which the median was not affected by outliers

[27]. Using this median, the patients were efficiently

separated into two groups i.e., high and low risk groups.

Previous clinical trials have used two robust gene classi-

fiers called ColoGuide Ex and ColoGuide Pro. The investi-

gators used the classifiers to stratify the prognosis of

patients with stage II and III [14, 15]. The performances

of both classifiers were validated using independent

external datasets from different countries. The strength of

the classifier is that it requires validation at the individual

patient level conducted in the prospective trial. In our

study, we revealed a set of genes which could provide a

significant risk assessment approach for patients in both

intermediate stages (Dukes’ B and C). Therefore, an

Table 3 Univariate and multivariate cox proportional hazard

regression analyses

Genes Univariate Multivariate

Hazard ratio (95 % CI) p-value Hazard ratio (95 % CI) p-value

NOTCH2 1.356 (1.154 – 1.592) 0.000 *** 1.56 (1.034 – 1.913) 0.009 **

ITPRIP 1.063 (0.919 – 1.23) 0.408 0.852 (0.614 – 1.183) 0.340

FRMD6 1.259 (1.092 – 1.452) 0.001 ** 1.066 (0.850 – 1.338) 0.575

GFRA4 0.860 (0.728 – 1.016) 0.005 ** 0.871 (0.547 – 1.005) 0.010 **

OSBPL9 0.803 (0.671 – 0.962) 0.017 ** 0.818 (0.640 – 1.045) 0.047 **

CPXCR1 0.918 (0.811 – 1.041) 0.183’ 1.030 (0.766 – 1.387) 0.840

SORCS2 1.159 (1.041 – 1.290) 0.006 ** 0.936 (0.752 – 1.166) 0.558

PDC 0.812 (0.679 – 0.970) 0.022 ** 1.068 (0.796 – 1.432) 0.659

C12orf66 0.902 (0.808 – 1.008) 0.069 * 1.007 (0.729 – 1.390) 0.965

SLC38A9 0.919 (0.845 – 1.000) 0.050 * 1.073 (0.894 – 1.289) 0.443

OR10H5 0.846 (0.704 – 1.018) 0.075 * 1.078 (0.826 – 1.407) 0.579

TRIP13 0.881 (0.802 – 0.968) 0.008 ** 0.985 (0.780 – 1.244) 0.901

MRPL52 0.848 (0.767 – 0.939) 0.001 ** 0.865 (0.697 – 1.075) 0.019 **

DUSP21 0.903 (0.807 – 1.011) 0.077 * 0.928 (0.697 – 1.235) 0.609

BRCA1 0.836 (0.764 – 0.915) 0.000 *** 0.884 (0.713 – 1.097) 0.264

ELTD1 1.155 (1.021 – 1.307) 0.021 ** 0.969 (0.772 – 1.216) 0.787

SPG7 1.141 (1.035 – 1.259) 0.008 ** 1.026 (0.840 – 1.255) 0.797

LASS6 0.867 (0.782 – 0.961) 0.006 ** 0.788 (0.631 – 0.984) 0.035 **

DUOX2 1.076 (0.975 – 1.187) 0.141’ 1.039 (0.844 – 1.280) 0.715

Age (>60) 0.154 (0.01953 – 1.225) 0.045 ** 0.562 (0.0354 – 2.392) 0.049 **

Gender 1.048 (0.554 – 1.981) 0.886 1.729 (0.704 – 4.245) 0.231

Stage 1.644 (0.8567 – 3.156) 0.135’ 1.274 (0.494 – 3.286) 0.615

This table shows the univariate and multivariate cox proportional hazard

regression analyses of 19 gene signatures and other clinical variables

associated with overall survival of CRC patients. [Relevant location: Page 14]
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Table 4 Comparison the LASSO and Ridge regression methods with Elastic Net regression

Univariate Multivariate

HR (95 % CI) P HR (95 % CI) P

Datasets Methods

Lasso 0.106 (0.030 – 0.370) 0.000 0.063 (0.016 – 0.252) 0.000

Our dataset Ridge 0.812 (0.303 – 2.173) 0.000 0.083 (0.022 – 0.321) 0.000

Elastic net 0.065 (0.014 – 0.287) 0.000 0.040 (0.008 – 0.198) 0.000

Denmark dataset Lasso 0.055 (0.007 – 0.453) 0.007 0.044 (0.005 – 0.396) 0.005

Ridge 0.112 (0.024 – 0.519) 0.005 0.080 (0.014 – 0.467) 0.005

Elastic net 0.057 (0.007 – 0.464) 0.007 0.038 (0.004 – 0.389) 0.005

Australian dataset Lasso 0.565 (0.396 – 0.805) 0.002 0.549 (0.384 – 0.784) 0.001

Ridge 0.447 (0.312 – 0.641) 0.000 0.454 (0.316 – 0.651) 0.000

Elastic net 0.523 (0.370 – 0.739) 0.000 0.529 (0.373 – 0.748) 0.000

USA dataset Lasso 0.105 (0.010 – 1.068) 0.056 0.104 (0.010 – 1.052) 0.055

Ridge 0.130 (0.013 – 1.294) 0.082 0.129 (0.013 – 1.283) 0.081

Elastic net 0.120 (0. 012 – 1.195) 0.071 0. 122 (0. 012 – 1.214) 0. 072

Norway dataset Lasso — — — —

Ridge — — — —

Elastic net 0.536 (0.300 – 0.957) 0.035 0.569 (0.318 – 1.018) 0.057

This table shows the comparison with the LASSO, Ridge regression and Elastic Net methods for 19 gene signatures based on our dataset and other external datasets

from different countries. Univariate and multivariate Cox’s proportional hazard model analysis of prognostic factor (prognostic index or risk score) for overall survival

[Relevant location: Page 16]

Table 5 The probe ID, gene symbols and expression of the 19 genes in the poor survival group compared to the good survival group

Probe ID Gene symbol Gene name Expression in poor survival group
(Up-regulated/Down-regulated)

7000692 MRPL52 mitochondrial ribosomal protein L52 Down-regulated

5700373 TRIP13 thyroid hormone receptor interactor 13 Down-regulated

2690324 ITPRIP inositol 1,4,5-triphosphate receptor interacting protein Up-regulated

7000184 SLC38A9 solute carrier family 38, member 9 Down-regulated

5420070 FRMD6 FERM domain containing 6 Up-regulated

4230739 SORCS2 sortilin-related VPS10 domain containing receptor 2 Up-regulated

6040070 ELTDI EGF, latrophilin and seven transmembrane domain containing 1 Up-regulated

1190176 NOTCH2 Notch homolog 2 Up-regulated

2570196 CPXCR1 CPX chromosome region, candidate 1 Down-regulated

840367 OR10H5 olfactory receptor, family 10, subfamily H, member 5 Down-regulated

3450575 PDC phosducin Down-regulated

2710564 DUOX2 dual oxidase 2 Up-regulated

4560474 GFRA4 GDNF family receptor alpha 4 Down-regulated

5690064 LASS6 LAG1 homolog, ceramide synthase 6 Down-regulated

3780725 OSBPL9 oxysterol binding protein-like 9 Down-regulated

5090025 C12orf66 chromosome 12 open reading frame 66 Down-regulated

5870121 SPG7 spastic paraplegia 7 (pure and complicated autosomal recessive) Up-regulated

620398 DUSP21 dual specificity phosphatase 21 Down-regulated

540411 BRCA1 breast cancer 1, early onset Down-regulated
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inadequate sampling of lymph nodes as a risk factor in the

conventional clinico-pathologic approach to determine

staging could be disregarded [16, 28].

From our findings, some of the signature genes play

roles in cell differentiation and amino acid transport as

well as coding for phosphoproteins, receptors and

membrane-associated proteins. We validated and con-

firmed six out of the 19 genes using RT-PCR. One of

these is the EGF latrophilin and seven transmembrane

domain-containing protein 1 (ELTD1) gene. A previous

in vivo study found that a high expression (~3 fold

increase, p <0.001) of this gene was associated with high

grade gliomas and low survival rate [29]. In our study,

ELTDI was consistently up-regulated in the group of

CRC patients with poor survival. The ELTDI gene is a

member of the secretin family of G protein–coupled

peptide hormone receptors and belongs to the EGF-7

transmembrane subfamily. The EGF family plays import-

ant roles in cell division, apoptosis, differentiation and

migration [30]. Wallgard et al. [31] reported that ELDT1

is associated with microvasculature expression of endo-

thelial cell-specific in vivo for tumor progression.

The second validated gene, thyroid hormone receptor

interactor 13 (TRIP13), encodes a protein that cooper-

ates with thyroid hormone receptors. High expression of

TRIP13 gene was reported to be associated with poor

prognosis in breast cancer [32]. One of the gene in this

panel was the sortilin-related VPS10 domain containing

receptor 2 (SORCS2) which found to be up-regulated in

the group with poor survival compared to those with

good survival. This gene is normally highly expressed in the

central nervous system during development [33, 34]. In

contrast, this gene was documented to be down-regulated

in the stromal cells of breast cancer and associated with

poor outcome [35, 36]. Another one of the genes in the

panel i.e., Notch homolog 2 (NOTCH2) has been widely

reported to be linked with survival. NOTCH2 is a receptor

for membrane bound ligands and has roles in vascular, renal

and hepatic development [37, 38]. The NOTCH2 gene was

also reported to be an independent prognostic predictor of

CRC [39]. A high expression of NOTCH2 might predict

good survival in CRC with a median survival of 45 months

[39]. We noted an opposite effect of this gene in our current

study. This is probably due to the heterogeneity of tissue

samples with different stages of tumor tissues between the

respective studies. Less information are available for six of

the genes in the panel in relation to cancer namely the

ITPRIP, FRMD6, CPXCR1, SLC38A9, MRPL52 and GFRA4.

We showed that the performance of the 19-gene

signature was reliable and also reproducible. This was

evident through the use of four external validation series

from other countries with different population settings.

A similar study used information from other studies to

validate the performance of their 5-gene panel [40]. Our

study results show the robustness of the gene panel

whereby the test successfully differentiate patients into

groups with high and low risk of recurrence in the train-

ing, testing and also the external validation datasets.

Conclusions
We have shown that our 19-gene signature is able to classify

CRC patients into prognostic groups according to their risk

scores. Patient who will be assigned into the high risk group

could have a proper treatment plan, relevant chemotherapy

dosage and effective medication strategy in order to increase

the survival rate at the same time reduce the invasiveness of

cancer cells. While for patients who were classified as the

low risk group could avoid or received lower doses of

adjuvant chemotherapy. Further validation tests are still

required using larger number of samples. Future prospective

clinical trials could also be conducted using this classifier to

randomize treatment groups and explore further the sensi-

tivity and specificity of this 19-gene signature.

Fig. 4 Validation of detected genes using qPCR. The normalized gene expression ratio for six genes including FRMD6, ELTD1, ITPRIP, MRPL52, TRIP13

and SLC38A9 which was determined using qPCR (p < 0.05). (*) represents the significant genes

Abdul Aziz et al. BMC Medical Genomics  (2016) 9:58 Page 11 of 13



Additional file

Additional file 1: a) Detection of outliers. b) Summary of permutation

analysis. a) Detection of outliers. Histogram of microarray data showing

the presence of outliers after detection by using the beta weight

function. Samples with weight index < 0.2 were considered as outliers.

b) Summary of the permutation analysis for 78 CRC samples to identify

differentially expressed genes. One hundred training and test set were

generated and further analyzed using 3 statistical methods: SAM, LIMMA

and t-test to calculate the p-value for each gene. (DOCX 452 kb)
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