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ABSTRACT

Random noise in seismic data affects the signal-to-noise ratio, obscures details,
and complicates identification of useful information. We present a new method
for reducing random, spike-like noise in seismic data. The method is based on a
1-D stationary median filter (MF) – the 1-D time-varying median filter (TVMF).
We design a threshold value that controls the filter window according to char-
acteristics of signal and random, spike-like noise. In view of the relationship
between seismic data and the threshold value, we chose median filters with dif-
ferent time-varying filter windows to eliminate random, spike-like noise. When
comparing our method with other common methods, e.g., the band-pass filter and
stationary MF, we found that the TVMF strikes a balance between eliminating
random noise and protecting useful information. To demonstrate the feasibility
of our method in reducing seismic random, spike-like noise, we present results for
one synthetic dataset. Results of applying the method to seismic land data from
Texas demonstrate that the TVMF method is effective in practice.

INTRODUCTION

Random noise in prestack seismic data can come from various sources, such as wind
motion, poorly planted geophones, or electrical noise, and some of this seismic random
noise invariably exhibits spike-like characteristics. Although stacking can at least
partly suppress random noise in prestack data, residual random noise after stacking
will decrease the accuracy of final data interpretation. In recent years, several authors
have developed effective methods of eliminating random noise. For example, Gülünay
(2000) used the noncausal prediction filter for random-noise attenuation, Ristau and
Moon (2001) compared several adaptive filters, which they applied in an attempt
to reduce random noise in geophysical data. Karsli et al. (2006) applied complex-
trace analysis to seismic data for random-noise suppression, recommending it for low-
fold seismic data, and some transform methods were also used to eliminate seismic
random noise, e.g., seislet transform (Fomel, 2006; Fomel and Liu, 2008), discrete
cosine transform (Lu and Liu, 2007), and curvelet transform (Neelamani et al., 2008).

On the other hand, the median filter, a well-known method that can effectively
suppress spike-like noise, refers to nonlinear signal processing. Bednar (1983) and
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Duncan and Beresford (1995) found the method to be both simple and effective for
seismic prospecting. More recently, new median filters have been proposed. Mi and
Margrave (2000) incorporated median-filter noise reduction into standard Kirchhoff
time migration. Zhang and Ulrych (2003) used a hyperbolic median filter to sup-
press multiples. Liu et al. (2006) advocated random-noise attenuation using the 2-D
multistage median filter (MLM).

Because the median filter is a nonlinear filter, filter-window length needs to be
adjusted before its characteristics can be changed. The stationary filter, on the other
hand, maintains a fixed window length, retaining useful information and random
noise at the same scale. An unsuitable filter-window choice would therefore end up
in useful information being destroyed or noise remaining. Here we propose a time-
varying median filter that adjusts to different filter-window lengths by threshold,
making value judgments on useful information versus noise throughout the process.
We show that the time-varying window is more powerful than the stationary window.

In this paper, a new nonlinear filter called the time-varying median filter (TVMF)
is presented, which we designed by defining a threshold value. After adjustment of the
filter window in the time domain, this filter eliminates random noise in seismic data.
We compare TVMF with other common methods. We use numerical examples, along
with synthetic and field data, to demonstrate the validity of the proposed method in
practice.

THEORETICAL BASIS

In contrast to useful information, random, spike-like noise in seismic data is neither
continuous nor correlative, and a 1-D stationary median filter, having a large filter-
window length, can easily remove such noise. However, signal can be damaged by
such a filter.

The 1-D TVMF is based on the 1-D stationary median filter. We propose to
measure the local noise content of the data and to adjust the filter length adaptively.
If a threshold value that judges random noise and estimates noise intensity can be
chosen, a filter having a large filter-window length can eliminate random noise while
processing useful information by using a small filter-window length. Such a filter can
thus effectively eliminate random noise while maximizing preservation of a detailed
structure of useful information.

1-D stationary median filter (MF)

The 2-D seismic record can be represented by the following data sequence:

xi,j (i = 1, · · · ,m, · · · , Nx; j = 1, · · · , n, · · · , Nt) , (1)

where i is the spatial sample index, j is the temporal sample index, and Nx and Nt

are the numbers of spatial and temporal samples. When filter-window length, C, of
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the stationary median filter is defined (normally C is odd), the result after filtering
at the point on the mth trace and the nth sample can be found by

1. Setting the center point at the mth trace and the nth sample, and choosing C
samples in the mth trace,

2. Sorting the C samples from smaller to larger, and then

3. Picking the center value, after sequencing, as the output at the point on the
mth trace and the nth sample.

Repetition of the process on all data achieves 1-D stationary median filtering of
the seismic record. The 1-D stationary median filter can be expressed as median[xi,j].

Signal-to-noise ratio (SNR) estimation using the stack method

A simple definition of the SNR was introduced by Liu and Li (1997). Window D, a
part of the seismic record, can be chosen for SNR analysis:

D = [xi,j]M×N (0 < M ≤ Nx, 0 < N ≤ Nt) . (2)

Further assumptions are: waveform, amplitude, and phase of seismic wavelet in win-
dow D keep stable in respect to distance “i”; noise is “zero mean” randomly dis-
tributed, along with survey-line direction being independent (decorrelated) of the
signal, so that

xi,j = sj + ni,j (3)

M
∑

i=1

ni,j = 0 , (4)

where sj is amplitude of signal, and ni,j is amplitude of noise. These assumptions
generally imply a limitation to this method, but they can be satisfied if the local
window is chosen in the stable signal region of the seismic section. So if the signal
energy in the window is

ES = M
N
∑

j=1

s2j =
1

M

N
∑

j=1

(
M
∑

i=1

xi,j)
2 , (5)

the noise energy can be calculated by

EN =
N
∑

j=1

M
∑

i=1

x2

i,j − ES . (6)

Finally, a decibel expression of the SNR is estimated as

SNR =
ES

EN

= 10 log
10
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1-D time-varying median filter (TVMF)

Using the above definitions, a TVMF can be designed. We use the following three
steps to determine its parameters:

1. Choose the reference median filter length.

At point xm,n, where the filter-window length of the reference median filter is
chosen as C, output can be expressed as

Y C
m,n = median[xi,j] (i = m; j = n− (C − 1)/2, · · · , n+ (C − 1)/2) , (8)

where filter-window length C is a large odd number so that random noise could be
eliminated as much as possible. C is determined by using the SNR estimation method,
which will be discussed later.

2. Choose the threshold value.

Using the reference median filter with its large filter-window length, we processed
the seismic data first to find Y C

m,n. Then we applied the absolute mean value to
calculate the threshold value, which is shown as

T =
1

Nx ×Nt

Nx
∑

i=1

Nt
∑

j=1

|Y C
i,j | , (9)

We can evaluate random-noise data versus useful signal data by using the threshold
value. When |Y C

i,j | < T , the point is judged to be random noise, whereas when
|Y C

i,j | ≥ T , the point should be signal data. We can therefore use the threshold value
as a judgment norm – data in which |Y C

i,j | ≥ T should be processed by the median
filter having windows smaller than C to protect the detailed signal structure. Data
in which |Y C

i,j | < T should be processed by the median filter having windows larger
than C to strengthen its ability to eliminate random noise.

3. Choose the time-varying filter windows.

Choices involving time-varying windows abound after the threshold value has been
chosen. We can define four scales of windows. Detailed time-varying window length
Ci,j is defined as

Ci,j =



















C + α, 0 < |Y C
i,j | < T/2

C + β, T/2 < |Y C
i,j | < T

C − γ, T ≤ |Y C
i,j | < 2T

C − δ, |Y C
i,j | ≥ 2T

, (10)

where α, β, γ, and δ are constant even numbers, and α > β and δ > γ. Specific
values for these parameters will be discussed in the next section. Using the above
definition, we distinguish between random noise and useful signal, such that we can
process the seismic data using different filter scales.
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SYNTHETIC DATA TESTS

To choose reference filter windows and time-varying filter windows, we analyzed the
characteristics of our TVMF formulation using synthetic data. Referring to the ve-
locity model (Table 1), note the synthetic common-shot record with a dominant
frequency of 40 Hz shown in Figure 1a. A 5%-density white spike noise was then
added to the model. Three different noise peaks (noise amplitude is half, one, and
two times the maximum value of the reflections, and the corresponding noise intensity
is 1/2, 1, and 2) were chosen to separately test the TVMF. Only noise with twice the
maximum value of the reflected wave is displayed in Figure 1b. Energy attenuation
has not been taken into account, nor has spherical spreading or AVO. Here, the signal
has been drowned out by noise.

Stratum thickness (m) 500 1739 2069
Stratum velocity (m/s) 2500 3162 4138 4500

Table 1: Velocity model

Definitions of signal energy (equation 5), noise energy (equation 6), and SNR
(equation 7) were used to analyze characteristics of the reference median filter. We
chose the stationary MF with different filter-window lengths of from 3 to 19 points,
comparing various signal energies (Figure 2a), noise energies (Figure 2b), and the
SNR’s (Figure 2c) after filtering. To meet the assumptions of the SNR model, we
chose five traces near the zero offset, where seismic events are approximately invariant
across the five traces. Note that in the figures, curves of the three noise intensities
(1/2, 1 and 2) appear to have similar tendencies. Both signal energy and noise energy
decrease as filter-window length increases, but the SNR displays a wiggle shape. The
energy levels of signals are stable after filter-window length reaches 11 points, but
the energy levels of noise are stable after filter-window length reaches 15 points. And
because the curves show a different rate of descent, the SNR has a different tendency.
It reaches a peak at the 5-point filter window and decreases afterward because signal
energy attenuates faster than noise energy. The SNR then reaches the minimum
near 11 points, where the signal energy is stable, and next, the SNR improves again
because the noise energy still decreases. Finally, the SNR reaches stability, however,
the signal has been barely damaged.

In the noisy model (Figure 1b), the SNR is -10.7 dB. After stationary MF filtering,
even the minimum SNR remains much larger than -10.7 dB, illustrating that all
stationary median filters can improve the SNR in the noisy model. We can select
large filter windows of reference median filters to keep noise energy to a minimum
when threshold T is well able to separate signal from noise, but at the same time we
can define time-varying filter windows on the basis of reference filter windows so that
the reference filter window will be limited. Three basic principles should be satisfied:

1. The reference filter window can be chosen as a large value to separate signal
from noise when noise energy is small.
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2. Time-varying filter windows at signal positions should be small values to protect
the signal when removing noise.

3. Time-varying filter windows at noise positions should be large values to atten-
uate noise energy.

In Figure 2, reference filter window C should be larger than the stable signal point
(11 points), and time-varying filter windows C−γ and C−δ at signal positions should
be in the range of from 5 to 7 points in order to preserve signal energy. Time-varying
filter windows C + α and C + β should be limited in range from 11 to 13 points in
order to attenuate noise energy and save calculation time. To meet all principles, C
can be 11 points, with α = 2, β = 0, γ = 4, and δ = 6. After more tests on synthetic
and real data it became clear that these filter parameter choices work for most real
data.

(a) (b)

Figure 1: Synthetic model (a) and white-noise model (b).

We used the TVMF, with defined reference and time-varying filter windows, to
process the noise model (Figure 1b), the result of which is shown in Figure 3a. When
assumptions can be met, the SNR estimation using the stack method can be used
to compare results. After TVMF processing, the SNR is 19.7 dB. To compare, we
also used the low-pass filter for preserving the signal in the dominant frequency band
(Figure 3b, the SNR is -7.4 dB). After TVMF processing, white spike noise attenuated
well, but the result after low-pass filtering became a signal with band-limited noise,
and a great deal of low-frequency noise remained. Next, we also used the TVMF
to process the band-limited noise model (Figure 3b). SNR analysis shows that the
parameters of TVMF only change a little, so the same parameters can be used for
processing. The TVMF cannot eliminate all band-limited noise, like white noise, but
the energy of the noise has been degraded. At the same time, the TVMF introduces
a few high-frequency noise components having low energy, but these can be easily
removed by using a high-cut filter. Figure 4a shows the result after TVMF and high-
cut filtering; the SNR is 0.5 dB. The low-pass filter does nothing about band-limited
noise. The 11-point stationary MF (Figure 4b, the SNR is -8.4 dB) can be used
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(a) (b)

(c)

Figure 2: Comparison of different noise levels (Intensity (1/2, 1, and 2) is the am-
plitude ratio between noise and reflections). Signal energy (a), noise energy (b), and
SNR (c).
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to compare with the TVMF. The stationary MF can remove most of the noise, but
useful information is also destroyed. After comparing the result of the TVMF with
those of the stationary MF and the band-pass filter, we conclude that the TVMF is
superior when processing random, spike-like noise.

We can compare results of using different methods by analyzing their spectra as
well. We chose spectra of the trace at a distance of 4 km, corresponding to the
pertinent parts of Figures 1, 3, and 4. Results in Figure 5 show that spectral values
of random noise are larger than those of the signal at every frequency and that
reflected waves have been masked by random noise (Figure 5b). The low-pass filter
can eliminate noise in the high-frequency band, but it does nothing in the dominant-
frequency band (Figure 5c). After the band-limited model is processed by the TVMF
using an 11-point reference filter window, most spectral components in the dominant-
frequency band can be recovered. An additional high-cut filter was used to remove
high-frequency noise introduced by the TVMF (Figure 5d). The corresponding time
profile is shown in Figure 4a.

(a) (b)

Figure 3: Denoised result after 11-point TVMF filtering (a) and denoised result (band-
limited noise model) after low-pass filtering (b).

Given the result of model filtering, the TVMF can easily remove spike-like noise,
especially noise having a white spectrum. When the TVMF is used to attenuate
band-limited, spike-like noise, its filter ability decreases, although it can still work
better than other common methods.

PROCESSING OF FIELD DATA

A real-data example involves land prestack data from Texas (Figure 6a), from which
we show one common midpoint gather that has 59 traces and an average group
interval of 42 m. The sample frequency is 4 ms, and the sample number is 500. In
Figure 6a, noise is mainly random noise caused by the surface condition of this area;
the 60-Hz electrical interference with high amplitude is especially serious. According

GEO-2007-0338



Liu etc. 9 1-D time-varying median filter

(a) (b)

Figure 4: Denoised band-limited noise model using different methods (the result of
Figure 3b was input to these tests); 11-point TVMF followed by a high-cut filter (a)
and 11-point stationary MF (b).

(a) (b)

(c) (d)

Figure 5: Comparison of amplitude spectra (trace at distance of 4 km) before and after
processing. Amplitude spectra in Figure 1a (a), corresponding spectra in Figure 1b
(b), corresponding spectra in Figure 3b (c), and corresponding spectra in Figure 4a
(d).
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to the amplitude spectra, the dominant frequency of the real data is about 25 Hz; the
60-Hz electrical interference thus exhibits high-frequency, spike-like characteristics
when compared with the useful signal. In the time domain (Figure 6a, especially at
locations “A,” “B,” and “C”), this spike-like characteristic of electrical interference
can also be observed. To meet the assumptions of SNR estimation using the stack
method, a rectangle region “D” that has 9 traces and 125 samples is chosen, and,
after calculating, the SNR in the original data is found to be -7.3 dB. First, we
apply a low-pass filter to remove the random noise (Figure 6b); the frequency is
limited to 60 Hz. The low-pass filter can partly eliminate random noise, and the
corresponding SNR is improved to 0.4 dB, but it cannot attenuate the noise in the
dominant-frequency band. We can thus still see lots of random noise after filtering.
The 11-point stationary MF is also used to compare with the TVMF, and the result
is shown in Figure 6c. After processing, there is still some spike-like noise left, and
part of the signal has been attenuated. The SNR is 1.9 dB, and a larger filter window
will further destroy the useful signal. By using the SNR analysis introduced in the
theory section, we are choosing the parameters about the TVMF in window “D.”
The TVMF with the same parameters as for the synthetic examples, C = 11, α = 2,
β = 0, γ = 4, and δ = 6, is applied to the prestack data (Figure 6d). Figure 6e
shows the difference section, in which the processed data using the TVMF have been
subtracted from the original data. After TVMF processing, continuity of events and
information of the reflected waves are all enhanced, and there is little noise left. Note
that the 60-Hz electrical interference in particular can be completely removed. The
SNR reaches 4.7 dB. In the difference section it can be seen that the TVMF eliminates
major spike-like noise and that there is little useful information beyond the spike-like
noise, showing that the TVMF can effectively eliminate spike-like noise and protect
useful information at the same time. Because the TVMF is based on the stationary
MF that can filter noise spikes, the TVMF can effectively eliminate spike-like noise.
And because the TVMF can separate useful information from spike-like noise, it can
protect useful information and perform better overall than other potential methods
in spike-like noise attenuation.

We chose a trace from the original data and corresponding traces in processed
data and got the amplitude spectra of four traces (Figure 7). After low-pass filtering,
high-frequency noise can be removed thoroughly, but some noise in the dominant-
frequency band can remain; electrical interference in particular must be eliminated
by other methods (Figure 7b). Stationary MF can eliminate enough noise, but spectra
of useful signals have been distorted (Figure 7c). In Figure 7d, the TVMF can atten-
uate noise in the entire frequency band and protect the useful-information frequency
components.

Next we obtained stacked sections corresponding to Figure 6b and 6d; the stacking
fold is 59. A rectangular region, “H,” was chosen to calculate the local SNR. Events
of the stacked section using low-pass processing were discontinuous (Figure 8a), the
SNR is -7.8 dB, and the continuity of events in the stacked section using TVMF
processing was improved, especially at locations “E,” “F,” and “G” (Figure 8b), and
the corresponding SNR is -3.1 dB. Because the TVMF can eliminate spike-like noise
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(a) (b)

(c) (d)

(e)

Figure 6: Real land data (a), denoised result after low-pass filtering (b), denoised
result after stationary MF filter (c), denoised result after TVMF filtering (d), and
difference between original data and result after TVMF processing (e).
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(a) (b)

(c) (d)

Figure 7: Comparison of amplitude spectra (trace at distance of 1.8 km) before
and after processing. Amplitude spectra in Figure 6a (a), corresponding spectra in
Figure 6b (b), corresponding spectra in Figure 6c (c), and corresponding spectra in
Figure 6d (d).
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in prestack data, it is advantageous to apply to such data.

CONCLUSION

We have proposed and tested the time-varying median filter (TVMF) for attenuating
prestack random, spike-like noise. We used a signal-to-noise ratio estimation to design
the reference filter window and time-varying filter windows, in which the filter can
adapt filter-window length to meet the intensity of the random, spike-like noise. The
ability of this method to eliminate random noise while protecting desired signal further
attests to the strength of the method. Our experiments show that in field data
the TVMF can eliminate random noise enough to enhance the continuity of events.
Spectral analysis also shows that the TVMF can effectively suppress random, spike-
like noise in the whole frequency band. Comparison of different methods shows that
the TVMF is more effective than the stationary median filter for eliminating spike-
like noise, and it can enhance results of band-pass filtering by attenuating spike-like
noise within the pass band.
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(a)

(b)

Figure 8: Stacked section of prestack data after low-pass filtering (a) and correspond-
ing section after TVMF processing (b).
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