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ABSTRACT: We present a one-dimensional variational (1D Var) retrieval of fifth-generation European Centre for

Medium-Range Weather Forecast reanalysis (ERA5) temperature and relative humidity profiles above Payerne,

Switzerland, assimilating raw backscatter measurements from the MeteoSwiss Raman Lidar for Meteorological

Observations (RALMO). Our reanalysis is called ERA5-reRH. We use an optimal estimation method to perform the 1D

Var data retrieval. The forwardmodel combines theRaman lidar equationwith theHyland andWexler expression for water

vapor saturation pressure. The error covariance matrix of ERA5 was derived from the differences between ERA5 and a set

of 50 special radiosoundings that have not been assimilated into ERA5. We validate ERA5-reRH, ERA5, and RALMO

temperature and relative humidity profiles against the same set of special radiosoundings and found the best agreement was

with our reanalysis, with a bias of less than 2% relative humidity with respect to water (%RHw) and a spread of less than

8%RHw below 8 km in terms of relative humidity. Improvements for temperature in our reanalysis are only found in the

boundary layer, as ERA5 assimilates a large number of upper-air temperature observations. Our retrieval also provides

a full uncertainty budget of the reanalyzed temperature and relative humidity including both random and systematic

uncertainties.
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1. Introduction

Water vapor is of great importance to the atmosphere’s

radiative budget, chemistry, and dynamics. The global ra-

diosonde network provides most of the relative humidity

measurements for forecast models. The radiosonde network

is widely spread over the world and provides relative humidity

measurements with high vertical resolution. However, the

temporal resolution of the routine sonde measurements is

typically only two soundings per day. Also, it is well known that

the radiosonde relative humidity measurements are often not

reliable in the upper troposphere and above (Miloshevich et al.

2001; Noh et al. 2016; Ferreira et al. 2019).

There is a series of other techniques to measure atmospheric

water vapor including active and passive remote sensing in-

struments deployed from surface and space as well as airborne

in situ instruments. For an extensive overview, the reader is

referred to Kämpfer (2012).

The Raman lidar is one of the best instruments for mea-

surements of water vapor throughout the troposphere, with

high vertical and temporal resolutions (Whiteman et al. 1992).

For Raman lidars that possess temperature profiling capa-

bility exploiting pure rotational Raman scattering, the water

vapor information can be combined with temperature to

yield relative humidity. Mattis et al. (2002) report an uncer-

tainty between 5% and 25% relative humidity with respect to

water, hereafter referred to as%RHw, with temperature being

the dominant source of uncertainty. Using the Hyland and

Wexler formulation (1983) one can show that a 1–2K tem-

perature accuracy is required to reduce the relative uncertainty

in the relative humidity to, on average, less than 10%RHw.

In this studywe apply a one-dimensional variational (1DVar)

data assimilation scheme to reanalyze the fifth-generation

European Centre for Medium-Range Weather Forecasts re-

analysis (ERA5) relative humidity profiles above Payerne,

Switzerland, assimilating measurements from a Raman lidar

capable of measuring water vapor mixing ratio and tempera-

ture. The 1DVar scheme is based on the work in Gamage et al.

(2019) and Sica and Haefele (2016) and uses raw (level 0)

measurements from the lidar, as opposed to computed water

vapor mixing ratio or temperature profiles determined from the

lidar. The 1D Var reanalyzed ERA5 profiles (ERA5-reRH)

include a complete profile-by-profile uncertainty budget as

well as the contribution of the measurements to the re-

analysis product and vertical resolution. We have chosen to

reanalyze relative humidity profiles in units of relative humidity

with respect to water, since this allows a direct comparison

with radiosondes which generally report RHw (Dirksen

et al. 2014; Miloshevich et al. 2009). We calculated RHw

from temperature and water vapor mixing ratio using the

Hyland and Wexler formulation (see section 2a). In our

method it is simple to convert to relative humidity with re-

spect to ice as required.

The paper is organized as follows: Section 2 provides a

description of the Raman lidar and ERA5 data we use. The

forward model and the implementation of the 1D Var algo-

rithm together with a characterization of the ERA5-reRH

profiles are given in section 3. In sections 3f(1) and 3f(2)

we have presented two case studies of day and nighttime
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ERA5-reRH retrievals. Section 4 contains a validation of the

ERA5-reRH dataset compared to the measurements from ra-

diosondes. A detailed discussion of the results, our conclusions

and an outlook to future work are given in sections 5 and 6.

2. Measurements and data used in the ERA5-reRH

a. RALMO

For this study we use Raman lidar measurements from the

Raman Lidar for Meteorological Observations (RALMO),

located in Payerne (468480N, 68560E), and operated byMeteoSwiss.

RALMO is a fully automated lidar, operating near continuously

since 2008, with an average uptime of 50%, with the primary

loss of measurements due to events of precipitation and low

clouds. The transmitting systemofRALMOconsists of a frequency

tripled, Q-switched neodymium-doped yttrium–aluminum–garnet

(Nd:YAG) laser at 354.7nm generating up to 400mJ per shot at a

30Hz repetition rate. The laser pulses are 8ns in duration. The lidar

telescope receiver consists of four 30-cm-diameter mirrors that

are tightly arranged around a 15-times beam expander. The

mirrors are fiber-optically coupled to the polychromators. A

near range optical fiber, located off-axis on one of the four

mirrors, improves the signal-to-noise ratio in the partial over-

lap region and allows water vapor and temperature measure-

ments below 400m altitude (Dinoev et al. 2013). The RALMO

detection system consists of two polychromators isolating the

water vapor and nitrogen Raman return at 407 and 387 nm,

respectively, as well as four portions of the pure rotational

Raman spectrum including high and low quantum number

lines in the Stokes and anti-Stokes branches. The detection

system captures the light from the polychromators using pho-

tomultiplier tubes operating in both analog and digital modes.

There is a total of eight channels. A detailed description of

RALMO is given by Dinoev et al. (2013), and the instrument’s

validation is given in Brocard et al. (2013).

b. The ERA5 data

ERA5 is the fifth generation of the European Centre for

Medium-Range Weather Forecasts (ECMWF) atmospheric

analysis of the global climate (Hennermann and Berrisford

2017). ERA5 was produced using 4D Var data assimilation.

It provides hourly temperature, relative humidity (over water

above freezing and over ice below freezing temperature),

specific humidity, geopotential, and many other atmospheric

parameters with an uncertainty estimate at 37 pressure levels

between the surface and the stratopause from 1979 onwards.

ERA5 is combined with measurements from satellites and in

situ instruments worldwide to provide a complete and con-

sistent dataset. The data assimilation is done twice per

day using 12 h windows from 0900 to 2100 UTC and 2100 to

0900 UTC (the following day). Further details of ERA5 can

be obtained fromHennermann and Berrisford (2017) and the

ERA5 data can be accessed either from the Meteorological

Archival and Retrieval System (MARS) archive or from Climate

Data Store (CDS) cloud server that has comparatively fast

access (Hersbach et al. 2019).

Humidity is reported both as specific and relative humidity.

For temperatures above 08C, relative humidity is given with

respect to water, for temperatures below2238C it is given with

respect to ice, and a mix of the two for temperatures between

08 and 2238C (ECMWF 2018). Since here we systematically

use a unit of relative humidity with respect to water, we

convert ERA5 specific humidity, temperature, and pressure

data to relative humidity with respect to water for all tem-

peratures, hereafter referred to as RHw,ERA5. For this cal-

culation, we use the Hyland andWexler formulation (Hyland

and Wexler 1983).

As mentioned earlier, ERA5 assimilates both satellites and

in situ measurements. A list of all the measurements is pre-

sented in Hennermann and Berrisford (2017) and the data

usage in ERA5 for the segment from 1979 is presented in

Hersbach et al. (2019). ERA5 also provides uncertainty (en-

semble spread) estimates from a 10-member ensemble data

assimilation. In general, lower ensemble spreads in ERA5 in-

dicate higher confidence in the data. As shown in Hersbach

et al. (2019) the accuracy of the ERA5 temperature data is

improved over the years due to the increase of the number of

temperature observations that are assimilated into the model.

No validation studies of the ERA5 specific humidity are

available. This motivated us to evaluate the ERA5 specific

humidity ensemble spreads for the same date in every decade

starting from 1980 to 2010, as an estimate of the accuracy of

the ERA5 specific humidity data. We do not find significant

improvements in the ERA5 specific humidity data over that

time, even with the higher observational coverage available in

the 2000s relative to the 1980s. However, the ERA5 relative

humidity ensemble spreads starting from the surface to about

15 km are about 10%RHw, whereas the relative humidity

standard uncertainty ofRALMO is better than 5%RHw. Thus,

we expect a significant impact on the ERA5-reRH relative

humidity data from the RALMO measurements.

3. 1D Var retrieval of relative humidity from Raman

lidar measurements and ERA5 (ERA5-reRH)

For the 1D Var data retrieval scheme we use the optimal

estimation method (OEM) as described by Rodgers (2000).

The OEM technique minimizes a cost function that estimates

the degree of fit of the atmospheric state to the measurements,

constrained by a priori information (Palmer et al. 2000). The

cost function is given by

cost5 [y2F(x,b)]TS21
y [y2F(x,b)]1 [x2 x

a
]TS21

a [x2 x
a
] ,

(1)

where y is the measurement vector, x is the state vector, and F is

the forward model that relates the measurements to the state

variables (in data assimilation F is often referred to as an ob-

servation operator). The forward model parameters b are an-

cillary parameters needed to evaluate the forward model. The

forward model contains all the physics describing the mea-

surements. Sy and Sa are the error covariance matrices of the

measurement and the a priori state vector xa, respectively. In

data assimilation xa is normally referred to as background.

The Qpack software package, developed by Eriksson et al.

(2005), provides the OEM solver used in this study. The

OEM solver uses the Marquardt–Levenberg method to
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minimize the cost function given in Eq. (1) and yields the so-

lution x̂ (hereafter called the retrieval) and its error covariance

matrix Ŝx. For the uncertainty budget of the retrieval we

consider the following sources of uncertainty: measurement

uncertainty described by Sy and the forward model parameter

uncertainties described by the forward model parameter error

covariance matrix Sb (see section 3d). The uncertainty due to

the forward model itself is neglected since we use a sophisti-

cated forward model as detailed in section 3c which accounts

for all geophysical and instrument effects to within the mea-

surement uncertainty. The different contributions to the re-

trieval error Ŝx are given by the following expressions.

a. Measurement uncertainty

The error due to measurement uncertainty is referred to

as the statistical uncertainty, since it accounts for the mea-

surement noise:

S
«
5GS

y
G

T . (2)

b. Forward model parameter uncertainties

The error due to the forward model parameter uncertainties

is referred to as the forward model uncertainty:

S
F
5GK

b
S
b
K

T
bG

T , (3)

where Kb is the forward model Jacobian computed with re-

spect to b. The gain matrix G gives the sensitivity of the re-

trieval to the measurement:

G5
›x̂

›y
. (4)

For more details of the OEM the book by Rodgers (2000), in

particular section 5.7, in addition to Sica and Haefele (2015,

2016), Farhani et al. (2019), and Gamage et al. (2019). These

references provide more details into our application of the

OEM using lidar measurements.

c. Forward model

The forward model for the lidar measurements is based

on the Raman lidar equation and relates the measured back-

scattered photocounts of the ith channel Nobs,i to the instru-

ment and atmosphere as follows:

N
obs,i

(z)5
C

i

z2
O

i
(z)n

i
(z)

ds
i
(p)

dV
exp

�

2

ðz

0

[a
l0
(z)1a

li
(z)] dz

�

1B
i
(z) . (5)

Here Ci is the lidar constant for channel i that depends

on the number of transmitted photons, detector efficiency

and area of the telescope. The geometrical overlap Oi(z)

is a dimensionless parameter that describes the overlap

between the transmitted laser beam and the field of view of

the telescopes. The number density of the scattering mole-

cule is ni(z) and Bi(z) is the background of the observed

signal. dsi(p)/dV is the differential Raman backscatter cross

section where s is the cross section and V is the solid angle.

Finally, al0(z) and ali(z) are the extinction coefficients at the

transmitted wavelength and at the wavelength of receiver

channel i.

For the digital channels, the lidar equation given in Eq. (5)

presumes that the count rates depend on the number of re-

ceived photons in a linear manner, in our case for count rates

below 10MHz. For higher count rates, the true and observed

counts, Ntr and Nobs, respectively, are related as follows for a

nonparalyzable counting system, as is appropriate for RALMO:

N
obs

5
N

tr

11N
tr
g

(6)

(Kovalev and Eichinger 2004). The dead time, g, charac-

terizes the response speed of the digital acquisition system.

Equations (5) and (6), where (6) is valid only for digital

channels, are evaluated eight times to produce the four

digital and four analog signals corresponding to rotational–

vibrational Raman scattering of water vapor (i 5 Wd, Wa)

and nitrogen (i 5 Nd, Na) and pure rotational Raman (PRR)

scattering of high (i 5 JHd, JHa) and low (i 5 JLd, JLa)

quantum numbers.

For the PRR channels the number densities are equal to the

air number density, nair 5 nJHd 5 nJHa 5 nJLd 5 nJLa, which is

replaced by pressure and temperature assuming the hydro-

static equilibrium and the ideal gas law (Behrendt 2005).

The saturation vapor pressure, ew,s, which is needed to

convert relative humidity to water vapor number density,

nwv 5 nWd 5 nWa, is expressed using the Hyland and Wexler

formulation (Hyland and Wexler 1983).

The extinction coefficients al0(z) and ali(z) in Eq. (5) in-

cluding both molecules and particles are given by

a
l0
(z)5a

l0 ,mol
(z)1a

l0 ,par
(z) , (7)

where al0 ,mol(z) is the molecular extinction coefficient at the

emitted wavelength and al0 ,par(z) is the particle extinction

coefficient at the emitted wavelength. Similarly, ali(z) can be

represented as a summation of molecular and particle extinc-

tion. For PRR channels (i 5 JHd, JHa, JLd, JLa), al0(z) is

assumed to be equal to ali(z), as the emitted and the received

wavelengths are very close to each other.

The extinction al0 ,mol(z) given in Eq. (7) can be expressed

using the Rayleigh cross section as sl0 ,Ray and air den-

sity nair(z):

a
l0 ,mol

(z)5s
l0 ,Ray

n
air
(z) , (8)

where sl0 ,Ray is calculated for each wavelength using the

expressions given by Nicolet (1984). In our work, the air den-

sity term in Eq. (8) is considered as a model parameter and is

therefore estimated using the pressure and temperature either

from sonde measurements or reanalysis data. All the particle

extinction coefficients are expressed at their respective return

wavelength using the following expression:

a
li ,par

(z)5a
l0 ,par

(z)

�

l
i

l
0

�2å(z)

, (9)

where å(z) is the Ångström exponent as a function of altitude

(Ansmann and Müller 2005).
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We now introduce calibration factors R to eliminate the four

lidar constants from each channel, digital water vapor (CWd),

analog water vapor (CWa),digital high quantum PRR (CJHd)and

analog high quantum PRR (CJHa), from the forward model:

R
WVd

5
C

Wd

C
Nd

, (10a)

R
WVa

5
C

Wa

C
Na

, (10b)

R
PRRd

5
C

JHd

C
JLd

, (10c)

R
PRRa

5
C

JHa

C
HLa

. (10d)

These calibration factors are determined outside the 1D Var pro-

cess using collocated radiosondeprofiles. Fordetails concerning the

calibration see Sica and Haefele (2016) and Gamage et al. (2019).

d. Error covariance matrices

In section 2 we have explained the method of constructing

the error covariance matrices for both retrieval and model

parameters using the uncertainty values given in Table 1.

1) MEASUREMENT NOISE

The error covariance matrices of the two sets of Raman lidar

measurements, analog and digital, are diagonal assuming no

correlation of noise between channels. For the analog channels

and the digital measurements that are not in the linear range

(count rate is.10MHz), the variances are estimated using the

autocovariance function method given by Lenschow et al.

(2000). The measurements from the digital channels that are in

the linear range follow Poisson statistics, where the variance is

equal to the signal.

2) A PRIORI (BACKGROUND) RELATIVE

HUMIDITY AND TEMPERATURE

The a priori or background error covariance matrices of

temperature and relative humidity are key parameters in the

1D Var process, since they directly control the weight that is

given to the background, which here is ERA5. As was men-

tioned in section 1, the ERA5 data are produced assimilating

an extensive set of global observations. Thus, the accuracy of

the reanalysis is typically higher than for forecasts. To con-

struct the a priori error covariance matrices for temperature

and relative humidity, we use a tent function to parameterize

the off-diagonal elements, which decay linearly from the var-

iance on the diagonal with an e-folding distance called the

correlation length, as discussed by Eriksson et al. (2005), with

negative values set to zero.

To determine the variances, we first calculate the mean and

standard deviation of the temperature and relative humidity

differences between sonde measurements (observations) and

ERA5 data from 2004 to 2015. Since the routine soundings

from Payerne made at 1100 and 2300 UT are assimilated in

TABLE 1. Values and associated uncertainties for the retrieval and forward model parameters. All ERA5 quantities used correspond to

the location of the MeteoSwiss field station in Payerne.

Parameter Value Standard deviation

Measurements

Digital (JL, JH, water vapor, nitrogen) Measured Poisson statistics

Analog (JL, JH, water vapor, nitrogen) Measured Autocovariance method

Retrieval parameters (a priori)

Temperature ERA5 Standard deviation of ERA5 and coincident

sonde temperature measurements

Relative humidity Recalculated using ERA5 reanalysis

temperature, pressure, and specific humidity

Standard deviation of ERA5 and coincident

sonde relative humidity measurements

Overlap functions Estimated using the forward model and

measurements

50% below and at transition height

Particle extinction Estimated using measurements 1023 above transition height

1026 km21 below and at transition height

50% above transition height

Lidar constants (analog/digital) Estimated using the forward model 100%

Digital background noise Mean above 50 km Standard deviation above 50 km

Analog background noise Mean above 50 km Nighttime: Standard deviation above 50 km

Daytime: Normalized standard deviation

above 50 km

Dead time Empirical fitting 10%

Forward model parameters

Coupling constants (analog/digital) Estimated measurements and sonde

temperature

Standard deviation of the linear fitting

Air density Radiosonde 1%

Seed pressure HSEQ: Pressure at the heights point of the

retrieval grid

10%

Ångström exponent 1 for all heights 10%
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ERA5, we only consider a set of special soundings that were

made at times between 0600–0900, 1300–1500, and 1800–

2100 UT which are not assimilated in ERA5. Figure 1 shows

dates and times of the 56 special soundings considered in our

calculation. The differences show a systematic bias in the

ERA5 temperature and relative humidity with respect to the

sonde measurements (Fig. 2). Up to about 12 km altitude,

ERA5 shows an overall warm bias with a maximum of about

4.5K at the surface and a secondary maximum of 3.6K around

8 km. Above 12 km a 0.5K cold bias exists. From the surface to

about 1.5 km altitude the ERA5 relative humidity is lower

relative to the sonde by as much as 20%RHw, while above

1.5 km ERA5 is lower by 0 to 15%RHw. We use these mean

differences to obtain a bias-corrected ERA5 dataset for the

Payerne site. The corrected ERA5 data are the a priori infor-

mation used in our 1D Var processing.

To determine the correlation lengths of the temperature and

relative humidity errors we first computed the correlation

matrices of the differences between ERA5 and the coinci-

dent special soundings as shown in Fig. 3. The correlation

lengths for temperature and relative humidity was then es-

timated to be 1 km and 750m, respectively, throughout the

entire troposphere.

3) PARTICLE EXTINCTION AND OVERLAP

For particle extinction we calculate an a priori or back-

ground profile from the backscatter ratio measured by the li-

dar. To convert the backscatter ratio to particle extinction we

assume a lidar ratio and use the same molecular extinction

profile as in the OEM retrieval [Eqs. (8) and (9)]. As in pre-

vious studies (Sica and Haefele 2016; Gamage et al. 2019),

we assume the lidar ratio for clear-sky conditions (backscatter

ratio smaller than 2) to be 80 sr inside the boundary layer and

50 sr elsewhere. Inside clouds we assume the lidar ratio to be

20 sr below 6 km (liquid cloud), and 15 sr above (cirrus cloud;

Ansmann et al. 1992; Pappalardo et al. 2004). We identify the

presence of cloud when the value of backscatter ratio is greater

than 2. The cloud layer base altitude is used to define the al-

titude where the overlap retrieval hands over to the retrieval of

particle extinction, since retrieving both simultaneously at the

same altitude is not possible due to the high degree of linear

dependence (for further details, see Gamage et al. 2019). In

cloud-free conditions, this handover takes place at 6 km, where

full overlap has been reached. For the particle extinction

error covariance matrix we assume a standard deviation of

50% above and 1026 km21 below the handover altitude. For

overlap a standard deviation of 50% is assumed below and

1023 above the handover altitude. The off-diagonal elements

are parameterized using a tent function with a correlation

length of 100m.

4) BACKGROUND, LIDAR CONSTANTS, AND

DEAD TIMES

The a priori backgrounds and their variances for both analog

and digital channels are determined by the mean and the var-

iance of the measurements above 50 km altitude. The four a

priori lidar constants (CJLd, CJLa, CNd, and CNa) required for

the 1D Var process are estimated by fitting the forward model

in a specified region to the respective Raman lidar measure-

ments. We consider 3.8 ns as the a priori dead times for the

digital photon counting systems, values which were found by

previous studies using RALMO, and also consistent with the

values specified by the manufacturer (Sica and Haefele 2015,

2016; Dinoev et al. 2010; Gamage et al. 2019).

5) FORWARD MODEL PARAMETERS

The model (b) parameters used in the forward model are

the calibration factors (for analog channels:RPRRa,Rwva; and for

digital channels: RPRRd, Rwvd), Ångström exponent, seed pres-

sure, and air density for atmospheric transmission. The values

and uncertainties of the other b parameters are given in Table 1.

e. Other 1D Var retrieval specifications

Prior to the assimilation, the raw lidar data are coadded to

30m bins in altitude and 30min in time (615min around the

ERA5 analysis time). The retrieval grid spans from 600m

above mean sea level (MSL) to 20 km MSL with a grid spac-

ing of 90m.

FIG. 1. Dates and times of the sondes launched from Payerne, Switzerland, that coincide

with the ERA5 data used to estimate correlations of temperature and relative humidity.

The two red dashed lines indicate the usual sonde launching times of 1100 and 2300 UT

from Payerne.
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f. Characterization of ERA5-reRH: Two case studies

In this section we present two representative case studies

from the new ERA5-reRH dataset corresponding to a day

and a nighttime retrieval. To be able to demonstrate the benefit

of combining Raman lidar with ERA5, we repeated the same

processing in the following figures using the U.S. standard

atmospheric climatology instead of ERA5 for the a priori

temperature and water vapor profiles. Apart from the a priori

FIG. 2. (left) Profiles of ERA5minus radiosondemean temperature bias (solid black curve) and standard deviation of

the temperature differences (dashed gray curve). (right) Profiles of ERA5 minus radiosonde mean relative hu-

midity bias (solid black curve) and standard deviation of the relative humidity differences (dashed gray curve). The

bias is calculated using 56 specific sonde measurements launched between the years 2004 and 2015 from Payerne, which

are not included in the ERA5 calculations. Corresponding sonde launch date and time information is given in Fig. 1.

FIG. 3. (a) Temperature and (b) relative humidity a priori correlationmatrices estimated usingERA5 and 56 special

radiosounding measurements.
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profiles and the a priori error covariance matrix, all pa-

rameters are kept the same and this dataset is referred to

as RALMO, indicating that this is essentially a pure lidar

measurement. For RALMO retrievals we use an a priori

temperature error covariance matrix with a standard de-

viation of 35 K and off-diagonal elements parameterized

using a tent function with 1 km correlation length. The

U.S. Standard Atmosphere model temperature serves as

the a priori profile. The a priori relative humidity profile is

constant in altitude with a value of 50%RHw. The error

covariance matrix is constructed in the same way as for

temperature with a standard deviation of 100%RHw and a

correlation length of 1 km. For comparison, the ERA5-

reRH reanalysis is compared to coincident sonde mea-

surements and RALMO retrievals. The purpose of this

section is to show that the ERA5-reRH improves the

comparison of ERA5 with the radiosonde, and to quantify

the impact of the lidar measurements. In this study we

have only used measurements from Vaisala RS92 radio-

sondes. A statistical validation of ERA5-reRH is given in

section 4.

1) CASE 1: NIGHTTIME, THIN CIRRUS CLOUD,
2241–2311 UT 28 AUGUST 2012

We consider 30 min of measurements starting from the

launch time of the coincident sonde from Payerne. The

calibration coupling constants required for our OEM were

estimated using the 30min raw lidar measurements and

coincident sonde measurements as detailed in Gamage et al.

(2019). During the time of the lidar measurement a cirrus

cloud was present between 8 and 10 km.

Figure 4 shows the ERA5-reRH, RALMO retrievals, and

ERA5 data in comparison with coincident sonde measure-

ments. Figure 4a, shows the temperature difference between

coincident sonde and ERA5-reRH (red curve) with the

statistical uncertainty (shaded area), temperature differ-

ence between coincident sonde temperature and RALMO

retrievals (blue curve), temperature difference between

coincident sonde temperature and ERA5 temperature (black

curve). The ERA5-reRH temperatures agree with the coincident

sonde measurements within ;62K for all heights except

between 11.5 and 12.5 km where the agreement is a maximum

of 63K. The RALMO retrieved temperatures contain more

FIG. 4. (a) The difference between sonde and ERA5-reRH temperature profiles (red curve) and statistical uncertainty (shaded area)

retrieved using RALMO nighttime measurements on 28 Aug 2012 with 30min temporal and 90m vertical resolutions. The sonde was

launched at 2241 UT. The blue curve is the difference between sonde temperatures and the RALMOOEM temperature retrievals. The

black curve is the difference between sonde and ERA5 bias-corrected a priori temperature profiles. (b) Averaging kernels for the

temperature retrieval. The red curves show the response function. For clarity averaging kernels for every fifth altitude of the retrieval grid

are shown. (c) Random and systematic uncertainties due to the forwardmodel parameters for the temperature retrieval. Total uncertainty

(gray curve), statistical uncertainty (red curve),RPRRd digital coupling constant for PRR (blue curve),RPRRa analog coupling constant for

PRR (green curve),Rwvd digital coupling constant forWV/N2 (yellow curve),Rwva analog coupling constant forWV/N2 (black curve), air

density (cyan curve), Ångström exponent (purple curve), and seed pressure (dashed red curve). (d) The difference between sonde and

ERA5-reRH relative humidity profiles (red curve) and the statistical uncertainty (shaded area). The blue curve is the difference between

sonde and the RALMO OEM relative humidity profiles. The black curve is the difference between sonde and ERA5 bias-corrected a

priori relative humidity profiles. (e) Averaging kernels for the relative humidity retrieval. (f) The total uncertainty budget for the relative

humidity retrievals with the same color explanatory mapping as in (c).
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noise compared to ERA5-reRH, as it uses a large error a

priori covariances for temperature. The bias-corrected ERA5

temperatures also agree well (62K) with the coincident sonde

measurements, except in the region of 10–11.5 km.

The relative humidity difference between the sonde and

ERA5-reRH (red curve) shows that the two profiles agree

within 610% for heights up to about 8 km (Fig. 4d). The

RALMO relative humidity retrievals (blue curve) also closely

follow the EAR5-reRH relative humidity retrievals up to 8 km.

However, the RALMO relative humidity retrievals showmore

variations due to the requirement of a large error covariance.

The comparison of the ERA5 and coincident sonde relative

humidity products (black curve) show large deviations at

height ranges ;2–4 km and above 5 km (;650%).

The measurement response, which varies from 0 to 1, is the

sum of the averaging kernels and indicates the contribution of

the measurement to the retrieval. It is unity when 100% of the

retrieval is due to the measurements. When a retrieval is fully

dependent on the a priori profile, the response function is

equal to zero. The measurement response (red curve) for

temperature (Fig. 4b), shows the lidar measurements contri-

bution between 50% and 60% up to 12 km. Above 12 km the

lidar impact drops quickly and ERA5-reRH becomes iden-

tical to ERA5.

Unlike for temperature, the measurement response for

relative humidity (red curve in Fig. 4e), is greater than 90%

up to about 8 km. The difference in lidar impact on tem-

perature and humidity is related to the following 2 factors.

First, ERA5 assimilates many temperature datasets while

there are fewer humidity datasets available. Second, relative

humidity is more variable in time and space than temperature.

Hence, our confidence inERA5 for temperature is higher than for

relative humidity, which reduces the impact of the lidar data on

temperature.

One of the main features of ERA5-reRH is the full un-

certainty budget on a profile-by-profile basis that contains

both random and systematic uncertainties. The full uncertainty

budget is determined from the measurement and model pa-

rameter covariance matrices which are propagated through the

retrieval using Gaussian error propagation. The list of uncer-

tainty sources includes statistical uncertainty, uncertainty due

to coupling constants, and seed pressure uncertainty [as men-

tioned in section 3d(5)]. Figure 4c shows the uncertainty bud-

get for the temperature retrievals. Measurement noise is the

dominant source of uncertainty up to 8 km in altitude and

maximizes around 8–12 km to a value of 0.9 K. The second

most important contribution is the uncertainty of the analog

coupling constant for WV/N2 channels. Below 2 km, the un-

certainty due to analog coupling constant for WV/N2 channels

is on the order of 0.3K decreasing to about 0.02K above 4 km.

Contribution from each of the other forwardmodel parameters

such as seed pressure, digital and analog coupling constants

from PRR channels, and Ångström exponent to the tempera-

ture uncertainty is less than 0.1K.

The full relative humidity uncertainty budget is shown in

Fig. 4f. For all altitudes, the total uncertainty is on the

order of 5%RHwwith a maximum of 5.15%RHw at around

9 km. Below 3 km, the contribution from the analog coupling

constant for WV/N2 channels is about 4%RHw. The statistical

uncertainty dominates most in the total uncertainty for alti-

tudes above 3 km.

2) CASE 2: DAYTIME, CLEAR SKY, 1010–1040 UT
10 SEPTEMBER 2011

For the second case study, measurements from a coincident

radiosonde flight from Payerne launched at 1010 UT are used

to compare with our ERA5-reRH. During the time of the

measurements, sky conditions remained clear, but the signal-

to-noise ratio of the RALMO daytime water vapor measure-

ments dropped below 1 at above 5.5 km due to the large

background.

The temperature difference between coincident sonde and

ERA5-reRH temperature (red curve, Fig. 5a) shows that the

two profiles agree within 63K. The sonde and bias-corrected

ERA5 temperature difference (black curve) also shows that

the two profiles are in good agreement with each other, except

in the region 10.5–12 km, where there ERA5 shows a cold

bias of ;3 K to the sonde temperatures. Similar to the

nighttime case study, the temperature difference between

sonde and RALMO retrievals (black curve) contains more

noise. Moreover, the daytime measurement response for

temperature (red curve) in Fig. 5b drops below 0.5 at 7 km.

Up to 6 km, the ERA5-reRH temperature retrieval depends

about 70% on the lidar measurements.

The relative humidity difference between sonde and

ERA5-reRH (red curve) and RALMO (blue curve) both show

that the relative humidity from ERA5-reRH and RALMO

profiles agree with the sonde measurements within 610% in

the region below 6 km (Fig. 5d). Below 8 km altitude, the dif-

ference between coincident sonde andERA5 relative humidity

(black curve) is about 45%.

The measurement response for relative humidity (red curve

in Fig. 5e) shows the retrieved relative humidity depends more

than 90% on the lidar measurements up to 5 km. As the lidar

water vapor signal gets weaker, the relative humidity retrievals

start to rely more on the a priori relative humidity profile.

Above 5 km the ERA5-reRH retrieved relative humidity be-

comes identical to ERA5.

The temperature and the relative humidity uncertainty

budgets are shown in Figs. 5c and 5f, respectively. The total

temperature uncertainty is on the order of ;0.5K for most

altitudes and it is a maximum of ;0.9K from 10 to 12 km.

Uncertainty due to the water vapor calibration factors (RPRRa

and RPRRd) dominates the temperature uncertainty below

1 km (;0.5K). Elsewhere the statistical uncertainty dominates

the total uncertainty. Uncertainty from other model parame-

ters is on the order of ;0.1K each.

The total relative humidity uncertainty for all altitudes is less

than 7%RHw. The maximum value of ;7%RHw is below

1 km and relative humidity uncertainty peaks around 6%–

6.5%RHw between 5.5 and 6 km in altitude. Uncertainty due

to the digital WV/N2 coupling constant (RWVd) is dominant

below 3 km (,;5%RHw), while the statistical uncertainty

dominates above. Uncertainty due to other model parame-

ters is on the order of ,1%RHw for each parameter for all

altitudes.
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4. Results

Validation of the reanalysis against radiosonde

measurements for an ensemble of 20 days

In this section we provide a comparison of ERA5, RALMO,

and ERA5-reRH temperature and relative humidity profiles

with coincident sonde measurements to evaluate the im-

provements in ERA5-reRH. The comparison includes 14

nighttime and 6 daytime profiles from 2011 to 2015. The dates

that are used in the comparison are not affected by precipita-

tion, thick cloudy conditions, or missing data. Calibration of

the lidar is performed with respect to coincident sonde mea-

surements for all 20 profiles to estimate coupling constants for

temperature (Gamage et al. 2019).

1) NIGHTTIME

Figure 6 shows the differences (black curves) between

ERA5, RALMO, and ERA5-reRH with respect to coinci-

dent nighttime sonde measurements in terms of tempera-

ture and relative humidity for the 14 soundings. The red

curve is the mean of the 14 differences and the green shaded

area is the standard deviation. We define the mean of the

differences between ERA5/RALMO/ERA5-reRH and the

sonde as the bias, and the standard deviation of the dif-

ferences of ERA5/RALMO/ERA5-reRH and the sonde as

the spread.

In comparison with ERA5 and ERA5-reRH (Figs. 6a and

6c), RALMO temperatures show considerably more scatter.

There is a significant warm bias in ERA5 between 10 and 12 km

altitude that is not apparent in the RALMO and ERA5-reRH

datasets. For a quantitative comparison we have shown bias

and spread of the three datasets (red curves and green shaded

areas shown in Figs. 6a,b,c) in Fig. 7.

Figures 7a and 7b show the nighttime temperature bias and

spread of ERA5 (red curve), RALMO (blue curve), and

ERA5-reRH (green curve). Below 4 km the temperature bias

of RALMO and ERA5-reRH follow the same trend. Both

the RALMO and ERA5-reRH temperature retrievals rely

on lidar measurements below 4 km, but the spreads are

considerably different. The spread of RALMO is in the range

of 1–7K while the spread of the ERA5-reRH is in the range

0.5–1.5 K below 4 km. This large difference in spread is due to

FIG. 5. (a) The difference between sonde and ERA5-reRH temperature profiles (red curve) and statistical uncertainty (shaded area)

fromRALMOdaytimemeasurements on 10 Sep 2011 with 30min temporal and 90m vertical resolutions. The sonde was launched at 1010

UT. The blue curve is the difference between sonde temperatures and the RALMOOEM temperature retrievals. The black curve is the

difference between sonde and ERA5 bias-corrected a priori temperature profiles. (b) Averaging kernels for the temperature retrieval.

The red curves show the response functions. For clarity averaging kernels for every fifth altitude bin the retrieval grid are shown.

(c) Random and systematic uncertainties due to the forward model parameters for the temperature retrieval. Total uncertainty (gray

curve), statistical uncertainty (red curve),RPRRd digital coupling constant for PRR (blue curve),RPRRa analog coupling constant for PRR

(green curve), Rwvd digital coupling constant for WV/N2 (yellow curve), Rwva analog coupling constant for WV/N2 (black curve), air

density (cyan curve), Ångström exponent (purple curve), and seed pressure (dashed red curve). (d) The difference between sonde and

ERA5-reRH relative humidity profile (red curve) and the statistical uncertainty (shaded area). The blue curve is the difference between

sonde and the RALMO OEM relative humidity profiles. The black curve is the difference between sonde and ERA5 bias-corrected a

priori relative humidity profiles. (e) Averaging kernels for relative humidity retrieval. (f) The total uncertainty budget for the relative

humidity retrievals with the same color explanatory mapping as in (c).
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the use of better-informed a priori temperature profiles and

error covariances in ERA5-reRH compared to RALMO.

ERA5 shows a significant warm bias between 0.5 and 2 K

in the altitudes above 8 km. In the same altitude range

RALMO’s bias varies from 23 to 2 K and the ERA5-reRH

bias is in the range of 21 to 0.5 K. Overall, above 8 km

ERA5-reRH temperature has the smallest bias compared to

ERA5 and RALMO. Thus, the ERA5-reRH temperatures

agrees best with the coincident sonde measurements.

The spread of RALMO temperatures increases with al-

titude (Fig. 7b). The spread of ERA5 is smaller than that of

ERA5-reRH and RALMO, except in the 1–2 km and 11.5–

12.5 km altitude ranges. In those two altitude regions, the

spread of ERA5-reRH is the smallest. Thus, our 1D Var re-

trieval minimizes variations in ERA5, while the use of the lidar

measurements allows the retrieval to determine an optimal

temperature profile. Overall ERA5-reRH shows the small-

est temperature biases, but the spread is slightly greater

than ERA5 due to the higher statistical uncertainty of the

lidar measurements in the upper troposphere.

We made the same comparison for the relative humidity

products. Figures 6d, 6e, and 6f show the nighttime relative

humidity differences (black curves) between ERA5, RALMO,

and ERA5-reRH with respect to the sonde measurements.

The spread of RALMO relative humidity in Fig. 6e is

comparatively smaller than the spread of ERA5. However, the

RALMO relative humidity retrievals are restricted to an av-

erage altitude of about 11 km where the RALMO retrievals

response function drops below 0.9. Above this altitude the

RALMO retrievals begin to depend significantly on the a priori

relative humidity profile, and the spread (green shaded area)

increases significantly. The spread of ERA5-reRH shown in

Fig. 6f is smaller compared to ERA5 and RALMO. Thus, by

comparing Figs. 6d–f we conclude that by assimilating the lidar

into ERA5 we have improved the relative humidity retrievals

relative to the coincident sonde measurements. Above 11 km,

the average cutoff altitude of the RALMO retrievals, the bias

and spread of ERA5-reRH is identical to ERA5, as the lidar

measurement impact on the retrieval is negligible.

Figures 7c and 7d show the bias and spread of ERA5 (red

curve), RALMO (blue curve), and ERA5-reRH (green curve)

for relative humidity. Below 6 km the bias of ERA5 varies

between 26 and 16%RHw. The bias of RALMO is

between 210 and 4%RHw and the bias of ERA5-reRH is in

the range of 26 to 2%RHw. Also, below 6 km ERA5-reRH

has the smallest spread, while ERA5 shows the largest spread.

Therefore, below 6 km ERA5-reRH relative humidity agrees

best with the coincident sonde measurements.

Figure 7c shows that, from 6 to 11.5 km, ERA5 has a dry bias

with a maximum of 18%RHw at 9 km compared to the sonde.

FIG. 6. (a) Nighttime temperature differences between bias-corrected ERA5 and sonde measurements in black curves for 14 nights.

(b) Temperature difference between nighttime RALMO retrievals and sonde measurements. (c) Temperature difference between

nighttime ERA5-reRH retrievals and sonde measurements. (d) Relative humidity differences between nighttime bias-corrected

ERA5 and sonde measurements in gray curves for 14 nights. (e) Relative humidity difference between nighttime RALMO re-

trievals and sonde measurements. (f) Relative humidity difference between nighttime ERA5-reRH retrievals and sonde mea-

surements. Red curves and green shaded areas show the mean and the standard deviations of the temperature and relative humidity

differences of each panel.
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In the same altitude range, ERA5-reRH shows a smaller bias than

ERA5 and at 9km the ERA5-reRH bias is about 8%RHw.

RALMO and ERA5-reRH biases between 6 and 9km are

about 26 to 2%RHw. However, above 9 km RALMO’s bias

increases significantly. In terms of spread, ERA5 shows the largest

values up to about 9km, followedbyRALMO.Above 9kmERA5

and ERA5-reRH both have almost the same bias and spread, in-

dicating that the contribution of the lidar reduces quickly above this

level. Overall, below 8km, we find the best agreement for ERA5-

reRH in terms of relative humidity with a bias smaller than 4%

RHw and a spread smaller than 9%RHw as compared to ERA5

(bias and spread smaller than 10 and 20%RHw, respectively) and

RALMO (bias and spread smaller than 6 and 14%RHw).

2) DAYTIME

Figures 8a–c show bias (red) and spread (green shaded area)

of ERA5, RALMO, and ERA5-reRH for daytime in a similar

format to the previous nighttime case. Interpretation requires

caution as for daytime we have considered measurements only

from six soundings which limits the statistical significance of the

results. For comparison purposes, we have superimposed the

temperaturebiases and the spreads ofERA5(red curve),RALMO

(blue curve), and ERA5-reRH (green curve) in Figs. 9a and 9b.

Daytime temperature differences between RALMO and

sonde (black curves) shown in Fig. 8b have a larger spread than

the temperature differences between ERA5 and sonde (Fig.

8a) and ERA5-reRH and sonde (Fig. 8c).

TheERA5-reRH temperature bias at 4–13km is between20.5

and 2K, slightly larger than ERA5. Both the bias and spread of

ERA5-reRH are identical to ERA5 above 13 km, indicating

that the lidar measurements have no impact at these altitudes.

Figures 8d–f show the daytime relative humidity differences

between ERA5 and sonde (red curve), RALMO and sonde (blue

curve), and ERA5-reRH and sonde (green curve). The corre-

sponding relative humidity biases and spreads are shown in

Figs. 9c and 9d. Unlike for temperature, we found a large bias in

ERA5 relative humidity at lower altitudes (Fig. 9c). Below 2.5km,

ERA5has awet biaswith amaximumof 18%RHwwhile from2.5

to 4 km its has a large dry bias, with a maximum of 30%RHw.

Bias and spread of ERA5-reRH below 5 km are within 10%

RHw and 16%RHw, respectively, similar to RALMO as the

retrieval is primarily informed by the lidar measurements.

Figure 9d shows that below 5 km, the spread of ERA5 is the

greatest. Above 5 km contribution of the lidar drops drastically

and ERA5 and ERA5-reRH are nearly identical, indicating

the ERA5-reRH relative humidity retrievals essentially de-

pend on the a priori relative humidity.

5. Discussion

We have combined Raman lidar measurements with ERA5

data, using a 1D Var data assimilation approach based on the

optimal estimation method to retrieve temperature and humidity

from an initial subset of the RALMO database. The raw lidar

measurements, i.e., backscatter profiles from rotational and vi-

brational Raman scattering, without any data preprocessing such

as photocount corrections, background subtraction, overlap, or

gluing are used to combine with ERA5. The output of the 1DVar

data process retrieve relative humidity with respect to water and

temperature. The dataset comes along with a full characterization

of uncertainty and vertical resolution on a profile-by-profile basis.

Prior to assimilation, ERA5 temperature and relative humidity

have been bias-corrected using a set of special radiosoundings

FIG. 7. (a) Nighttime temperature biases between ERA5 and sonde (red curve), RALMO and sonde (blue

curve), and ERA5-reRH and sonde (green curve). (b) Spread of the temperature differences. (c) Nighttime relative

humidity biases. (d) Spread of the relative humidity differences.
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which have not been assimilated into ERA5. The same set of

sonde measurements has been used to determine the ERA5

background (a priori) error covariance matrix.

The comparison of ERA5, ERA5-reRH, and RALMO

temperature and relative humidity profiles with coincident

sonde measurements is given in section 4 and reveals that

ERA5-reRH relative humidity profiles are significantly im-

proved compared to both ERA5 and RALMO (the lidar-only

retrieval). For temperature, only a modest improvement is

found in terms of bias (but not in terms of standard deviation),

mostly in the boundary layer and the upper tropospheric and

lower stratospheric (UTLS) region. The impact of the lidar

measurement is largest where the raw signals have a large

signal-to-noise ratio, i.e., below 5 km during daytime and

below 11 km during nighttime. The larger improvement

seen for relative humidity than for temperature is expected

since ERA5 assimilates relatively fewer humidity datasets

relative to temperature and also because water vapor is

highly variable both spatially and temporally. The ERA5

temperature data have been continually improved over the

last few decades (Hersbach et al. 2019) and the temperature

uncertainty is on the same order as the standard uncertainty

of radiosondes. In contrast, the ERA5 relative humidity

data for the last few decades do not show any significant

improvement.

Full uncertainty budgets showed the total ERA5-reRH tem-

perature uncertainties for both day and night are less than 1K

for all altitudes. The ERA5-reRH relative humidity uncertainty

is less than 4%RHw for nighttime and for daytime up to 7%

RHw (Figs. 4, 5). Statistical and calibration uncertainties intro-

duce most of the relative humidity uncertainty. For comparison,

the ERA5 relative humidity uncertainty is greater than 10%

RHw up to 10km, reaching a maximum of 25%RHw at 2 km

(Fig. 2). Our ERA5-reRH relative humidity uncertainties for

both day and nighttime retrievals are less than 10%RHw with a

temperature accuracy of 1K. Thus, our findings show that the

relative humidity uncertainty is on the order of 10% with a

temperature accuracy of 1K, as claimed by Mattis et al. (2002).

We have chosen to not attempt to estimate smoothing errors

for the retrievals. Estimation of the smoothing error is not

straightforward, as the true state of the retrieval and the co-

variance matrix of a real ensemble of states are not normally

well known. Rodgers (2000) and von Clarmann (2014) discuss

in detail how in practice smoothing error may not be accurately

quantified, in part as smoothing error propagation between the

measurement and retrieval grids does not follow Gaussian

error propagation. In Sica and Haefele (2015) smoothing error

was calculated for Rayleigh lidar temperature retrievals, but

for their lidar water vapor retrieval Sica and Haefele (2016)

chose not to include it, both due to the implications of the von

FIG. 8. (a) Daytime temperature differences between bias-corrected ERA5 and sonde measurements in black curves for six day

times. (b) Temperature difference between daytime RALMO retrievals and sonde measurements. (c) Temperature difference

between daytime ERA5-reRH retrievals and sonde measurements. (d) Relative humidity differences between daytime bias-

corrected ERA5 and sonde measurements in gray curves for six day times. (e) Relative humidity difference between daytime

RALMO retrievals and sonde measurements. (f) Relative humidity difference between daytime ERA5-reRH retrievals and sonde

measurements. Red curves and green shaded areas show the mean and the spreads of the temperature and relative humidity

differences of each panel.
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Clarmann (2014) result, and because the radiosonde and lidar

measurements had similar vertical resolutions, which is the

case in this retrieval as well.

Our ERA5-reRH relative humidity can also be compared

to a previous determination of relative humidity using a

combination of 2 Raman lidars, one which measured rota-

tional temperature and the other, water vapor mixing ratio

(Wang et al. 2011). These measurements were then com-

bined into a relative humidity profile which was compared

to a radiosonde measurement. A relative humidity statisti-

cal uncertainty of less than 10%RHw up to an altitude of

2 km was reported.

6. Conclusions

We have successfully assimilated Raman lidar measure-

ments into ERA5 to generate an excellent quality dataset of

relative humidity. Our ERA5-reRH reanalysis is an optimal

combination of Raman lidar measurements and the ERA5

data that improves the determination of temperature and

relative humidity compared to the lidar or ERA5 alone.

ERA5-reRH overcomes some limitations of previous data-

sets based on lidar data, such as lack of coincident humidity

and temperature measurements or excessive measurement

noise in addition to providing a better characterization of

the systematic uncertainties. Both daytime and nighttime

ERA5-reRH retrieved temperature and relative humidity

profiles that are in excellent agreement with coincident ra-

diosonde measurements.

Our study demonstrates the potential benefits to improve

numerical weather prediction (NWP) through assimilation

of temperature and humidity information from Raman lidar

measurements. MeteoSwiss plans to assimilate the Payerne

Raman lidar measurements with ERA5 on an operational

basis in the near future.

We also plan to use this methodology and the RALMO

database to characterize ice supersaturation layers (ISS) in the

upper troposphere. Accurate relative humidity retrievals and

uncertainties are essential to detect ISS. Previous studies

(Comstock et al. 2004; Immler et al. 2008) used Raman lidar

water vapor measurements combined with radiosonde tem-

perature measurements to determine RHi and thus to detect

ISS layers. The combination of a temperature and humidity

Raman lidar with ERA5 provides a relative humidity dataset

with unprecedented quality, together with a profile-by-profile

uncertainty budget, in which to better characterize ISS layers.
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