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A 2,000-year reconstruction of the rain-fed
maize agricultural niche in the US Southwest
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Humans experience, adapt to and influence climate at local scales. Paleoclimate research,

however, tends to focus on continental, hemispheric or global scales, making it difficult for

archaeologists and paleoecologists to study local effects. Here we introduce a method for

high-frequency, local climate-field reconstruction from tree-rings. We reconstruct the rain-fed

maize agricultural niche in two regions of the southwestern United States with dense

populations of prehispanic farmers. Niche size and stability are highly variable within and

between the regions. Prehispanic rain-fed maize farmers tended to live in agricultural

refugia—areas most reliably in the niche. The timing and trajectory of the famous thirteenth

century Pueblo migration can be understood in terms of relative niche size and stability. Local

reconstructions like these illuminate the spectrum of strategies past humans used to adapt to

climate change by recasting climate into the distributions of resources on which they

depended.
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H
umans experience, adapt to and influence climate at local
scales. Recent paleoclimate research, however, tends to
focus on continental, hemispheric or global scales, making

it difficult for archaeologists and paleoecologists to study local
effects of past climate change. Furthermore, studies that have
attempted high-resolution climate-field reconstruction1–4 have
generally failed to recast climate into the distributions of
resources on which humans depend, such as viable land for
agriculture and crop productivity.

Regional- to local-scale paleoclimate reconstructions from tree-
ring (t-r) chronologies have been typically generated using
one of two basic methods. Well-known regional5 and climate
field1–3 reconstructions of drought employ principal component
regression (PCR) in an effort to calibrate the joint variance in a
set of t-r chronologies to a given regional or locally interpolated
climate signal. In contrast, researchers primarily interested in
local climate tend to select one or a few local t-r chronologies for
calibration to a local climate signal, either using ordinary least
squares linear regression6 or, less commonly, mean-variance
matching7 or PCR on a limited selection of chronologies8,9.
Researchers have long noted that certain species of trees in
particular ecological settings are better or worse at predicting a
given climate signal10, and many methods employ expert
knowledge about these proxy/climate relationships11 or else
screen potential t-r chronologies using basic correlation
statistics1,12. State-of-the-art, compute-intensive methods such
as BARCAST4 approach paleoclimate reconstruction in a
fundamentally different and promising way—by simultaneously
endogenizing the spatiotemporal covariance structure of both
empirical climate measurements and climate proxy data—but to
our knowledge these have not yet been attempted on very high-
resolution (o1 km) spatiotemporal fields.

Both the data-laden principal component techniques and the
more selective manual methods illustrate the careful balancing act
undertaken by those attempting local paleoclimate reconstruc-
tion: We know that such reconstructions require focus on local
conditions (which we expect will be proxied by local t-r
chronologies), but we also recognize that our paleoclimate
inferences are strengthened when patterns are robust across
available chronologies. We seek a method that not only emulates
well-informed manual selection of t-r chronologies for local
climate reconstruction, but also automates the discovery of
proxies causally linked to the climate signal, which may not have
been considered by the researcher. For example, climate
teleconnections may make non-local chronologies good proxies
for local conditions in some circumstances.

Here we address both the need for improved climate-field
reconstruction methods and the need for reconstructions relevant
to human experience and adaptation. We generate 2,000-year
reconstructions of net water-year precipitation and accumulated
heat over the growing season for two large and environmentally
heterogeneous areas (the ‘VEPIIN’ and ‘VEPIIS’ study areas;
Fig. 1) in the southwestern United States (SWUS) with very dense
populations of prehispanic maize (Zea mays) farmers. We then
recast these reconstructions as estimates of the rain-fed maize
growing niche across the regions. By doing so, we are able to
assess the degree to which significant cultural transitions in the
Ancestral Pueblo SWUS can be explained by changes in the
spatial distribution of the niche. We find niche size and stability
to be highly variable within and between the regions. Prehispanic
rain-fed maize farmers in both regions tended to live in
agricultural refugia—areas most reliably in the rain-fed agricul-
tural niche. Also, both the timing and trajectory of the famous
thirteenth century Pueblo migration in the region can be
understood in terms of the relative niche size and stability in
the two regions. Local reconstructions similar to those presented

here illuminate the spectrum of strategies past humans and other
organisms used to adapt to climate change by recasting climate
into the distributions of resources on which species depend.

Results
Climate-field reconstruction. We employ a variable ranking
and selection method developed in quantitative genomics
called CAR (Correlation-Adjusted corRelation) regression13.
The CAR method was developed as a robust variable-ranking
method for ill-posed inference problems, where the number
of variables is much larger than the number of observations.
Such high-dimensional problems are typical in paleoclimate
reconstruction, where the number of available annually resolved
climate proxies continues to rapidly expand, but observed climate
data are generally limited to the last century or so. The CAR
method first orthagonalizes the t-r chronologies over a historic
calibration period using the Mahalanobis transform13. It then
ranks the orthogonal chronologies by their squared correlations
with the observed climate signal. Ranked chronologies are then
added step-wise into a linear regression until cross-validated root
mean squared prediction error (RMSE) is minimized. The CAR
method is similar to principal component techniques. Accounting
for covariance between predictors (in this case, t-r chronologies),
the method determines which linear combination of chronologies
best predicts a given climate signal. Unlike PCA, although, the
CAR method explicitly ranks and selects chronologies based on
the mutual information shared between the t-r chronologies and
the climate signal. Using an associated shrinkage regression
technique14,15, we then generate unique and highly accurate
reconstructions across a spatiotemporal climate field.

We generate spatiotemporal reconstructions by first perform-
ing independent CAR reconstructions for each of 17,554 grid cells
in our two study areas (see Methods). Starting with the
calibration period (1924–1983), for each cell and each climate
signal, we use CAR ranking to select the best linear combination
of t-r chronologies, then generate a retrodiction using those
chronologies extending back in time as far as their joint duration
allows. At that point, we calibrate a new model using the
remaining available chronologies. We repeat this process until the
retrodiction reaches the date of initial interest, AD 1. Finally, to
remove spatial artefacts inherent to the discrete nature of the
CAR proxy selection procedure, the reconstructions are spatially
standardized such that for any given year all cells in a study area
are using the union of all the selected sets of t-r chronologies in
their reconstructions.

Figure 2 presents a summary of the spatiotemporal
paleoclimate reconstructions as the cumulative proportion of
the landscape at different climate values, through time;
Supplementary Movie 1 presents the actual climate field
reconstructions. As is typical of climate in the SWUS, summer
precipitation and growing-season growing degree days (GDDs)
are negatively correlated at most locations. GDD shows less year-
to-year variation than does precipitation. Precipitation recon-
structions for both study areas show general agreement with
other regional reconstructions of drought3,16; major pan-regional
drought episodes occurred in the first half of the first century AD,
the mid-AD 100s, mid-AD 700s, late AD 1200s and late AD
1500s. Several major droughts affect the VEPIIS area more
strongly than the VEPIIN area, including those around AD 1000,
the mid-AD 1100s and the late AD 1400s.

Niche reconstruction. Climate change affects human behaviour
in many ways, but in agrarian societies such as the prehispanic
Pueblo peoples inhabiting these two study areas—who derived
B70% of their dietary biomass from maize17—its most direct
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influence is on agricultural productivity. Therefore, we convert
our paleoclimate reconstructions into estimates of the spatial
extent of the rain-fed maize agricultural niche within each
landscape. We model agricultural niche—as opposed to
modelling productivity directly for a particular landrace of
maize8,9—as an acknowledgement of the phenotypic plasticity
of maize that allows for rapid adaptation to changing local
conditions18. We seek to answer the question: Given ample time
and human effort, where on the landscape could we reasonably
expect locally adapted maize landraces to flourish? Accordingly,
we threshold the niche at the 30-cm isohyet for the net water-year
precipitation reconstruction, which Shaw19 and others20 take as
the lower bound for rain-fed maize cultivation; and we threshold
the niche at 1,800 GDD (measured in Fahrenheit GDDs)
for the growing-season GDD reconstruction, following
experimental estimates for ancestral landraces21,22 and previous
reconstructions20. For each year, we define the rain-fed maize
agricultural niche as the portion of the landscape that satisfies
both of these thresholds (Fig. 3).

Niche size and stability are highly variable within and between
the two regions (Figs 2 and 3). The niche reconstructions are
primarily driven by high-amplitude changes in the size of the
precipitation niche in both areas, and although cold periods do
impact higher-elevation locations they usually co-occur with an
increase in precipitation across the landscape (Supplementary

Movie 1). The proportion of the landscape available for rain-fed
maize cultivation is generally much less in the VEPIIS study area
than in the VEPIIN, primarily due to elevation differences in the
two regions.

Ancestral Pueblo demographic transitions. We can more
directly compare the two regions by analysing the deviation of
each niche-series from its 2,000-year mean and thus assessing
push- and pull-factors that might have stimulated population
flows between the regions (Fig. 4). Here we focus on the period
salient to the Prehispanic Pueblos (AD 500—AD 1500). The
VEPIIN study area outperforms the VEPIIS study area for much
of the initial settlement of maize agriculturalists in VEPIIN (AD
600—AD 750)23. The pan-regional drought in the mid-AD 700 s
is substantially worse and occurs over a longer duration in the
southern area than in the north, and may partially explain the
relatively late expansion of maize farmers in the northern Rio
Grande, which accelerates after AD 750 (ref. 24). In contrast, the
VEPIIS study area outperforms the VEPIIN area from just after
the mid-AD 1100s drought through the mid-AD 1200s. During
this same time Pueblo emigration began from the northern
SWUS in general, and likely from VEPIIN in particular25,
with the northern Rio Grande one of the most important
destinations26.

CRTZ

MVNP

ESPN

LANL

VEPIIN

VEPIIS

Arizona

Colorado

New Mexico

Utah

Douglas fir

Pinyon and juniper

Spruce, pine and true fir

GHCN stations

Figure 1 | The Four Corners region of the southwestern United States. Tree-ring chronologies are coloured dots, our two study areas are shown

as grey rectangles and weather stations used for model comparison (Supplementary Methods) are shown as black triangles. MVNP, Mesa Verde National

Park, Colorado; CRTZ, Cortez, Colorado; LANL, Los Alamos National Laboratory, New Mexico; ESPN, Española, New Mexico.
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Locating ancestral Pueblo agricultural refugia. Spatial analysis
of niche stability reveals the location of refugia during agricultural
downturns (Fig. 5). In the VEPIIN study area, much of the Mesa
Verde cuesta is in the niche more than 90% of years over the last
two millennia, and the northeast half of the Montezuma Valley—
the region of modern rain-fed bean farming—is in the niche more
than 80% of years. The region of the McElmo Dome surrounding
Sand Canyon and Goodman Point, two of the largest villages
during the late AD 1200s (ref. 27), is also in the niche more than
80% of years. In the VEPIIS study area, much of the Pajarito
Plateau on the eastern flanks of the Jemez mountains is in the
niche more than 90% of years. This portion of the VEPIIS study

area experienced more immigration in the AD 1200s and early
AD 1300s than any other part of VEPIIS26. Rain-fed maize
agriculturalists apparently settled first on the portion of the
landscape most suitable to rain-fed maize agriculture; only later
did they start developing and adopting the water management
technology and mobility strategies required to farm elsewhere in
the region7,28. Our reconstruction of the maize niche in VEPIIS
differs from other reconstructions of precipitation for northern
Rio Grande29 in that ours identifies the late 1200s as a period of signi-
ficant drought in the region. As a refugium in times of drought,
the Pajarito Plateau would therefore have been particularly attractive
for people arriving from the north at that time.
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Figure 2 | The rain-fed maize agricultural niche through time. Each year is represented by the cumulative proportion of the landscape at different values,

represented by colour gradients defined in the right margin. The colour gradient of each panel breaks at the extent of that signal’s agricultural niche. The

thick solid line in each panel is a 21-year running mean of the estimated proportion in each niche; the thin solid lines are the upper and lower prediction

intervals (see Methods); the dashed line is the mean estimated proportion in the niche over the entire reconstruction. (a) VEPIIN net water-year

precipitation, green portion in niche. (b) VEPIIN growing-season growing degree days (GDDs), red portion in niche. (c) VEPIIN rain-fed maize agricultural

niche, light green in niche upper PI, medium green in niche estimate, dark green in niche lower PI. (d–f) The same as a–c for the VEPIIS study area.
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Figure 3 | The rain-fed maize agricultural niche in AD 1247. The upper panels represent the VEPIIN study area; the lower panels represent VEPIIS.

Each panel’s colour gradient breaks at the extent of that signal’s agricultural niche. Thin black lines are at the upper and lower prediction intervals. Scale bar:

10 km. (a,b) Net water-year precipitation, green portion in niche. (e,f) Growing-season GDDs, red portion in niche. (c,d) The rain-fed maize agricultural

niche, light green portion in upper PI, medium green portion in niche, dark green portion in lower PI. Supplementary Movie 1 presents the full 2,000-year

reconstruction.
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Discussion
The reconstruction presented here suggests where Pueblo people
may have been able to practice rain-fed maize agriculture, but not
how productive their efforts may have been. More nuanced
analyses of CAR-based paleoclimate reconstructions—such as
cropping system models accounting for adaptation of maize

landraces to local conditions18 and integrating soils data20 and
killing degree days18—will improve our understanding of how
humans and their domesticates adapted to changing climate
conditions. Our paleoclimate reconstructions can also be
improved by better accounting for low-frequency temperature
change, perhaps via a regionalized application of wavelet
modulation with pollen and speleothem data30,31. Temperature
anomalies of the scale of the Medieval Warm Period and Little Ice
Age in North America (each within ±1� Celsius from the long-
term average31) may have had a substantial impact on GDD in
our region. A 1�-Celsius decrease in average growing-season
temperature would result in an approximately 275 GDD decrease
(in Fahrenheit GDDs), effectively shutting down high-elevation
maize production in areas like the Mesa Verde cuesta. Local, low-
frequency temperature reconstructions have not yet been
attempted at the scale of our subregions, however, so it is an
open question as to whether the effects of regional climate
anomalies were consistent across regions. From our high-
frequency results, neither of these major climate anomalies
appears to have had a substantial impact on precipitation.

Compute-intensive methods like the one presented here may
be used to discover new ecological knowledge, both about
landscapes themselves and about causal connections between
climate and climate proxies. A complete exploration of the
ecological ramifications of our paleoenvironmental reconstruc-
tion is beyond the scope of this study, but several initial
observations may be made. Water-year precipitation in VEPIIN is
best reconstructed using pinyon, juniper and Douglas fir
chronologies from the western slope of the Colorado Rocky
Mountains. In contrast, the precipitation system in VEPIIS is
dominated by the summer-arriving North American Monsoon,
which is connected to precipitation intensity in southern Arizona
and throughout southern and central New Mexico32–34. The
majority of chronologies selected for precipitation reconstruction
in VEPIIS are low- and mid-elevation chronologies from
southern Arizona and New Mexico. Tree-ring chronologies
selected for growing-season GDD reconstructions are much
more similar between the landscapes; chronologies are generally
selected from among higher-elevation spruces, pines, true firs and
Douglas firs, and the chronologies selected are often more distant
than for precipitation. Future research might focus on identifying
ecological zones by their common selected proxies, and the
temporal consistency of relationships between proxies.

The archaeological and paleoecological record provide impor-
tant information about how humans and other organisms have
adapted to past climate change, and how they might adapt in the
future. Regardless of contemporary technological innovations,
humans and other species struggle to adapt to climate change on
the timescales and amplitudes present in both our reconstructions
and contemporary projections. The rate and scale of contemporary
climate change are unprecedented at a hemispheric level; however,
past agrarian populations have had to adapt to rapid, dramatic
changes in their local environments. Archaeological knowledge—
analysed in the context of reconstructed environments—is
essential in understanding the dynamics and operation of
coupled human and natural systems35. The experience in the
Ancestral Pueblo SWUS suggests that, when faced with changing
environments, humans will first seek alternative habitats that do
not require them to change behaviour—such as the Pajarito
Plateau—and only once those are unavailable will they develop or
adopt alternative strategies. Generalizing to modern times, when
confronted with rapidly changing environmental conditions, we
should (i) identify those environmental niches that will remain
open or even improve because of rapid climate change, and
(ii) identify regions where contemporary strategies simply will not
work given climate predictions, so that alternative strategies may
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be more rapidly adopted. Assessing either of these requires
accurate, precise and local reconstructions of how resource
distributions change in response to climate change.

Methods
Study areas. The study areas in this analysis are drawn from the Village Eco-
dynamics Project (VEP), a research initiative investigating long-term relationships
between humans and the environment in the SWUS36,37 (Fig. 1). The first study
area (VEPIIN) is a 4,600 km2 region in southwestern Colorado encompassing Mesa
Verde National Park, Canyons of the Ancients National Monument, the
Montezuma Valley, portions of the Ute and La Plata piedmonts, and the
contemporary towns of Cortez, Dolores, and Mancos, Colorado. The area is
defined in NAD83, Zone 12 Universal Transverse Mercator grid units; it extends
from 672,800m E to 740,000m E, and 4,102,000m N to 4,170,000m N. The second
area (VEPIIS) is a 6,955 km2 region in north-central New Mexico encompassing
Pajarito Plateau, Bandelier National Monument, the Rio Grande and Chama river
valleys, and the contemporary cities of Santa Fe, Los Alamos and Española, New
Mexico. It extends from 359,200m E to 435,800m E, and 3,939,600m N to
4,030,400m N in NAD83, Zone 13 Universal Transverse Mercator coordinates.
The climate reconstructions presented here were calculated on slightly larger areas
than these study regions to account for spatial projection and resolution differences
between the VEP regions and the Parameter-elevation Relationships on
Independent Slopes Model (PRISM) interpolated climate data presented below.

Tree-ring chronologies. We used publicly available, standardized, pre-processed
t-r chronologies in the International Tree-Ring Data Bank as of January 2014
(refs 38,39), that is, those without a trailing ‘A’ or ‘R’ in their file name). We
downloaded all available chronologies and imported *.crn files into R using the
dplR library40. We only retained chronologies that are from the United States of
Arizona, Colorado, New Mexico and Utah, and that fully overlapped our
calibration/validation period of 1924–1983 (n¼ 205); many long chronologies in
the SWUS only extend to the early 1980s. Figure 1 shows the location and species
information for the chronologies used in this study, and Fig. 6 shows the number of
chronologies available through time. The length and availability of t-r chronologies
are quite variable across records and species. Inclusion of chronologies updated
more recently (but not yet in the International Tree-Ring Data Bank) would
undoubtedly improve the skill of these reconstructions.

Historic climate data. We use the B800m-resolution PRISM interpolated
monthly data grids (the ‘LT81m’ dataset) available from the Oregon State Uni-
versity41,42 to calibrate annual reconstructions of water-year precipitation and
growing-season GDDs. We calibrate our reconstruction to years 1924–1983. We
follow Stahle and colleagues6 in defining the water-year in the US Southwest as the
previous October—current September, and we define the growing season as May—
September of the current year. Monthly precipitation totals were summed over the
water year. Growing season GDD was estimated by first calculating monthly GDD
from monthly mean maximum and minimum temperatures using equation 1
(below), summed over the number of days for each month. May—September
monthly GDD estimates were then summed to estimate net GDD for the growing
season. All GDD results reported here are in Fahrenheit heat units; GDDs were
converted from Celcius heat units to Fahrenheit heat units by multiplying by a
factor of 1.8.

The equation for daily GDD is:

GDD ¼
TMAX þTMIN

2
�TBASE ð1Þ

where TMAX is the maximum daily temperature, TMIN is the minimum daily
temperature and TBASE is the temperature below which plant growth ceases, which
we take to be 10 �C for maize.

Here we use a series of corrections to equation (1) typically applied for
calculating maize GDD43, which down-corrects TMAX and TMIN to an upper
threshold (TUT, here 30 �C) above which corn growth does not appreciably
increase, and up-corrects TMAX and TMIN if they fall below TBASE (here 10 �C).
To summarize:

if TMAX4TUT; TMAX ¼ TUT

if TMIN4TUT; TMIN ¼ TUT

if TMAXoTBASE; TMAX ¼ TBASE

if TMINoTBASE; TMIN ¼ TBASE

Net water-year precipitation and GDD grids were calculated for each of our two
study areas. The VEPIIN study area includes 7,144 grid cells at 30 arc-s (B800m)
resolution. The VEPIIS study area includes 10,400 cells at the same resolution.

Mean temperature in the Northern Hemisphere has trended dramatically
upward over the twentieth century, potentially confounding reconstructions
because of non-stationarity in the PRISM-based GDD calibration data44. We
therefore tested whether these data show similar trends. Local to our study areas,
the seasonal PRISM data for GDD are second-order stationary over the 1924–1983
period (although GDD trend higher post-1983). We performed the Priestley–Subba
Rao test of non-stationarity45,46 on each of the grid cells in each landscape
(Supplementary Fig. 1). None of the cells in either landscape have Priestley–Subba
Rao P-values low-enough to reject the null hypothesis of stationarity at the Po0.05
level. This does not remove the possibility that past climate was non-stationary.
Rutherford and colleagues found that reconstructions of non-stationary (forced)
climate using a stationary calibration signal tend to underestimate reconstructed
trends44. We attempt to compensate for this by performing mean and variance
matching over the calibration period (below); however, our reconstructions should
be considered conservative estimates of past low-frequency climate variability.

Local reconstruction overview. For each location (cell) in the PRISM data and
each climate signal (water-year precipitation and growing-season GDD), we de-
correlate the matrix of t-r chronologies by applying the Mahalanobis transform,
using a Stein-type shrinkage approximation of the covariance matrix following13,47;
generate estimates of the marginal correlations between the training data and each
decorrelated t-r chronology (the CAR scores); rank the t-r chronologies by their
squared CAR scores; select the optimal set of t-r chronologies for use in a linear
model by minimizing average RMSE over a threefold consecutive cross-validation,
and estimate linear regression coefficients; standardize the set of chronologies to
the union of the selected chronologies across all cells in each study area; retrodict
the signal over the joint duration of the selected t-r chronologies; transform and
scale the retrodiction such that the mean and variance of the retrodiction over the
calibration period matches the mean and variance of the climate signal over the
same period; repeat the preceding steps, going back through time as fewer t-r
chronologies become available (see Fig. 6).

Variable ranking by CAR score. The CAR score is defined as the correlation
between the outcome variable (in this case, water-year precipitation or growing-
season GDD) and the Mahalanobis de-correlated predictors (the t-r chronologies)
(ref. 13, page 11). The Mahalanobis transform is similar to other matrix
orthogonalization methods, however, Zuber and Strimmer note that it is
particularly desirable for variable selection in that it generates orthogonal variables
that are nearest to and informative of the original standardized variables (ref. 13,
pages 9–10). CAR scores reduce to raw correlations between the outcome and
predictor variables as correlation among predictor variables vanishes (ref. 13,
page 8). Furthermore, predictors that are highly correlated will have nearly
identical CAR scores, leading to their co-selection (or co-rejection) when CAR
scores are used in variable ranking and selection (ref. 13, page 13).

Here we calculated CAR scores using the carscore method in the care package
for R, developed by Zuber and Strimmer47. Because the number of available t-r
chronologies (predictor variables) is larger than the number of observations (years
in our calibration period, 1924–1983), we use estimate the correlation and
covariance matrices using Stein-type shrinkage estimators14,47. The shrinkage
intensity variables lc and lu—the shrinkage intensities of the correlation and
covariance matrices, respectively—were estimated for each cell using the complete
set of 205 available t-r chronologies. Once CAR scores are calculated for each cell
and each climate signal, t-r chronologies are ranked by their squared CAR scores.

Variable selection by minimized RMSE. There are many ways one could select
variables once they are ranked, including removing null variables using an adaptive
threshold48, optimized selection using compute-intensive cross-validation or classic
model selection using information criteria such as Akaike’s Information
Criterion49. Here we follow the suggestion of Zuber and Strimmer13 and use
threefold consecutive cross-validation over the 1924–1983 period to choose the set
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of t-r chronologies that minimizes RMSE, as well as to provide estimates of
prediction error along our reconstructions.

Spatial artefacts and chronology standardization. The CAR reconstruction
method—like all t-r-based paleoclimate reconstructions—assumes covariance
relationships between the t-r chronologies in the calibration period remain con-
sistent as the chronologies extend back in time. This ‘uniformitarian principle’
underlies all paleoclimate proxy research. Random signal noise in each t-r
chronology causes these relationships to weaken at short timescales. This reality
has required a variety of complex accommodations by paleoclimate researchers,
from standardization using principal components as in the North American
Drought Atlas1–3 to explicitly accounting for inconsistencies in both the proxy and
instrumental data using compute-intensive estimation of the spatial covariance and
temporal evolution of the climate field in a hierarchical Bayesian framework4.

Our reconstructions—when done with unique spatiotemporal combinations of
locally CAR-selected chronologies—are affected by these issues as well. Locations on
the landscape that are proximate to one another tend to select the same
chronologies, and thus consistent spatial covariance between the locations is
maintained. However, sometimes adjacent grid locations select a slightly different
set of chronologies. When the covariance between the uniquely selected sets of
chronologies breaks down, spatial artefacts occur such that usually smooth
temperature and precipitation gradients become coarse and step-like. Panels
(a) and (b) in Fig. 7 show this effect for the net water-year precipitation
reconstruction in the VEPIIN and VEPIIS study areas, respectively, in year AD
1400. Spatial artefacts tend to be less extreme in the GDD reconstruction, as
temperature is a far less local phenomenon than precipitation in our study areas.
Still, such artefacts impact the size and extent of the maize growing niche

reconstruction at annual timescales, and often lead to unlikely spatial configurations
of the maize niche (although these artefacts generally disappear when the
reconstruction is averaged over larger timescales).

In order to remove the visible spurious spatial artefacts before modelling the
maize growing niche, we perform data standardization across both study areas on
an annual basis. For each year (AD 1–2000), we first take the union of all sets of
cell-wise-selected t-r chronologies across the landscape. Doing this for each year
creates a new sequence of selected chronologies that is the spatiotemporal union of
each of the unique reconstructions. We then calibrate new sequences of shrinkage
linear models for each cell on the landscape, using these union sets of t-r
chronologies and the original shrinkage intensities calculated above. This smooths
our spatiotemporal reconstructions at a slight loss to model performance across the
landscapes. Reduction in model performance generally increases through time, as
locations across the landscapes begin selecting a larger union set of t-r
chronologies, thus slightly overfitting models across the landscape.

This solution—annual chronology standardization across each landscape by
taking the union of selected proxy signals—is obviously somewhat ad hoc, and its
negative impact on reconstruction skill will increase with the size or heterogeneity
of the landscape. We offer it as a solution intermediate between the a priori
selection of proxies common in spatial paleoclimate reconstruction today, and not
correcting spatial artefacts at all.

Shrinkage estimation of regression coefficients. Once the RMSE-optimized and
annually unioned set of t-r chronologies have been selected, we calculate regression
coefficients by least squares regression of climate signal in each cell on the selected
t-r chronologies over the 1924–1983 period, again using the shrinkage estimates of
the covariance and correlation matrices calculated previously (applying lu and lc).

0

Unique net water-year precipitation (cm)

30 200 0

Unique net water-year precipitation (cm)

30 200

Figure 7 | Spatial artefacts and chronology standardization. These maps present spatial net water-year precipitation reconstructions in AD 1400 using

cell-wise unique CAR selection (left panels) and the union of selected chronologies (right panels) across each study area. The cell-wise unique

reconstructions show spatial artefacts because of inconsistencies between regional tree-ring chronologies. Using the union of all sets of selected tree-rings

ameliorates these inconsistencies, although at a slight loss of cell-wise model performance. Scale bar, 10 km. (a) VEPIIN, unique reconstructions.

(b) VEPIIS, unique reconstructions. (c) VEPIIN, union reconstructions. (d) VEPIIS, union reconstructions.
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Figure 9 | Model skill in reconstructing growing-season growing degree days. Values shown are averaged over the entire 2,000-year reconstruction.
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Mean and variance matching over the calibration period. By design, prediction
using multiple linear regression reduces the variance of a reconstructed signal to
the proportion of the variance in the calibration signal explained by the predictors.
This has the effect of shrinking the variance over the reconstruction and, in the case
of climate reconstructions where the number of available predictor variables
decreases as you go farther back in time, creates a reconstruction with (generally)
monotonically increasing variance. To correct this, we transform and scale each
reconstruction such that the mean and variance of the reconstruction over the
calibration period matches the mean and variance of the calibration data set. The
transformation (mean-matching) and scaling (variance-matching) parameters are
thus calculated only over the calibration period, then applied over the whole of the
reconstruction.

Let Xc be the vector of calibration values over the calibration period, Xr be the
vector of reconstructed values over the calibration period, Ar be the vector of all
reconstructed values (of which Xr is a part) and A�

r vector of all reconstructed
values after mean and variance matching. Then,

A�
r ¼ ða�ArÞþb ð2Þ

where,

a ¼
sXc

sXr

or a scalar that is the ratio of the standard deviations of the calibration and

reconstructed vectors over the calibration period, and,

b ¼ Xc �ða�XrÞ

or a transformation to the mean of the calibration vector corrected by the scaled
mean of the reconstructed data over the calibration period. Thus, every
reconstruction for a particular cell will have the same mean and variance over the
calibration period.

Retrodiction over all available data. Our reconstruction proceeds in a stepwise
manner backwards, starting with the calibration period and ending at the first year
of the reconstruction period (here, AD 1). At each step, a reconstruction is made
that extends as far back in time as all selected t-r chronologies will allow. At the
year when one of the selected chronologies drops out of the sequence, RMSE
selection, landscape-wide chronology standardization and shrinkage estimation of
the regression coefficients are repeated with the remaining available chronologies,
but still using the original CAR ranking of chronologies. Thus, a new recon-
struction is not completed at every change in the t-r chronology set (see Fig. 6), but
only when t-r chronologies deemed important by the ranking and selection process
are no longer available. This retrodiction process yields an optimized (in terms of
computational time) set of sequential reconstructions; each reconstruction begins
at the earliest year when all its selected t-r chronologies are available, and ends at
the beginning of the subsequent reconstruction.
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Model performance through time. We used threefold consecutive (adjacent)
cross-validation over the 1924–1983 period to generate fit statistics for each RMSE-
minimized model. This differs from the twofold sequential cross-validation usually
performed in paleoclimate research1,50, which generate reconstructions over a
calibration data set and withhold a portion of historic data for model validation.
Although the PRISM data set extends back to 1895, it has a well-documented
increase in uncertainty before 1924 that makes the use of the 1895–1923 data as a
validation data set inappropriate. The statistics presented here are averaged
over the three folds; each fold calibrates with 40 years of data, and validates with
the remaining 20 (for example, calibrating with 1944–1983, and validating with
1924–1943).

Reconstruction skill. Model performance is measured on an annually resolved
cell-wise basis using three important performance statistics: The validation R2 ðR2

uÞ,
the normalized RMSE (RMSEn) and the coefficient of efficiency (CE)1,3 (see
Supplementary Methods for descriptions of each measure). Figure 8 shows these
averaged over the entire 2,000-year net water-year precipitation reconstruction,
and Fig. 9 shows the same for the growing-season GDD reconstruction. It should
be noted that due to the nonlinear trend in t-r chronology availability (Fig. 6), these
temporally averaged measures are a poor reflection of model performance,
especially for reconstructions during the last millennium (see Supplementary
Movies 2 and 3 for maps of reconstruction skill through time). Still, we can make
several observations. Precipitation reconstructions (Fig. 8) generally perform better
for high-elevation (and thus higher-precipitation) locations; reconstructions at
these locations are not only better-correlated with withheld cross-validation data,
but also generate reconstructions with lower proportional prediction error. A
somewhat different pattern exists in the GDD reconstructions (Fig. 9); R2

u and
RMSEn are highest in mid-elevations on portions of the landscape with consistent
gradients. Drainages, including the major river valleys of the Rio Grande and
Chama rivers in the VEPIIS study area, perform well, as does the Mesa Verde
cuesta.

Aggregating model performance spatially presents a somewhat more useful
assessment of model fit. Figure 10 presents time series of model performance for
the net water-year precipitation and growing-season GDD reconstructions,
respectively. Model performance generally improves through time in both
reconstructions, especially after AD 1200. That being said, neither study area
achieves average CE values 40 during the GDD reconstructions, although this
measure could very well be influenced by the skewed nature of the CE metric.

The CAR method is highly effective in selecting t-r chronologies appropriate to
each location and climate signal and that reflect well-documented regional climate
patterns and medium-range teleconnections (Supplementary Methods;
Supplementary Figs 4 and 5). Furthermore, CAR reconstructions over the historic
period show prediction skill comparable to or better than the PCR method used in
the North American Drought Atlas1–3, and greatly outperform reconstructions that
use the marginal correlation for variable ranking (Supplementary Methods;
Supplementary Table 17).

Uncertainty estimation. Uncertainty in the size of the rain-fed maize agricultural
niche is a function of the compound error in the PRISM weather interpolations, t-r
measurement and signal noise, and cell-wise CAR reconstructions. A full
description and quantification of each of these sources of uncertainty are beyond
the scope of this paper. However, to aid in interpretation we define a first-order
approximation of the prediction interval (PI) for each cell i in each year t as,

PIi;t ¼ xi;t � RMSEi;t ð3Þ

where x is the predicted value, and RMSE is the cross-validated RMSE for the cell’s
linear model. This generates annual prediction intervals for each cell for both the
precipitation and GDD reconstructions. We derive prediction intervals for the
spatial extent of the rain-fed maize agricultural niche by overlaying the lower and
upper intervals for each climate signal (Fig. 3, Supplementary Movie 1). These
prediction intervals do not incorporate uncertainty in the PRISM weather inter-
polations or uncertainties stemming from t-r measurement and signal noise.
Spatial uncertainty estimates for the LT81m PRISM data set used in this study have
not been published; estimates for an earlier version of the PRISM data set
(‘LT71m’) are presented by Daly and colleagues41.

Examples and model comparison. The online Supplementary Information pre-
sents local paleoclimate reconstructions at four weather stations across the SWUS
as an example of the CAR method (Supplementary Methods; Supplementary
Figs 2–5; Supplementary Tables 1–17). These four reconstructions are then com-
pared with those produced using the PPR method from the North American
Drought Atlas1–3,50 and those produced by ranking chronologies by their marginal
correlations with the local climate signal.
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