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Abstract. A feedback vertex set of a graph is a subset of vertices that contains at least one
vertex from every cycle in the graph. The problem considered is that of finding a minimum feedback
vertex set given a weighted and undirected graph. We present a simple and efficient approximation
algorithm with performance ratio of at most 2, improving previous best bounds for either weighted
or unweighted cases of the problem. Any further improvement on this bound, matching the best
constant factor known for the vertex cover problem, is deemed challenging.

The approximation principle, underlying the algorithm, is based on a generalized form of the
classical local ratio theorem, originally developed for approximation of the vertex cover problem, and
a more flexible style of its application.
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1. Introduction. We are concerned with polynomial time approximation of the
feedback vertex set problem on weighted, undirected graphs. A feedback vertex set
(FVS) of a graph G is a set of vertices such that every cycle in G contains at least
one vertex of the set. In a general setting some rational value is associated with each
vertex of G as its weight. The FVS problem is then defined to be that of finding
an FVS of minimum total weight in a given graph. In this paper we always assume
the case of weighted (i.e., arbitrary weights on vertices) and undirected graphs unless
otherwise specified.

This problem is of fundamental importance in combinatorial optimization. One
typical application appears, as suggested by the name, in the context of combinatorial
circuit design. The circuits are represented by graphs in which cycles potentially imply
a “racing condition”; that is, some circuit element might receive new inputs before it
stabilizes. One way to avoid such a condition is by placing a clocked register at each
cycle in the circuit; in that case, we would like to keep the number of clocked registers
as low as possible. The minimum FVS for the graph gives a bound on the number of
registers needed. For other applications, e.g., in the areas of constraint satisfaction
problems and Bayesian inference, see Bar-Yehuda et al. [4].

1.1. Short history and related work. The FVS problem is NP-hard; for
directed graphs Karp showed its NP-completeness even if graphs are unweighted [12],
and essentially the same transformation shows that it is equally hard for undirected
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290 VINEET BAFNA, PIOTR BERMAN, AND TOSHIHIRO FUJITO

graphs. Given this intractability it is natural to consider a next best approach: a
polynomial time algorithm for computing a near optimal FVS. The quality of an
approximation algorithm is measured by its performance ratio: the worst case ratio of
weight of an approximate solution computed by the algorithm to the optimal solution
weight. An algorithm with performance ratio r is also called an r-approximation
algorithm.

The first nontrivial (i.e., better than |V | = n) approximation ratio of 2 logn for
unweighted graphs appeared in the early work of Erdős and Pósa [6], where they
studied the number of (vertex) disjoint cycles in a graph. It was later improved to√

logn by Monien and Schulz [14], who considered and compared various approaches
to the problem. Only recently, Bar-Yehuda et al. were able to show that the smallest
cardinality FVS (i.e., unweighted version) can be approximated within a constant
factor of 4 [4]. Moreover, they considered the weighted version as well and obtained
a performance ratio of min{4 logn, 2∆2}, where ∆ is the maximum vertex degree of
a graph.

As for a lower bound on the performance ratio, the problem is known to be MAX
SNP-hard [13, 16], implying that the ratio cannot go down arbitrarily close to 1 unless
P = NP [1]. In fact, a more direct implication is available due to the fact that the
vertex cover (VC) problem is reducible to the FVS problem in an approximation
preserving manner [13], so that any performance ratio r for the FVS problem would
imply the same ratio r for the VC problem. A better approximation of the VC
problem has been a subject of extensive research over the years, yet the best constant
approximation ratio has remained at 2. (The overall best one is 2−log logn/2 logn [3,
15].) On the other hand, a lower bound on the performance ratio for the VC problem
has been continuously improved in the last few years, and currently it is known to be
NP-hard to guarantee a factor of 7/6− ε for any ε > 0 [11], implying the same bound
for the FVS problem.

The FVS problem (or feedback edge set problem) for directed graphs, largely
due to more versatile nature of its applicability, has drawn even more attention in
various areas. It appears, however, that the problem is harder to approximate, with
O(logn log logn) being the best ratio known today [7].

1.2. Our contributions.

Factor-2 approximation. We will present an approximation algorithm for the
weighted FVS problem (in section 3) and show that its performance ratio is bounded
above by 2 (in section 4), improving upon the previous best of min{4 logn, 2∆2}.
Independently of our work, Becker and Geiger have recently discovered a different
2-approximation algorithm [5], their analysis of which is more complicated than ours,
without any elucidation of underlying approximation principles. In light of the facts
mentioned earlier concerning the approximability of the VC problem and its reducibil-
ity to the FVS problem, achieving a better performance ratio, if at all possible, is
deemed quite challenging. Our algorithm is also quite simple and efficient; it can be
implemented to run in time O(min{|E| log |V |, |V |2}).

Generalized local ratio approximation. Our approximation method is based
on the local approximation principle. In a most simple form it was used already in the
Gavril’s maximal matching–based approximation for the unweighted VC problem [9,
p. 134], and later it was explicitly formalized as the local ratio theorem by Bar-Yehuda
and Even [3].

This principle, however, has been known mostly only in a doubly limited form;
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2-APPROXIMATION ALGORITHM FOR THE FVS PROBLEM 291

the formulation allowed extraction of only uniformly weighted subgraphs from an
arbitrarily weighted graph and, as its name suggests, allowed its application only
to subgraphs of small size, e.g., short odd cycles for VC approximation [3] and short
cycles for weighted FVS approximation [4]. An easy but crucial observation presented
in this paper is that neither restriction is necessary, leading to a generalization of the
theorem (section 2) and demonstration of the effectiveness resulting from more flexible
applications of it. Moreover, the principle is applicable not only to the VC or FVS
problems but also to other weighted optimization problems of covering type, and
hence this approximation technique could be of independent interest. For a simpler
presentation, however, we restrict ourselves to the FVS problem in this paper.

1.3. Definitions and notation. We use the following definitions and notation
throughout the paper. For any graph G let V (G) denote the vertex set of G and
G[U ] the subgraph of G induced by U for U ⊆ V (G). A (vertex) weighted graph G
with a weight function w : V (G) → Q+ is denoted as (G,w), where a nonnegative
rational w(u) represents a weight associated with each vertex u of G. The sum of
weights of vertices in U is denoted by w(U)(=

∑
u∈U w(u)). A collection {(Gi, wi)}

of weighted graphs is called a decomposition of (G,w) if Gi is a subgraph of G ∀i and∑
i:u∈V (Gi)

wi(u) ≤ w(u) ∀u ∈ V . A weight function w : V → Q+ is called degree-

proportional if, for some constant c > 0, w(u) = c(d(u) − 1) for every u ∈ V , where
d(u) denotes degree of u. A graph is called clean if it contains no vertex of degree
less than 2, and a cycle C is semidisjoint if, for every vertex u of C, d(u) = 2 with at
most one exception. Let opt(G,w) denote any optimal FVS in (G,w). An FVS F is
minimal in G if no smaller FVS is contained in F or, equivalently, if F − {u} is not
an FVS in G for all u ∈ F .

2. Generalization of the local ratio theorem. The local ratio approxima-
tion, in its most elementary use, is based on the following principle: If an (unweighted)
structure G contains a substructure H such that every optimal solution occupies a
large portion of H, one can afford to take the whole of H into a solution and reduce
the problem by removing H from G. More specifically and when G is a weighted
graph, this idea can be implemented by the following operations:

1. Choose a suitable subgraph H (i.e., local structure) of usually small size.
2. “Subtract” H with a uniform weight distribution on it from G (i.e., entire

structure).
3. Accept into a solution all the vertices of weight reduced to zero.

We extend this technique in two directions, one in its formulation and the other in
its application. First it will be allowed to include nonuniformly weighted subgraphs in
our target local structures. This change enables us to choose not only a subgraph but
also a weight distribution on it to be sliced off from the whole distribution. Formally,
we have the following theorem.

Theorem 2.1. Let {(Gi, wi)} be a decomposition of (G,w) and F be any FVS
in G such that w(F ) =

∑
i wi(F ∩ V (Gi)). Then,

w(F )

w(opt(G,w))
≤ max

i

{
wi(F ∩ V (Gi))

wi(opt(Gi, wi))

}
Proof. Since {(Gi, wi)} is a decomposition of (G,w), w(X) ≥∑i wi(X ∩ V (Gi))

for any set X ⊆ V . Thus, using the assumption on w(F ),

w(F )

w(opt(G,w))
≤

∑
i wi(F ∩ V (Gi))∑

i wi(opt(G,w) ∩ V (Gi))
.
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292 VINEET BAFNA, PIOTR BERMAN, AND TOSHIHIRO FUJITO

Besides, if F is an FVS in G, so is its restriction F ∩ V (Gi) in every subgraph Gi.
Therefore, we have wi(opt(G,w) ∩ V (Gi)) ≥ wi(opt(Gi, wi)) for all i, which gives∑

i wi(F ∩ V (Gi))∑
i wi(opt(G,w) ∩ V (Gi))

≤
∑
i wi(F ∩ V (Gi))∑
i wi(opt(Gi, wi))

.

Since every summand appearing in the fraction on the right-hand side is nonnegative,
it can be bounded above by maxi{wi(F ∩ V (Gi))/wi(opt(Gi, wi))}.

In this way the ratio of an FVS weight to the optimal one in (G,w) can be reduced
to the ones in its subgraphs (Gi, wi).

For a subgraph G1 of G let γ
def
= min{w(v) : v ∈ V (G1)}, w1, be a function on

V (G1) whose value is constantly γ, w2
def
= w − w1, and let V0 be a set of vertices u

with w2(u) = 0. Then {(G1, w1), (G[V − V0], w2)} is easily a decomposition of (G,w)

and, for any FVS F2 for G[V − V0], F
def
= V0 ∪ F2 is an FVS for G. Let c∗ denote the

cardinality of an optimal FVS for unweighted G1. The original local ratio theorem of
Bar-Yehuda and Even [3] states that the approximation ratio of F is bounded by

max

{ |V (G1)|
c∗

,
w2(F2)

w2(opt(G[V − V0], w2))

}
,

and this follows easily from Theorem 2.1 since w1(F ∩ V (G1)) ≤ w1(V (G1)) =
γ|V (G1)|; thus w1(F ∩ V (G1))/w1(opt(G1, w1)) ≤ γ|V (G1)|/γc∗ = |V (G1)|/c∗ and
F ∩ V (G2) = F ∩ (V − V0) = F2.

The second extension of the local ratio technique will be demonstrated in the next
section, where our algorithm slices up a weight distribution from the entire structure.

3. Approximation algorithm. Our algorithm, called FEEDBACK, is presented
in Figure 3.1, where text in square brackets are comments used for analysis only.

Given a graph (G,w) with G = (V,E), any vertex of weight zero is removed from
G and placed in the solution set F at the outset. FEEDBACK then decomposes (G,w)
into subgraphs (Gi, wi)’s (in the first While loop) by iteratively subtracting wi from
w, removing vertices of weight reduced to zero, adding them into F , and cleaning up
G (by procedure Cleanup, which recursively deletes vertices of degree ≤ 1), until G
becomes empty.

The subgraph Gi derived in the ith iteration is either a semidisjoint cycle C
contained in G or, otherwise, G itself. Note that the first case has precedence over the
second; that is, Gi is a semidisjoint cycle whenever G contains one. When Gi is a cycle
C it is uniformly weighted with wi(u) = γ = min{w(u) : u ∈ V (C)}, the minimum
weight on C, for all u ∈ Gi. Otherwise, Gi is clean and degree-proportionally weighted
with wi(u) = γ(d(u)−1) ∀u ∈ V . In either case the value of γ is determined such that
wi is maximal without exceeding w, and hence some vertex u of G necessarily has its
weight w(u) reduced to zero when wi is subtracted from w. Such vertices are removed
from G, making progress toward emptying G, and at the same time we collect them
all in F . The sole purpose of using an auxiliary stack data structure, STACK, is to
keep track of the (reverse) order in which these vertices are added into F .

The graph G eventually becomes empty (in at most |V | iterations). At this point
(i.e., right after the first While) every vertex was swept out in the process, or otherwise
it is kept in F . Observe that F is indeed an FVS for the original G because any vertex
was cleaned up only after it was found to be useless.

The second While loop examines vertices of this F , one by one, in the reverse
order of their inclusion into F . Whenever a vertex is found to be extraneous, it is
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2-APPROXIMATION ALGORITHM FOR THE FVS PROBLEM 293

Input: an undirected graph G = (V,E) with vertex weights w : V → Q+

Output: a feedback vertex set F

Initialize F = {u ∈ V : w(u) = 0}, V = V − F . [i = 0]
Cleanup(G)
While V 6= ∅ do

[i← i+ 1]
If G contains a semidisjoint cycle C, then

Let γ ← min{w(u) : u ∈ V (C)}.
Set w(u)← w(u)− γ, ∀u ∈ V (C).

[Gi = C and wi(u) = γ, ∀u ∈ V (C)]
Else [G is clean and contains no semidisjoint cycle]

Let γ ← min{w(u)/(d(u)− 1) : u ∈ V }.
Set w(u)← w(u)− γ(d(u)− 1), ∀u ∈ V .

[Gi = G and wi(u) = γ(d(u)− 1), ∀u ∈ V ]
For each u ∈ V with w(u) = 0 do

Remove u from V , add it to F , and push it onto STACK.
Cleanup(G)

While STACK 6= ∅ do
Let u← pop(STACK).
If F − {u} is an FVS in original G, then [u is redundant]

Remove u from F .

Cleanup(G):
While G contains a vertex of degree at most 1, remove it along with

any incident edges.

Fig. 3.1. 2-approximation algorithm FEEDBACK for the FVS problem.

discarded from F . As will be seen later, this process ensures not only that F is a
minimal FVS in original G but also that F ∩ V (Gi) in Gi ∀i.

Running time. The running time of FEEDBACK is dominated by the first While
loop. All the operations of cleaning up vertices (along with edges), detecting semi-
disjoint cycles, computing the minimum weights on them, and deleting them from a
graph can be done in timeO(|V |+|E|) by maintaining a collection of existent (disjoint)
paths consisting solely of degree-2 vertices. Since each iteration takes O(|V |) time for
other operations and there are at most |V | of them, the running time is O(|V |2).

Alternatively, we may maintain the value of w(u)/(d(u) − 1) for each u ∈ V
in a priority queue P , instead of individual vertex weights. The computation of
γ = min{w(u)/(d(u)− 1) : u ∈ V } is then supported by the Extract-Min operation
(O(log |V |)). There are two types of updates for these values: one by subtraction
of wi from w and the other caused by decrement of degrees. In the former case,
the new value, after subtraction of wi, becomes (w(u) − γ(d(u) − 1))/(d(u) − 1) =
w(u)/(d(u) − 1) − γ, the old value less γ for each vertex. Thus, the actual value
for any vertex in V can be recovered from a sequence of γ values, without changing
key values stored in P . For the second case, however, some key values must be
changed, but only for those vertices adjacent to u, for each removal of vertex u. We
do so using both Insert and Delete operations, each of which takes O(log |V |) by
the standard implementations, and O(1) time calculation of a new value. Since key
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294 VINEET BAFNA, PIOTR BERMAN, AND TOSHIHIRO FUJITO

values of elements in P need to be modified at most |E| times, it takes O(|E| log |V |)
overall, better than O(|V |2) when a graph is sparse.

4. Performance ratio. To avoid any possible ambiguity in the following argu-
ment, let us fix an input graph (G = (V,E), w̄) and the output FVS F̄ . Recall that
our goal is to achieve a globally good approximation ratio by ensuring a good ratio
locally at every derived subgraph in a decomposition of the given graph, and our
algorithm FEEDBACK is designed exactly to do so. Toward this end it will be shown
below, in this order, that the following hold:

1. FEEDBACK computes F̄ and a decomposition {(Gi, wi)} of (G, w̄) such that
(i) w̄(F̄ ) =

∑
i wi(F̄ ∩ V (Gi)) (Lemma 4.1, precondition for application of

Theorem 2.1), and
(ii) F̄ ∩ V (Gi) is a minimal FVS in Gi for all i (Lemma 4.2).
2. The weight of any minimal FVS in any clean, degree-proportionally weighted

graph without semidisjoint cycles is small relative to the optimal weight (Lemmas 4.3
and 4.4).

Lemma 4.1. w̄(F̄ ) =
∑
i wi(F̄ ∩ V (Gi)).

Proof. Recall that any vertex u of G can enter F̄ only after its weight w(u) is
reduced completely to zero by a sequence of subtractions, and hence partial weights
wi(u)’s must sum up to the total w̄(u) for any u in F̄ . (On the other hand, V − F̄
consists of those vertices cleaned up from G prematurely with nonzero weights).

Lemma 4.2. F̄ ∩ V (Gi) is a minimal FVS in Gi ∀i.
Proof. Let Gi denote the graph remaining right after the (i− 1)st iteration of the

first While is completed. We first claim that F̄ ∩ V (Gi) is a minimal FVS in Gi. Let
F∞ denote the FVS constructed by the entire run of the first While. Since vertices
in F∞ are examined, in the second While, in the reverse order of their addition to
F∞, all the vertices in F∞ ∩ V (Gi) are tested for their redundancy before those in
F∞−V (Gi). Let F i denote the FVS obtained from F∞, during the second While, by
removing any vertices in F∞ ∩ V (Gi) which are redundant in G. Then, F i ∩ V (Gi)
must be a minimal FVS in Gi since otherwise, i.e., if (F i ∩V (Gi))−{u} is an FVS in
Gi for some u ∈ F i ∩ V (Gi), F i − {u} would be an FVS in G, a contradiction. Since
F i ∩ V (Gi) = F̄ ∩ V (Gi), the claim follows.

It remains to observe that if F̄ ∩V (Gi) is a minimal FVS in Gi, so is F̄ ∩V (Gi) in
Gi. Recall that Gi is chosen such that either Gi = Gi or Gi = C, some semidisjoint
cycle contained in Gi. It is obvious when Gi = Gi, and now suppose Gi = C. Then,
F̄ ∩ Gi contains exactly one vertex of Gi, and hence minimal in Gi, because any
minimal FVS in Gi, such as F̄ ∩ V (Gi), can contain only one vertex from semi-
disjoint C.

We next consider how large the weight of F̄ is when estimated in subgraphs
(Gi, wi)’s, relative to the optimal weights for them. Recall that (Gi, wi) is in the form
of either

1. a simple cycle of identically weighted vertices, or
2. a clean and degree-proportionally weighted graph containing no semidisjoint

cycles.
In the first case, the minimality of FVS F̄ ∩ V (Gi) in Gi actually implies its

optimality in Gi. The second case is more interesting. We show that, in this case,
the weight of any minimal FVS is bounded above by twice the optimum weight.

Clearly, it suffices to prove this only for the case when w(u) = d(u)− 1 for every
u ∈ V ; this is assumed below in Lemmas 4.3 and 4.4. We will also use a potential
function p : V → Q defined as p(u) = d(u)/2 − 1 for every u ∈ V . Let p(U) denote
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2-APPROXIMATION ALGORITHM FOR THE FVS PROBLEM 295∑
u∈U p(u) for any U ⊆ V .

Lemma 4.3. For an arbitrary FVS F in G = (V,E), w(F ) ≥ p(V ) + 1.
Proof. Let δ(F ) denote the set of edges incident to some vertex in F . Then, since∑

u∈F d(u) ≥ |δ(F )|, w(F ) =
∑
u∈F (d(u) − 1) =

∑
u∈F d(u) − |F | ≥ |δ(F )| − |F |.

Besides, F is an FVS. Thus G[V − F ], with its edge set being E − δ(F ), is acyclic,
containing at most |V − F | − 1 edges. That is, |E − δ(F )| ≤ |V − F | − 1 and hence
w(F ) ≥ |E| − |V |+ 1 = p(V ) + 1 since p(V ) =

∑
u∈V (d(u)/2− 1) = |E| − |V |.

Observe now that if F is a minimal FVS, each vertex of F is blocked by a tree in
the forest G[V − F ]; i.e., each vertex u ∈ F is joined via two edges to some tree T
in G[V − F ]. Let eT be the number of edges with one end in T and the other in F .
Suppose that T has t vertices. Then

∑
u∈V (T ) d(u) = eT + 2(t− 1). Consequently,

p(V (T )) =
∑

u∈V (T )

(
d(u)

2
− 1

)
(4.1)

=

∑
u∈V (T ) d(u)

2
− t =

eT + 2(t− 1)

2
− t =

eT
2
− 1.

Lemma 4.4. If F is a minimal FVS in a clean graph G = (V,E) without a
semidisjoint cycle, then w(F ) ≤ 2p(V ).

Proof. Each vertex u ∈ F is a priori allocated a potential of (d(u) − 2)/2. We
show that each u ∈ F also receives an additional potential of 1/2 from vertices in
V − F . Let T be a tree blocking u (so eT ≥ 2). Notice that eT = 2 would imply
either G is not clean or G contains a semidisjoint cycle; hence eT ≥ 3. Also, the total
number of vertices each tree T ′ in G[V −F ] can block is at most beT ′/2c. Thus, using
(4.1), an extra potential of (eT /2− 1)/beT /2c can be shipped to every vertex u of F
from V − F , which is at least 1/2 when eT ≥ 3. Therefore, u contributes d(u)− 1 to
w(F ) and at least (d(u)− 1)/2 to p(V ).

Lemmas 4.3 and 4.4 jointly assert that whenGi is a clean and degree-proportionally
weighted graph without semidisjoint cycles, since F̄ ∩ V (Gi) is a minimal FVS in Gi
(Lemma 4.2), the ratio wi(F̄∩V (Gi))/wi(opt(Gi, wi)) is bounded by 2p(V (Gi))/(p(V (Gi))+
1).

Theorem 4.5. The algorithm FEEDBACK finds an FVS F̄ in (G, w̄), where G =
(V,E), with approximation factor of 2−2/(|E|−3) in time O(min(|E| log |V |, |V |2)).

Proof. Apply Theorem 2.1 using {(Gi, wi)} computed (implicitly) by FEEDBACK

as a decomposition of (G, w̄). As observed above, when Gi is a uniformly weighted
simple cycle (case 1), the local ratio wi(F̄ ∩V (Gi))/wi(opt(Gi, wi)) = 1. On the other
hand, when Gi is a clean graph without semidisjoint cycles, it is bounded by

2p(V (Gi))

p(V (Gi)) + 1
= 2− 2

p(V (Gi)) + 1
= 2− 2

|E(Gi)| − |V (Gi)|+ 1
≤ 2− 2

|E| − 3

since Gi must contain at least four vertices.
Additionally, it can be seen that the analysis above is essentially tight: there

is an infinite sequence of graphs for which the approximation factor of FEEDBACK

approaches arbitrarily close to 2. Consider, e.g., a graph G consisting of k triangles
{ai, bi, ci}, i = 1, . . . , k, which are chained together by edges {bi, ai+1}, i = 1, . . . , k−1,
and {bk, a1} (see Figure 4.1). Suppose now that G is degree-proportionally weighted,
e.g., w(ai) = w(bi) = 2, and w(ci) = 1, ∀i. The set A = {ai : 1 ≤ i ≤ k} is a minimal
FVS with w(A) = 2k. On the other hand, an optimal FVS could be formed by ci’s,
1 ≤ i ≤ k − 1, plus a1, with its weight totaling (k − 1) + 2 = k + 1.
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Fig. 4.1. Example with ratio = 2.

5. Final remarks. In this paper we have presented a simple and efficient ap-
proximation algorithm for the FVS problem on undirected graphs, with a performance
ratio of at most 2. While this ratio matches the best constant approximation factor
known for the VC problem, there still exists a small gap from the overall best of
2− log logn/2 logn for VC. Also, some related directions for further research are sug-
gested when it is taken into account that VC, when restricted to some special classes
of graphs, becomes polynomially solvable or easier to approximate. For instance, one
of the well-studied cases occurs when graphs are restricted to be of small vertex de-
gree, for which currently the best-known bound is 2− 3/(∆ + 2) [10], where ∆ is the
maximal vertex degree. Although the technique introduced in the paper alone is not
powerful enough to do any better for this special case, it can be shown that, when
combined with other approximation preserving reductions, it yields the performance
ratio of 2 − 2/(3∆ − 2). (Interested readers are referred to [2].) It remains an open
question whether one can approximate the FVS problem exactly as well as the VC
problem can be, whether the degree is bounded or not.

Other interesting questions for further investigation include applicability of the
techniques developed herein to other problems. For instance, see [8], where, inspired
by our work, a similar approach was employed and shown to be effective in approxi-
mation of other node-deletion problems as well.
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