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A 2-D Analytical Model for Double-Gate

Tunnel FETs
Mahdi Gholizadeh and Seyed Ebrahim Hosseini

Abstract— This paper presents a 2-D analytic potential model
for double-gate (DG) tunnel field effect transistors (TFETs) by
solving the 2-D Poisson’s equation. From the potential profile, the
electric field is derived and then the drain current expression is
extracted by analytically integrating the band-to-band tunneling
generation rate over the tunneling region. The model well predicts
the potential, subthreshold swing (SS), and transfer and output
characteristics of DG TFETs. We analyze the dependence of the
tunneling current on the device parameters by varying the gate
oxide dielectric constant, gate oxide thickness, body thickness,
channel length and channel material and also demonstrate its
agreement with TCAD simulation results. The SS which describes
the switching behavior of TFETs, is derived from the current
expression. The comparisons show that the SS of our model well
coincides with that of simulations.

Index Terms— Analytical model, band-to-band tunneling
(BTBT), BTBT generation rate, double-gate (DG) tunnel field
effect transistor (TFET), electric field, mobile charge, Poisson’s
equation, subthreshold swing (SS).

I. INTRODUCTION

I
T HAS been highlighted that increasing power density is a

challenge for continued MOSFET scaling, due to nonscal-

ability of subthreshold swing (SS). The SS of a MOSFET is

limited to 60 mV/decade, which causes the leakage current to

increase. One of the promising devices to replace the MOSFET

for lowpower applications is the tunnel field effect transistor

(TFET), which has demonstrated the potential to surmount

the SS limit of MOSFETs [1]–[5]. The operation principle of

the TFETs relies on the band-to-band tunneling (BTBT) of

electrons, so that they are able to operate as steeper switches

at lower supply voltages [6].

The cross-sectional view of an n-type double-gate (DG)

TFET is shown in Fig. 1(a). The energy band profile in the

OFF and ON-state is shown in Fig. 1(b). When a positive gate

voltage is applied, the conduction band of the channel goes

down and a sufficiently high lateral electric field is created

at the source-channel junction. This electric field forces the

electrons to tunnel from the occupied valence-band states of

the source to the unoccupied conduction-band states of the

channel.
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Fig. 1. (a) Schematic diagram of a symmetric DG n-TFET with x-y

coordinates. (b) Energy band profile of an n-TFET in the OFF and ON state.
�E is the energy pass window between EV,SOURCE and EC,CHANNEL.

The performance of TFETs has been simulated using 2-D

TCAD simulations [1]–[6]. However, a physics-based analyt-

ical model is essential for better understanding of the device

operation and facilitates compact modeling for circuit-level

studies. It is also useful to obtain fast results.

Several analytical studies on TFETs have been carried out

in [7]–[19]. Some 1-D analytical models without considering

the impact of the drain voltage have derived the drain current

[7]–[9]. Many 2-D studies on TFET modeling analytically

calculate the tunneling generation rate using 2-D electric

field, but the tunneling current is computed by numerically

integrating over the volume of the device [10]–[13]. In some

pseudo-2-D analytical models [14], [15], the tunneling current

has analytically been derived. They have assumed that the

electric field is constant over both the tunneling distance (along

the channel) and depth of the device (perpendicular to the

channel) in their models, whereas simulations and different

analytical models such as [10] and [12] demonstrate that the

distribution of the electric field is nonuniform in the channel.

In a different method in [16], Landauer approach is used to

derive the dc characteristics of TFETs. In this model, the

width of the energy pass window �E [Fig. 1(b)] is considered

to have a linear relationship with the gate voltage, but in

fact increasing the gate voltage leads to a rise in the voltage

drop across the gate oxide. Therefore, increasing of the gate

voltage leads to less increase in the width of the energy pass

window (�E).

In this paper, we develop a 2-D analytical model to derive

analytical expressions for different electrical parameters of

DG TFETs i.e., potential profile, SS, and transfer and output

characteristics. In our calculations, the influences of the mobile
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charges on the potential profile and the drain bias on the

current are considered. The model also predicts the impacts

of structural parameters which is useful to provide a design

insight. This paper is organized as follows. In Section II the

potential profile and lateral electric field are derived using

fully 2-D solution of the Poisson’s equation. In Section III

using Kane’s model, an analytical expression for the current

is extracted by integrating the BTBT generation rate over the

tunneling region. Then, from the current expression, the SS is

derived. The analytic model is validated by comparing it with

TCAD simulation results for different sets of parameters in

Section IV.

II. 2-D POISSON’S EQUATION SOLUTION

In this section, an accurate solution to the Poisson’s equation

with considering the mobile charge term is presented. The

structure of the DG TFET is shown in Fig. 1(a). The Poisson’s

equation in the channel is written as

∂2ψ

∂x2
+

∂2ψ

∂y2
=

q

εsi
ni exp

(

ψ − V

Vt

)

(1)

where ψ(x, y) is the electrostatic potential in the intrinsic

channel, εsi is the permittivity of the silicon, ni is the intrinsic

carrier density, Vt is the thermal voltage and V is the elec-

tron quasi-Fermi potential. According to [2], the electrostatic

potential using superposition principle will be written as

ψ(x, y) = υ(x) + ψ1(x, y) (2)

where v(x) is the solution of 1-D Poisson’s equation

∂2υ

∂x2
=

q

εsi
ni exp

(

υ − V

Vt

)

· (3)

As described in [21], v(x) can be obtained by twice

integrating (3)

υ(x) = V − 2Vt ln

(

Tsi

2β

√

qni

2εsiVt

cos

(

2β

Tsi
x

))

. (4)

For a given VGS, β can be solved from

VGS − �φ − V

2Vt

− ln

(

2

Tsi

√

2εsiVt

qni

)

= ln β − ln(cos(β)) −
2εsiTi

εi Tsi
β tan(β) (5)

where �φ is work function difference between the gate

electrode and the semiconductor and εi is the permittivity

of the insulator. Since the current flows mainly along the

channel from the source to the drain, the electron quasi-

Fermi potential is almost constant in x-direction and varies

only in y-direction [21]. For DG-MOSFETs, V is assumed

to be constant in the channel direction except at the end of

channel where it reaches VDS [22]. Similar to MOSFETs,

TFETs simulations demonstrate that V in the channel length

direction stays constant (equal to VDS) except at the beginning

of the channel. This causes v(x) to be nearly constant in the

y-direction except near the source junction.

ψ1(x, y) is the solution to the 2-D Laplace equation

∂2ψ1

∂x2
+

∂2ψ1

∂y2
= 0· (6)

The solution of the Laplace equation is given by

ψ1(x, y) = uL(x, y) + u R(x, y)· (7)

where u R and uL can be written as u R =
∑

∞

n=1 u Rn(x, y)

and uL =
∑∞

n=1 uLn(x, y) where u Rn(x, y) and uLn(x, y) are

Eigen functions that are obtained as follows [23]:

u Rn(x, y) = cn
sinh(πy/λn)

sinh(π L/λn)
sin

(

nπ

2
+

πx

λn

)

(8)

uLn(x, y) = bn
sinh (π(L − y)/λn)

sinh(π L/λn)
sin

(

nπ

2
+

πx

λn

)

· (9)

where λn are Eigen values which are obtained from

εsi tan

(

πTi

λn

)

= εi tan

(

nπ

2
−

πTsi

2λn

)

· (10)

According to [23], we obtain the first-order coefficients as

b1 =
2λ2

1 tan(πTi/λ1) sin(πTsi/2λ1)

π2Ti

(

Tsi

2
+

sin(πTsi/λ1)

sin(2πTi/λ1)
Ti

) (ϕSC − VGS + �φ)

(11)

c1 =
sin(πTsi/2λ1)

(

Tsi

2
+

sin(πTsi/λ1)

sin(2πTi/λ1)
Ti

)

×

(

−4Vtλ1

π
ln(cos(βd )) −

2λ2
1

π2

υ
(

Tsi
2

)

− ϕDC

Ti

tan(πTi/λ1)

)

(12)

where ϕSC and ϕDC are built-in potentials at the source and

drain junctions, respectively. For a given VGS, βd is obtained

from (5). For symmetric DG structures, even order coefficients

are zero [23]. The expression for the potential in the channel

considering the first-order Eigen function is

ψ(x, y) = υ(x) + cos(πx/λ1)

×

(

b1 sinh (π(L − y)/λ1) + c1 sinh(πy/λ1)

sinh(π L/λ1)

)

.

(13)

Fig. 2 demonstrates the surface potential under different gate

voltages. At high VGS due to the inversion of the channel, the

potential is pinned to the drain voltage. As Fig. 2 shows, the

agreement of the model and simulation can be easily seen and

the model well captures the effect of the mobile charges.

The lateral electric field Ey(x, y) is found by differentiating

the electrostatic potential expression

Ey(x, y) =

(

−
π

λ1
b1

cosh (π(L − y)/λ1)

sinh(π L/λ1)

+
π

λ1
c1

cosh (πy/λ1)

sinh(π L/λ1)

)

× cos (πx/λ1) · (14)

As mentioned earlier, v(x) almost stays constant in the

y-direction, therefore its derivative is zero. Indeed, for well-

scaled devices, the dominant tunneling paths are lateral.
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Fig. 2. Surface potential obtained from the model (symbols) and simulations
(lines) at different gate voltages. The threshold voltage VTH according to the
definition in [16] is 0.6 V. (εsi = 11.8 ε0, �φ = 0, ϕSC = −0.6 V, and
ϕDC = 0.6 V).

Therefore, it is reasonable to assume tunneling takes place

primarily along the channel length direction, as discussed in

[11] and [14]. Therefore, the lateral electric field has only

been taken into account in the calculations. The lateral electric

field shows a nonuniform behavior along the source-channel

junction. It reaches its maximum value at the channel surface

and gradually decreases to its minimum value at the middle

of channel. This is because the channel underneath the gate is

more influenced by the gate voltage than depths of the channel.

On the contrary, the highest value of Ey(x, y) in (14) is at the

middle of the channel. The reason behind this disagreement is

due to considering only the first-order Eigenfunction. Although

the first-order Eigenfunction works well to describe the chan-

nel potential, as shown in Fig. 2, the higher order terms play

a more important role on capturing a sharper potential profile

at the source-channel junction, which strongly influence the

electric field profile [11]. On the other hand, considering the

higher order terms extremely complicates the analytic solution

and it is difficult to derive a straightforward expression for the

current. Therefore, there is a tradeoff between the precision

and simplicity. In order to overcome the tradeoff, we apply

the impacts of the higher order terms to the first-order term

through Taylor series expansion.

Based on the potential solution, the full expression for the

lateral electric field is written as

Ey(x, y) =

∞
∑

n=1

(

−
π

λn

bn
cosh (π(L − y)/λ1)

sinh(π L/λn)

+
π

λn

cn
cosh (πy/λ1)

sinh(π L/λn)

)

sin

(

n π

2
+

π x

λn

)

·

(15)

Because of vanishing even order coefficients, sin(nπ/2 +

πx/λn) is equivalent to ±cos(πx/λn). The term cos(πx/λn)

can be expanded using Taylor series expansion as

cos(π x/λn) = 1 −
(πx/λn)2

2!
+

(πx/λn)4

4!
− · · · (16)

Defining kn as

kn = −
π

λn

bn
cosh (π(L − y)/λn)

sinh(π L/λn)
+

π

λn

cn
cosh (πy/λn)

sinh(π L/λn)
(17)

and substituting (16) and (17) into (15), we obtain

Ey(x, y) = (k1 − k3 + k5 − · · ·)

+
(

−k1(π/λ1)
2
+ k3(π/λ3)

2
− k5(π/λ5)

2
+ · · ·

) x2

2!

+
(

k1(π/λ1)
4
− k3(π/λ3)

4
+ k5(π/λ5)

4
− · · ·

) x4

4!
+ · · ·

(18)

Solving (10) results in λ1/λn ∼ n [23] Therefore (18) becomes

Ey(x, y) = (k1 − k3 + k5 − · · ·) ×

(

1 +

(

π

λ1

)2
x2

2!
×

(

−k1 + 9k3 − 25k5 + · · ·

k1 − k3 + k5 − · · ·

)

+

(

k1 − 81k3 + 625k5 − · · ·

k1 − k3 + k5 − · · ·

)

×

(

π

λ1

)4 x4

4!
+ · · ·

)

· (19)

Using a proper fitting parameter N , (19) can be approximated

as the following expression:

Ey(x, y) = Nk1

(

1+
ω2

1x2

2!
+

ω4
2x4

4!
+· · ·

)

∼= Nk1 cosh(ω1x)

(20)

where ω1 can be approximated as ω1 = π/λ1 Therefore the

lateral electric field is expressed as

Ey(x, y) = N

(

−
π

λ1
b1

cosh (π(L − y)/λ1)

sinh(π L/λ1)

+
π

λ1
c1

cosh (πy/λ1)

sinh(π L/λ1)

)

cosh

(

π

λ1
x

)

· (21)

As (21) indicates getting closer to the channel surface, the

lateral electric field increases.

III. DRAIN CURRENT DERIVATION

In this section, we obtain analytical expressions for the drain

current and SS. The most widely used model to calculate the

tunneling current is the Kane model [24], which determines

the BTBT generation rate of carrier tunneling from the valence

band of the source to the conduction band of the channel, as

GBTBT = AE D exp

(

−
B

E

)

· (22)

where E is the electric field; D is 2.5 for the indirect

and 2 for the direct tunneling processes; A and B are the

tunneling process-dependent parameters. This paper develops

an analytical model for indirect tunneling process; however,

it can be easily extended to the direct tunneling process. The

drain current can be computed as [18]

I = q

∫

AE E D−1
avg exp

(

−B/Eavg

)

dV (23)

where E is the local electric field and Eavg is the average

electric field. In this paper we aim at analytically calculating

the tunneling current.
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Fig. 3. Energy band diagram along the y-direction during ON-state. l1 and
l2 are the lengths of the shortest and longest tunnel paths, respectively.

E is computed from (21). Since electron tunneling takes place

mainly at the source-channel junction, the second term in (21)

is negligible and thereby Ey is written as

Ey(x, y)

= N

(

−
πb1

4λ1 sinh(π L/λ1)

)

exp (π(L − y)/λ1) exp

(

π

λ1
x

)

·

(24)

The average electric field can be written as

Eavg = Eg/(qlpath) (25)

where lpath is the length of tunneling path and varies from

l1 to l2 [Fig. (3)]. Due to high doping concentration, the source

depletion region is ignored, therefore l1 = y1 and l2 = y2. At

y = y1, the difference between the source conduction band

and channel conduction band is Eg + �Eb, where �Eb =

EVS − EFS. Similarly, at y = y2, the difference between the

source conduction band and channel conduction band reaches

Eg + �ϕ, where �ϕ = EVS − EVC.

Inserting the local and average electric fields in (23) yields

I = q

Tsi
2

∫

−Tsi
2

y2
∫

y1

AN

(

−
πb1 exp (π L/λ1)

4λ1 sinh(π L/λ1)

)

E D−1
g

q D−1y D−1

exp (−πy/λ1) exp

(

π

λ1
x

)

exp

(

−q B

Eg

y

)

dydx · (26)

The channel width is 1 µm in the model and simulations.

In (26), y ranges from y1 to y2, in this interval variation of

the exponential term is dominant compared with polynomial

term (1/y D−1) [18]. Therefore, we perform integration over

exponential term to compute the drain current

I = −
q AN E D−1

g
(

q B

Eg

+
π

λ1

)

q D−1

(

−
πb1 exp (π L/λ1)

4λ1 sinh(π L/λ1)

)

(

2λ1

π

(

exp

(

Tsiπ

2λ1

)

− 1

))

(S(y2) − S(y1)) (27)

where S(y) is defined as

S =

exp

(

−

(

q B

Eg

+
π

λ1

)

y

)

y D−1
. (28)

Due to exponential term in (28) and also y2 > y1, it is

straightforward to show S(y1) ≫ S(y2). Ignoring S(y2), it is

sufficient to compute y1. At y1, the channel potential reaches

(Eg + �Eb)/q . Computing y1 requires inverting potential

distribution equation. Since the charge concentration near

the source-channel junction is negligible [5], the potential

distribution along the x-axis can be written as v(x) = VGS −

�ϕ. Inserting this value in the potential distribution equation

and ignoring the second term (c1sinh(πy/λ1)) due its small

contribution at the source-channel junction, y1 can be obtained

as

y1 = L −
λ1

π
sinh−1

⎛

⎝

Eg+�Eb

q
+ψ(x, 0) − VGS + �φ + Veff

b1 cos
(

πTsi
2λ1

)/

sinh
(

π L
λ1

)

⎞

⎠

(29)

where Veff takes care of the error introduced with deriving

(29), 0 < Veff < 0.15.

The effects of the drain bias appear at the higher order

terms [11]; furthermore, we do not completely consider the

impacts of the highorder harmonics in the calculations. Thus,

a correction factor (F) is needed to compensate the impact of

the drain bias. We employ the correction factor used in [15],

but the difference here is that we add VGS in the denominator

of the exponential term in order to avoid the effect of the drain

bias at low VGS

F = 1 −
2

(

1 + exp
(

VDS
VGS

)) . (30)

Note that when VGS tends to be zero, F tends to unity.

Subthreshold swing is an important parameter to describe

the switching behavior of transistors. From the current expres-

sion it can be expressed as

SS =

(

d log(I )

d VGS

)−1

. (31)

By rewriting (11) as b1 = h(ϕSC − VGS + �ϕ) and neglecting

F because of its small variations at low gate voltages, the

SS is obtained as

SS= ln 10

(

1

VGS−�φ − ϕSC
−

(

B

Eg

+
π

λ1
+

1.5

L1

)

d L1

dVGS

)−1

(32)

where d L1/dVGS is obtained as

d L1

dVGS
= −

λ1 sinh
(

π L
λ1

)

πh cos
(

πTsi
2λ1

)

(

Eg + �Eb + Veff

(ϕSC + �φ − VGS)2

)

×
1

√

1 + sinh
(

π(L−L1)
λ1

)2

.

(33)

It is observed that unlike MOSFETs, the SS of TFETs is a

function of the gate voltage.
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Fig. 4. I–VGS characteristic. The drain current is plotted on logarithmic
(left) and linear (right) scales (L = 50 nm, N = 0.1, and �φ = −0.5).

Fig. 5. I–VDS characteristics of the DG TFET at different gate voltages
(L = 50 nm, N = 0.1, and �φ = −0.5 V).

IV. MODEL VALIDATION

In this section we validate the proposed model by comparing

it with 2-D TCAD simulations. We evaluate the efficacy of the

model by varying the gate oxide dielectric constant, gate oxide

thickness, body thickness channel length and channel mater-

ial. We employed the nonlocal tunneling model to simulate

TFET current. The source and drain doping concentrations

are 1020 cm−3 and 1018 cm−3, respectively, and the channel

is intrinsic. The default parameters for the Kane model are

A = 4 × 1014 cm−1/2V−5/2s−1 and B = 1.9×107 V/cm [25].

Fig. 4 shows the I–VGS characteristic of a DG TFET calcu-

lated by the model and simulations. It is observed that our

model well captures both the subthresold and superthreshold

currents. Fig. 5 shows the output characteristic of the device

at different gate voltages. The model predicts the saturation

current very well and also it shows a qualitative agreement in

the linear regime.

In order to improve the ON-current (ION) and achieve high

ON to OFF current ratios (ION/IOFF) in TFETs, gate oxide

thickness reduction and high-k dielectric materials are usually

employed. We investigate the model with different gate oxide

thicknesses and gate oxide dielectrics in Figs. 6 and 7. With

reducing Ti and increasing εi , higher ION, steeper subthresh-

old slope, and higher ION/IOFF is achieved [1]. Our model

well predicts the changes of I–VGS characteristics induced

by varying Ti and εi . The reduction of the bulk capacitive

effects also can increase the current which can be obtained by

Fig. 6. I–VGS characteristics for Si DG TFETs as function of gate oxide
thickness. The values of N used for comparisons are 0.1 for Ti = 1.5 nm,
0.1 for Ti = 2 nm and 4 for Ti = 3 nm (L = 50 nm and �φ = −0.6).

Fig. 7. I–VGS characteristics for Si DG TFETs as function of gate oxide
dielectric. The values of N used for comparisons are 4 for εi = 3.9ε0, 4 for
εi = 6ε0, 1 for εi = 8.3ε0 (L = 50 nm and �φ = −0.7 V).

Fig. 8. I–VGS characteristics for Si DG TFETs as function of body thickness.
The values of N used for comparisons are 1 for Tsi = 8 nm, 1 for Tsi = 10 nm
and 0.1 for Tsi = 12 nm (L = 50 nm and �φ = −0.6 V).

decreasing the body thickness [1], as shown in Fig. 8. We also

examined the gate length scaling with the analytical model.

The DG TFETs exhibit extremely lower shift in their I–VGS

characteristics, due to short channel effects, than their DG

MOSFETs counterparts at the gate lengths longer than four

times their natural scaling lengths (4λ1/π) [11]. In Fig. 9 the

drain current for two different structures at the gate lengths

longer than their 4λ1/π have been plotted and the accuracy

of our model can be easily seen.

Although in this model we used silicon as the channel

material in calculations, we can also apply the model for
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Fig. 9. I–VGS characteristics for various gate lengths. DG TFETs exhibit
lower shift in their I–VGS characteristics at gate lengths longer than
(4λ1/π)N = 1 for both plots (�φ = −0.6 V).

Fig. 10. I–VGS characteristic for different semiconductor materials. InAs
(�φ = −0.125 V, N = 10), Si0.7Ge0.3 (�φ = −0.09 V and N = 10), and
Si (�φ = −0.7 V and N = 4). Tsemi is the body thickness.

TABLE I

SUBTHRESHOLD SWING VALUES AT DIFFERENT GATE VOLTAGES

FOR TWO DIFFERENT STRUCTURES

other materials such as III–V semiconductors. We used InAs

and Si0.7Ge0.3, which have direct and indirect transitions

respectively, as alternatives to Si in the model. Fig. 10 shows

that the model can be apply for different direct and indirect-

bandgap semiconductor materials. When applying the model

for direct-bandgap materials the values of D, A, and B are

adjusted.

Table I lists the SS calculated by the model and simulations

for two different structures. The model well predicts the low

subthreshold values (>60 mV/decade) observed in TFETs as

well as the dependence of the SS on the gate voltage and

shows a good match with simulation results.

V. CONCLUSION

In this paper, a 2-D analytical model for DG TFETs has

been developed. This model takes into account the influences

of all the structural parameters, i.e., Tsi, Ti , εi , εsi, and L

together with the biases in the calculations and predicts well

the effects of them. We included the mobile charge term in

the solution of the Poisson’s equation. Comparing the model

results for different electrical parameters, i.e., potential profile,

BTBT generation rate, SS, I–VGS and I–VDS characteristics,

with the simulation results shows a good agreement.
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