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Abstract—A 201.4 GOPS real-time multi-object recognition
processor is presented with a three-stage pipelined architecture.
Visual perception based multi-object recognition algorithm is
applied to give multiple attentions to multiple objects in the input
image. For human-like multi-object perception, a neural percep-
tion engine is proposed with biologically inspired neural networks
and fuzzy logic circuits. In the proposed hardware architecture,
three recognition tasks (visual perception, descriptor generation,
and object decision) are directly mapped to the neural perception
engine, 16 SIMD processors including 128 processing elements,
and decision processor, respectively, and executed in the pipeline to
maximize throughput of the object recognition. For efficient task
pipelining, proposed task/power manager balances the execution
times of the three stages based on intelligent workload estimations.
In addition, a 118.4 GB/s multi-casting network-on-chip is pro-
posed for communication architecture with incorporating overall
21 IP blocks. For low-power object recognition, workload-aware
dynamic power management is performed in chip-level. The
49 mm� chip is fabricated in a 0.13 m 8-metal CMOS process
and contains 3.7M gates and 396 KB on-chip SRAM. It achieves
60 frame/sec multi-object recognition up to 10 different objects for
VGA (640 480) video input while dissipating 496 mW at 1.2 V.
The obtained 8.2 mJ/frame energy efficiency is 3.2 times higher
than the state-of-the-art recognition processor.

Index Terms—Multi-casting network-on-chip, multimedia pro-
cessor, multi-object recognition, neural perception engine, visual
perception, workload-aware dynamic power management, three-
stage pipelined architecture.

I. INTRODUCTION

O
BJECT recognition is a fundamental technology for in-

telligent vision applications such as autonomous cruise

control, mobile robot vision, and surveillance systems [1]–[5].

Usually, it contains not only pixel based image processing for

object feature extraction but also vector database matching for

final object decision [6]. For object recognition, first, various

scale spaces are generated by a cascaded filtering for input video
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stream. Then, key-points are extracted among neighbor scale

spaces by local maxima/minima search, and each of them is con-

verted to a descriptor vector that describes the magnitude and

orientation of it. Last, the final recognition is made by nearest

neighbor matching with pre-defined object database that gener-

ally includes over ten thousands of object descriptor vectors.

Since each stage of the object recognition requires huge

amount of computations, its real-time operation is hard to be

achieved with a single general purpose CPU [3]. To achieve

real-time performance over 20 frame/sec with low power con-

sumption under 1 W, many multi-core based vision processors

have been developed [1]–[5]. In massively parallel single

instruction multiple data (SIMD) processors [1], [2], hundreds

of processing elements (PEs) of are employed to maximize

data-level parallelism for per-pixel image operations such as

image filtering and histogram. However, their identical oper-

ations are not suitable for key-point or object level operations

such as descriptor vector generation and database matching.

On the other hand, the multi-core processor of [3] exploits

coarse-grained PEs and memory-centric network-on-chip

(NoC) for task-level parallelism over data-level parallelism;

however, it cannot provide enough computing power for

real-time object recognition due to its data synchronization

overhead. Unlike the previous processors, a NoC based parallel

processor [4] adopts a visual attention engine (VAE) [7] to

reduce the computational complexity of the object recognition.

Motivated from human visual system, the VAE selects mean-

ingful key-points out of the extracted ones to give attentions to

them before the main object recognition processing aforemen-

tioned. Although it reduces the execution time of the whole

object recognition, however, its performance is still limited

because its visual attention, object feature extraction and de-

scriptor generation, and database matching are performed in

series in time domain due to their unbalanced workloads.

In this work, we propose a real-time low-power multi-object

recognition processor with a three-stage pipelined architecture.

The previous visual attention is enhanced to visual perception to

give multiple attentions to multiple objects in the input image.

For human-like multi-object perception, neural perception en-

gine is proposed with biologically inspired neural networks and

fuzzy logic circuits. In the proposed processor, a three-stage

pipelined architecture is proposed to maximize the throughput

of object recognition. The mentioned three object recognition

tasks are pipelined in frame level and their execution times are

balanced based on intelligent workload estimations to improve
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Fig. 1. Visual perception based object recognition model.

pipelining efficiency. In addition, a multi-casting NoC is pro-

posed for the integration of overall 21 IP blocks of the processor.

For low power consumption, workload-aware dynamic power

management is performed in chip-level. As a result, the pro-

posed processor achieves 60 frame/sec 496 mW multi-object

recognition up to 10 different objects for VGA (640 480)

sized video input.

The rest of this paper is organized as follows. Section II de-

scribes a visual perception based multi-object recognition algo-

rithm in detail. Then, Section III explains system architecture of

the proposed processor. Detailed designs of each building block

are explained in Section IV. Section V describes the proposed

NoC communication architecture. The chip implementation and

evaluation results follow in Section VI. Finally, Section VII

summarizes the paper.

II. VISUAL PERCEPTION BASED MULTI-OBJECT RECOGNITION

A. Visual Perception Based Object Recognition Model

Fig. 1 shows the concept diagram of the proposed visual per-

ception based multi-object recognition model. The visual per-

ception is an extended mechanism of the previous visual atten-

tion [4] to multi-object cases. Based on visual attention, it ad-

ditionally selects the seed points of the objects and performs

seeded region growing to detect the regions-of-interest (ROIs)

for objects. Compared with the previous attention, the visual

perception gives multiple attentions to multiple objects of the

input image by highlighting ROI of each object. After the visual

perception, the next object recognition tasks such as key-point

extraction and database matching are performed with focusing

only on the selected ROIs. By processing only critical regions

out of the whole image, computational cost of the object recog-

nition is also reduced in proportional to the area of selected

ROIs.

B. Overall Algorithm

Fig. 2 shows the overall algorithm of the proposed multi-

object recognition processor. It is divided into three stages by

the role of each stage: visual perception, descriptor generation,

and object decision. This algorithm is devised to recognize

around 50 office stuffs in real-time, which is applicable for

autonomous mobile robot’s vision system.

The visual perception stage is proposed to estimate the ROIs

of objects, a global feature of the image, in advance to main

object recognition processing. Based on Itti’s visual attention

model [8], it extracts not only static features such as intensity,

color, and orientation, but also a dynamic feature such as motion

vector from the down-scaled input image to generate saliency

map. Based on this saliency map, the visual perception selects

the seed points of objects and performs seeded region growing

to detect ROI of each object [9]. Finally, it determines the ROIs

for multiple objects in a unit of 40 40 pixel sized tile, called

a grid-tile. For the implementation of visual perception stage, a

special hardware block with bio-inspired neural networks and

fuzzy logic circuits is proposed to mimic operations of human

visual system.

The descriptor generation stage extracts key-points of objects

out of the selected ROI grid-tiles from the visual perception

stage, and generates descriptor vectors for them. To this

end, various algorithmic methods such as KLT, Harris-corner

detector, affine transformations, and scale invariant feature

transform (SIFT) exist [6]. In our algorithm, the SIFT is se-

lected because it is robust to noise injection as well as scale

and rotation variances. For the implementation of descriptor

generation stage, a parallel processor consisting of many pro-

cessing units is adopted to tackle parallel and complex image

processing tasks. To be applicable for various algorithms, each

processing unit is designed as a programmable device.

The object decision stage determines the final recognition re-

sults by performing database matching for selected regions. It

matches the descriptor vectors out of the descriptor generation

stage with the object database including thousands of object

vectors. A vector matching is to search the minimum distance

vector out of the vectors in the database with an input inquiry

vector. To accelerate these repeated vector matching operations,
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Fig. 2. Three-stage multi-object recognition algorithm.

dedicated vector distance calculation units are employed in the

object decision stage.

Overall, the proposed algorithm employs grid-based ROI pro-

cessing that divides the input image into a number of two-di-

mensional (2-D) grid-tiles and performs the processing based

on them. It enables fine-grained ROI extraction of multiple ob-

jects and reduces the effective processing area of input images.

To evaluate the proposed algorithm, we perform experiments

with 50 office objects out of Columbia object image library

(Coil-100) [10]. It is applied to 2400 sample images that include

random objects in natural background scenes, with a 16384-

entry database made by the SIFT. As a result, overall recog-

nition rate by the proposed algorithm is measured as 92%. For

evaluations of the ROI detection by visual perception, true pos-

itive rate that represents the ratio of correctly detected region

out of ground truth ROI and false positive rate that represents

the ratio of incorrectly detected region out of not interested re-

gion [11] are measured as 70% and 5%, respectively. The visual

perception barely affects the overall recognition rate while re-

ducing the processing area of the images to 32.8% on average.

III. SYSTEM ARCHITECTURE

Fig. 3 shows the overall block diagram of the proposed pro-

cessor. It consists of 21 IP blocks: a neural perception engine

(NPE), a SPU task/power manager (STM), 16 SIMD processor

units (SPUs), a decision processor (DP), and two external

memory interfaces. The NPE is responsible for the first visual

perception stage. It extracts the ROI grid-tiles for each object

and sends them to 16 SPUs for detailed image processing.

The 16 SPUs, whose power domain is separated into four, are

responsible for the second descriptor generation stage. They

extract object features out of the selected ROIs and convert

them to descriptor vectors. The descriptor vectors out of the

16 SPUs are gathered at the DP. The DP accelerates the vector

matching process of descriptor vectors for the third object

decision stage. The STM is specially devised to distribute the

tasks of the ROI grid-tiles from the NPE to the 16 SPUs and to

manage them. It also controls the pipeline stages of the overall

processor and manages four power domains of 16 SPUs. The

overall 21 IP blocks are interconnected through the proposed

multi-casting NoC.

To increase parallelism and hardware utilization of the pro-

posed processor, the proposed three stages are executed in the

pipeline in frame level as shown in Fig. 4. The pipelined data are

ROI grid-tiles and descriptor vectors between the first–second

stage and second–third stage, respectively. Unlike the execu-

tion time of the first visual perception stage is constant due to its

fixed computation amount, the execution time of the second de-

scriptor generation and third object decision are varying with the

number of ROI grid-tiles and descriptor vectors. In order to bal-

ance the execution times of three stages, the STM estimates the

workload of the following descriptor vector and object decision

stage based on the number of extracted ROI grid-tiles and de-

scriptor vectors, respectively, and controls their execution times

using two pipeline time balancing schemes.

To control the execution time of the descriptor generation

stage, the STM performs workload-aware task scheduling

(WATS) that differs the number of scheduling SPUs according

to the stage’s input workload. Fig. 5(a) shows the flow chart

of the WATS. First, the STM measures the number of ROI

grid-tiles from the NPE and classifies it to one of N work-

load levels divided by N-1 threshold values. And then, the

STM determines the number of operating SPUs according to

the classified workload level. Since it allocates the SPUs in
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Fig. 3. Overall block diagram of proposed processor.

Fig. 4. Three-stage pipelined architecture.

proportional to the amount of workload, the execution time

of the overall descriptor generation stage is kept in constant.

The overall execution time is adjusted by modifying threshold

values of classification process. By lowering threshold values,

the execution time is decreased because more SPUs are as-

signed for the same amount of workload. On the other hand, the

execution time increases when threshold values become high,

while the number of operating SPUs is reduced.

To control the execution time of object decision stage, the

STM performs applied database size control (ADSC), shown

in Fig. 5(b). Based on the vector matching algorithm of the DP

[12], the overall execution time of the object decision stage is
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Fig. 5. (a) Workload-aware task scheduling. (b) Applied database size control.

Fig. 6. Block diagram of neural perception engine and SPU task/power manager.

proportional to the number of input descriptor vectors and the

size of applied database. Based on these, the execution time

of the object decision stage can be controlled by configuring

coverage rate of database. First, the STM measures the number

of descriptor vectors from the SPUs and calculates the expected

execution time of the vector matching. Then, it compares the

expected execution time with the target pipeline time and

configures the database coverage rate of the DP to meet the

pipeline time. However, reducing coverage rate should be care-

fully performed because it can degrade the overall recognition

rate. With a 16384-entry database for 50 objects recognition,

correctly matched rate degrades 0.6% and 1.3%, when the

coverage rate is 0.95 and 0.90, respectively. With the help of

the WATS and ADSC, the execution times of the three stages

can be balanced to the target pipeline time, 16 ms, even under

the workload variations. As a result, the proposed processor

achieves 60 frame/sec frame-rate for VGA (640 480) sized

video input.

IV. BUILDING BLOCK DESIGN

A. Neural Perception Engine

Fig. 6 shows the block diagram of the NPE. For efficient ROI

detection, the NPE employs a 32-bit RISC controller and three

hardware engines; motion estimator (ME), visual attention en-

gine (VAE), and object detection engine (ODE). The ME is em-

ployed to extract dynamic motion vectors between two sequen-

tial frames and implemented by array PEs with a full search

block matching method [13]. The VAE is employed to extract
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Fig. 7. Detailed visual perception algorithm.

static features such as intensity, color, and orientation and gen-

erate the saliency map that combines the extracted feature maps

through repeated normalizations. The ODE is proposed to per-

form the final ROI classification for each object using the gener-

ated saliency map. The RISC controller takes a role in control-

ling the three dedicated engines and performing software ori-

ented operations between the dedicated operations of the en-

gines. A 24 KB memory is used for storing original images and

data communication among the three engines by sharing inter-

mediate processing data. After the final ROI classification, the

NPE transfers information of the obtained ROI grid-tiles to the

STM through a FIFO queue.

Fig. 7 shows the detailed visual perception algorithm oper-

ated by the NPE, which broadly consist of saliency map gen-

eration and ROI classification. The saliency map generation is

mainly based on Itti’s saliency based visual attention [8] and ac-

celerated by the VAE. First, the RGB channels of VGA sized

input image are down-sized to 80 60 pixels and an inten-

sity feature map and two color feature maps are generated by

per-pixel filtering operations. Four orientation feature maps, for

the direction of 0, 45, 90, and 135 , are generated from the in-

tensity feature map with the Gabor filtering. After generating

multi-scale Gaussian pyramid images for each of 7 maps, each

image is transformed by a center-surround mechanism to en-

hance the parts of the image that differ from their surround-

ings. Finally, the saliency map is generated by repeated com-

bination of normalized feature maps. The motion vector map,

generated by the ME, is also combined in this step. Among

these processes, computationally intensive image filtering op-

erations such as Gabor, Gaussian, and center-surround filtering

are accelerated by the hardware accelerator VAE. The normal-

ization processes, which include irregular operations and can be

performed in different ways, are performed by software by the

RISC controller. After saliency map generation, ROI classifica-

tion is performed by the ODE. First, the 10 most salient points

are selected as the seed points out of the saliency map. Then,

from the most salient seed point, the ROI of an object grows

from neighbor pixels of the seed through repeated homogeneity

classifications. For the classification of each pixel, an intensity,

saliency, and location are used for homogeneity evaluation. The

similarities between the seed and target pixel are measured for

above three metrics, and based on the summated result, the final

classification that the target pixel is determined to be joined to

the ROI or not is determined. In case that the other seed points

are included by the grown region, they are inhibited from the

seed points in the next ROI classification. After repeating clas-

sification processes for 10 seed points, the ROI of each object

in pixel unit is quantized to the small sized grid-tile unit.

In the design of the VAE and ODE, biologically inspired cel-

lular neural networks and neuro-fuzzy classifier are employed

for fast feature extraction and robust classification, respectively.

In the VAE, 2-D cellular neural networks are used to rapidly ex-

tract various features from the input image using its regional

and collective processing [7]. Fig. 8 shows overall block di-

agram, circuits, and measured waveforms of the ODE. It em-

ploys Gaussian fuzzy membership and single-layer neural net-
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Fig. 8. Block diagram, circuits, and measured waveforms of object detection engine.

work for similarity measure and decision making, respectively.

In circuit design, the ODE exploits analog-based mixed-mode

circuits to reduce area and power overhead of Gaussian func-

tion circuits and neural synaptic multipliers. Except the digitally

implemented learning part, data processing parts of the ODE

are implemented by analog circuits. To exploit the analog data

processing, 8-bit intensity, saliency, and location values of the

target and seed pixel are converted to analog signals by DACs.

After that, three Gaussian function circuits measure the simi-

larities between the two pixels for three metrics. A Gaussian

function circuit is realized by the combination of MOS differ-

ential pair and minimum follower circuit in current mode con-

figuration. The differential pair circuit outputs the symmetric

differential signals, each of which has exponential non-linearity

characteristics. And the minimum follower circuit generates the

Gaussian-like output by following the minimum between the

symmetric differential signals. A 2-D Gaussian function circuit

can be implemented by two consecutive Gaussian function cir-

cuits by connecting the output of a Gaussian function circuit to

the bias current input tail of the next Gaussian function circuit.

Finally, current-mode neural synaptic circuits merge the three

measured similarities with multiplying their weight values, and

comparator circuit make the final decision through thresholding.

With a Hebbian learning [14], the weight values of the neural

synaptic circuits, which play a role in classification criteria,

are updated every cycle. As a result, the ODE completes the

ROI detection for 1 object within 7 s at 200 MHz operating

frequency. And its analog-based mixed-mode implementation

reduces the area and power consumption by 59% and 44%,

respectively, compared with those of digital implementation.

Fig. 8 also shows the measurement waveforms of mixed-mode

ODE. They include DAC output signal, Gaussian function cir-

cuit output signal, and final classification signal. As shown in

the enlarged waveforms, the Gaussian output signal varies with

the similarity of two analog input signals, and the final classifi-

cation signal is made based on it.

B. SIMD Processor Unit

The SPU is designed to accelerate parallel image processing

tasks of the descriptor generation stage. As shown in Fig. 9,

the SPU consist of a SPU controller, eight SIMD controlled

dual-issued very long instruction word (VLIW) PEs, 128-bit-

wide data memory, and 2-D DMA. The eight PEs perform pixel

parallel image processing operation such as Gaussian filtering,

local maximum search, and histogram operation. The SPU con-

troller controls the overall program flow of the SPU, decodes the

instruction for the eight PEs, and performs data transfer between

the eight PEs and data memory. For the data memory of the eight

PEs, a 128-bit unified memory is used rather than eight 16-bit

memories to reduce the area and power consumption by 30.4%

and 36.4%, respectively. The two data aligners between the data

memory and eight PEs facilitate the data movement by rotating

the unified 128-bit data in 16-bit unit. The 2-D DMA performs

the data transfer between the external memory and internal data

memory in parallel with the PE operation. It automatically gen-

erates the addresses for 2-D data access for the data transactions

of vision applications.

The detailed block diagram of each dual-issued VLIW PE

is also shown in Fig. 9. It consists of two independent data
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Fig. 9. SIMD processor unit and its dual-issued VLIW PE.

paths for data processing operations such as ALU, shift, mul-

tiply, and multiply-and-accumulation (MAC), and data transfer

operations such as load and store. A 51-bit dual-issued VLIW

instruction enables parallel execution of the data processing and

data transfer operation for every cycle. Utilizing its own reg-

ister file with five-read and three-write ports, the PE can exe-

cute complex instructions for image processing such as two-way

multiply/MAC, three-operanded min/max compare, and 32-bit

accumulation in a single cycle. The register files of the other PEs

can be directly accessed for window based image processing. In

addition, each PE can be conditionally executed for the same in-

struction using its independently managed status register.

C. Decision Processor

The object decision stage is composed of repeated vector

matching processes that search the nearest vector of each

input descriptor among object database. These repeated vector

matching can be a performance bottleneck because distance

calculations between the input vector and each of thousands

of vectors in database require a lot of processing time. In the

proposed processor, the DP accelerates the vector matching to

make the object decision stage to be operated over 60 frame/sec

frame rate for the database including more than 15,000 vectors.

To reduce the search region of database without accuracy loss,

the DP exploits the H-VQ algorithm presented in the previous

vector matching processor [12]. However, as shown in Fig. 10,

the hardware is redesigned to increase the throughput of vector

matching with two modifications. First, the H-VQ algorithm

is performed with dedicated three-stage pipelined datapath

for vector distance calculation and comparison. Second, the

bandwidth of database vector memory is increased twice, from

256-bit to 512-bit. For the vector matching operations of the

DP, descriptor vectors are gathered in feature vector memory

from the SPUs as the first step. Then, the H-VQ algorithm is

performed by a controller with the dedicated datapath. Once an

input inquiry vector is set, the DP can obtain the index of the

minimum distance vector by reading vectors from the database

memory because the distance calculations and minimum vector

updates are automatically performed in pipelined datapath

stages. Since the DP can read two 256-bit vectors from the

database memory in a single cycle, the throughput of the DP

is two vector distance calculations per cycle at 200 MHz.

In overall, the DP matches 256 descriptor vectors with a

16384-entry database within 3M cycles.
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Fig. 10. Block diagram of decision processor.

V. MULTI-CASTING NETWORK-ON-CHIP

As the number of IP blocks increases to address computing

requirements of recent multimedia processing, conventional

shared medium based communication reveals its limitations

to handle simultaneous data transactions among multiple IP

blocks. As an alternative, a network-on-chip (NoC) is high-

lighted as suitable communication architecture in multi-core

era in spite of its high implementation costs compared with

conventional bus, because it provides sufficient bandwidth to

multiple IP blocks and has good scalability with distributed

router switches [15]–[17]. In this processor, a multi-casting

network-on-chip (MC-NoC) is proposed to integrate all of 21

IP blocks. To cope with the processor’s application-driven data

transactions such as 1-to-N broad/multi-casting and inter-pro-

cessor data communications, the MC-NoC has a new combined

architecture and supports a multi-casting capability.

Fig. 11 shows the proposed MC-NoC architecture that con-

sists of a 9 10 system network and four 7 7 SPU cluster

(SPC) networks. The 16 SPUs are connected to the system

network through the four SPC networks while the NPE, STM,

DP, and two external interfaces are directly connected to the

system network. It adopts a hierarchical star topology [15] as

a basic topology for low latency data communications, and

then, supplements a ring topology to the SPC networks for

high-speed inter-SPU data transactions. The additional network

links for the combined topology provides 25.6 GB/s aggregated

bandwidth between the SPC networks and allows each SPU to

access the other SPUs in neighbor clusters in two switch hops.

In overall, topology-combined MC-NoC provides a 118.4 GB/s

total bandwidth with the switch hop latency of less than 3. The

proposed MC-NoC adopts a wormhole routing protocol whose

packet is composed of header, address, and data flow control

units (FLITs). Each FLIT consists of 2-bit control signals and

34-bit data signals including 2-bit FLIT type indicator. The

header FLIT contains all information for the entire packet

transmission such as 4-bit burst length for burst data transaction

Fig. 11. Proposed multi-casting NoC architecture.

up to eight FLITs and 2-bit priority level for quality-of-service.

The 16-bit source defined routing information (RI) allows four

switch traversals for normal packets and multi-casting to arbi-

trary SPUs for multi-casting packets. In case of multi-casting

packets, each bit of 16-bit RI indicates each destination SPU.

In the MC-NoC, multi-casting from the NPE/STM to the 16

SPUs is supported to accelerate 1-to-N data transactions such

as program kernel distribution and image data download. To

this end, each network switch is designed to have multi-casting

ability. Fig. 12 shows a four-stage pipelined multi-casting

crossbar switch and its multi-casting port. It consists of input

ports, arbiters, mux based crossbar fabric, and output ports.

At first, the incoming FLITs are buffered at the 8-depth FIFO

queue that contains the synchronization interface [18] for

heterogeneous clock domain conversion. Then, each active

input port sends a request signal to its destination arbiter to get

a grant signal to traverse the crossbar fabric. For scheduling of

grant signals, the arbiters perform a simple round-robin sched-

uling according to the priority levels. In case of multi-casting
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Fig. 12. Four-stage pipelined multi-casting switch and its multi-casting port.

packet, a multi-casting input port sends multiple requests to all

destination arbiters at the same time and waits until all grant

signals are returned. To this end, in the multi-casting input

port, a multi-port requester decodes the 16-bit RI and generates

corresponding request signals and a grant checker holds the

multi-casting packet until the registered request signals are

equal to the received grant signals. After all grants are gathered,

multi-casting is performed using the existing broad-casted

wires of crossbar fabric without any additional wires. A vari-

able strength driver is specially employed for the multi-casting

port to provide sufficient driving strength for multi-casting. As

a result, the MC-NoC’s multi-casting capability accelerates the

program kernel distribution and image data download task of

the target object recognition by 6.56 and 1.22 , respectively.

VI. LOW-POWER TECHNIQUES

To reduce power consumption during the object recognition

processing, chip-level power management is performed by the

STM. Fig. 13 shows power management architecture of the

proposed processor and its workload-aware dynamic power

management. In the chip, power domain of the 16 SPUs is

divided into four domains and each of them is independently

controlled by the STM. To control the power domains, off-chip

power gating method [19] is employed for low cost implemen-

tation. An external regulator with enable signal is employed

for each of the power domains. The rest parts of the chip, the

NPE, STM, DP and NoC, are placed in always-on domain.

For efficient power gating of the chip, workload-aware power

gating (WAPG) is adopted with workload-aware task sched-

uling (WATS). When the STM measures the workload of the

SPUs based on the number of ROI grid-tiles and determines

the number of activating SPUs, it also determines the number

of activated power domains in proportional to the workload

amount, as shown in the flow chart of Fig. 13. After that, the

STM sends request signals to external regulators to gate unused

power domains of SPUs before it assigns the ROI grid-tile tasks

to the SPUs. Considering a few hundreds of s settling time of

external regulators, the requests for power gating occur only

once per frame. By the WAPG, the number of activated power

domains adaptively varies according to the workload of input

frame as shown in Fig. 13.

For further reduction of dynamic power in activated power

domains, software controlled clock gating is applied to each op-

erating SPU as shown in Fig. 14. The clock of SPU can be gated

by two software requests, end request and wait request. Each

request is made by writing operation of the SPU to pre-defined

address. The end request occurs when the SPU has finished its

assigned task. On the other hand, the wait request is generated

in situation that the SPU should stop its operation and wait for

other module’s operation. To this end, the SPU writes the index

value at the pre-defined wait address to notify the index of wait
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Fig. 13. Workload-aware dynamic power management.

Fig. 14. Software controlled clock gating.

conditions to be resolved. In this case, the clock is automati-

cally restored when all the wait conditions are resolved. With

the WAPG and software controlled clock gating, the power con-

sumption of the 16 SPUs is reduced by 38%, from 542 mW to

336 mW, while the power consumption of the overall processor

amounts to 496 mW at 60 frame/sec frame-rate.

VII. CHIP IMPLEMENTATION AND EVALUATION

The proposed recognition processor is fabricated in a 0.13 m

1-poly 8-metal CMOS technology and its mm chip con-

tains 36.4M transistors including 3.7M logic gates and 396 KB

on-chip SRAM. Fig. 15 shows the chip micrograph and Table I

summarizes its features. The operating frequency is 200 MHz

for IP blocks and 400 MHz for the NoC. Its peak performance

amounts to 201.4 giga operations per second (GOPS) when 695

mW is dissipated. Specifically, 128 PEs of 16 SPUs, each of

which performs up to five operations per cycle with a two-way

MAC instruction, performs 128 GOPS. The NPE performs 54

Fig. 15. Chip micrograph.

GOPS; 40 linear PEs of the VAE perform 24 GOPS, four parallel

analog-digital mixed datapaths of the ODE perform 20 GOPS,

parallel SAD units of the ME perform 9.8 GOPS, and a con-

trol RISC performs 0.2 GOPS. The DP performs 19.4 GOPS

using its 32 16-bit SAD distance calculation and compare units.

The average power consumption of the processor is 496 mW

at the supply voltage of 1.2 V while the proposed multi-object

recognition is running at 60 frame/sec frame-rate. Table II shows

power break-down of the proposed processor. The 16 SPUs ac-

count for about two thirds of overall power consumption.

Fig. 16 shows performance comparisons of the proposed pro-

cessor with previous vision processors [2]–[4], [20]. Fig. 16(a)

shows power efficiency comparison. The GOPS/W, which

normalizes the GOPS performance with the power, is adopted

as a performance index where the 1 operation means 16-bit

fixed-point operation. The proposed processor achieves 290

GOPS/W, which is 1.36 times higher than the previous vision

processors. Fig. 16(b) shows energy efficiency comparison in

object recognition, which is obtained by energy consumption

per each frame. With 60 frame/sec operation by the pipelined

architecture and under 0.5 W power consumption by the

workload-aware dynamic power management, the proposed
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Fig. 16. (a) GOPS/W comparison. (b) Energy/frame comparison.

Fig. 17. Demonstration system.

TABLE I
CHIP SUMMARY

TABLE II
POWER BREAK-DOWN

processor achieves 8.2 mJ energy dissipation per frame for

VGA sized video input, which is 3.2 times lower than the best

of the previous object recognition processor.

For the validation of the fabricated chip, a demonstration

system for real-time object recognition is developed as shown

in Fig. 17. It is composed of target objects, video camcorder,

evaluation board, and LCD display. The evaluation board

is composed of three floors, which are for host processor,

video decoder and fabricated recognition chip, and peripheral

interfaces such as LCD display, serial, USB, and Ethernet,

respectively. In the demonstration system, the fabricated chip is

used as a vision processing accelerator while the host processor

controls the whole program sequences and accesses peripheral

modules to display the results and to interface with the external

devices. The overall object recognition is performed by three

steps. First, the input image of the target objects is captured

from the video camcorder and decoded to three-channel RGB

pixel data by the video decoder. Then, the decoded image

frame is processed by the proposed multi-object recognition

processor. Last, the final recognition results are displayed with

the key-points at the LCD screen by the host processor.

VIII. CONCLUSION

In this work, we have proposed a real-time multi-object

recognition processor with a three-stage pipelined architec-

ture. The visual perception based multi-object recognition

algorithm has been developed to give multiple attentions to

multiple objects in the input image. For human-like multi-ob-

ject perception, a neural perception engine has been proposed

with biologically inspired neural networks and fuzzy logic
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circuits. In hardware architecture, a three-stage pipelined ar-

chitecture has been proposed to maximize the throughput of

recognition processing. The three object recognition tasks are

executed in the pipeline and the execution times of the three

tasks are balanced for efficient pipelining based on intelligent

workload estimations. In addition, a 118.4 GB/s multi-casting

network-on-chip has been proposed for communication archi-

tecture with incorporating overall 21 IP blocks of the processor.

Finally, workload-aware dynamic power management was

performed for low-power object recognition. The 49 mm

chip contains 3.7M gates and 396 KB on-chip SRAM in a

0.13 m CMOS process. With a demonstration system, the

fabricated chip achieves 60 frame/sec multi-object recognition

up to 10 different objects for VGA (640 480) video input

while dissipating 496 mW at 1.2 V. The obtained 8.2 mJ/frame

energy dissipation is 3.2 times lower than the state-of-the-art

recognition processor.
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