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Abstract. A new low-order coupled ocean–atmosphere

model for midlatitudes is derived. It is based on quasi-

geostrophic equations for both the ocean and the atmosphere,

coupled through momentum transfer at the interface. The

systematic reduction of the number of modes describing the

dynamics leads to an atmospheric low-order component of

20 ordinary differential equations, already discussed in Rein-

hold and Pierrehumbert (1982), and an oceanic low-order

component of four ordinary differential equations, as pro-

posed by Pierini (2011). The coupling terms for both compo-

nents are derived and all the coefficients of the ocean model

are provided.

Its dynamics is then briefly explored, through the analysis

of its mean field, its variability and its instability properties.

The wind-driven ocean displays a decadal variability induced

by the atmospheric chaotic wind forcing. The chaotic behav-

ior of the coupled system is highly sensitive to the ocean–

atmosphere coupling for low values of the thermal forcing

affecting the atmosphere (corresponding to a weakly chaotic

coupled system). But it is less sensitive for large values of

the thermal forcing (corresponding to a highly chaotic cou-

pled system). In all the cases explored, the number of pos-

itive exponents is increasing with the coupling. Two codes

in Fortran and Lua of the model integration are provided as

Supplement.

1 Introduction

Low-order models were originally developed to isolate key

aspects of the atmospheric and climate dynamics (Stommel,

1961; Saltzman, 1962; Lorenz, 1963; Veronis, 1963). Since

these early developments, many low-order models were

proposed in various fields of science (e.g., Sprott, 2010),

and in particular in climate science (Charney and DeVore,

1979; Nicolis and Nicolis, 1979; Vallis, 1988; Yoden, 1997;

Imkeller and Monahan, 2002; Crucifix, 2012). These models

allow clarifying important aspects of the underlying struc-

ture of the atmospheric and climate dynamics, such as the

possibility of multiple stable equilibria (e.g., Simonnet and

Dijkstra, 2002; Dijkstra and Ghil, 2005), the possibility of

catastrophic events (e.g., Paillard, 1998), or the intrinsic

property of sensitivity to initial conditions that led to the de-

velopment of new approaches for forecasting (Lorenz, 1963;

Nicolis, 1992; Palmer, 1993; Trevisan, 1995; Nicolis and

Nicolis, 2012). Such models are also often used to evalu-

ate new tools developed in the context of weather and cli-

mate forecasting problems, such as data assimilation ap-

proaches (Pires et al., 1996; Carrassi and Vannitsem, 2010,

2011), conceptual analyses of deterministic or stochastic

climate forcings (Wittenberg and Anderson, 1998; Arnold

et al., 2003), extreme value analyses (Lucarini et al., 2012)

or post-processing (Vannitsem, 2009; Van Schaeybroeck and

Vannitsem, 2011), among others.

By definition, these low-order models are built in such

a way to simplify as far as possible the system under in-

vestigation and keep only the key ingredients of interest, as

for instance the analysis of the impact of an orography on

the instability of atmospheric flows as in Charney and Straus

(1980). When dealing with climate the same procedure can

be performed by focusing on one specific aspect, for instance

the global energy balance of the earth assuming that the dy-

namics at smaller space and timescales could be modeled

based on stochastic processes (Nicolis and Nicolis, 1979).

When one is interested in keeping key ingredients of pro-

cesses acting at very different scales, the problem becomes
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more involved and only a few such models have been devel-

oped. A popular approach consists in coupling two low-order

models and modifying artificially the typical timescale of one

of them (e.g., Goswami et al., 1993; Pena and Kalnay, 2004).

This approach could indeed provide an easy way to build

such multiscale models, but one loses physical significance.

Another interesting model built in this form was proposed

by Roebber (1995), in which the low-order Lorenz (1984a)’

model is coupled with an oceanic three-box model (with six

ordinary differential equations for temperature and salinity)

developed by Birchfield (1989), using empirical relations for

heat fluxes. This led to a coupled model of nine prognos-

tic variables, with two specific timescales, one for the atmo-

sphere and the other for the ocean.

The other approach consists in starting from a detailed

coupled model and systematically reducing the number of

modes of the different components. A first attempt made

by Lorenz (1984b) led to a coupled ocean–atmosphere low-

order model incorporating many processes like condensa-

tion, evaporation, and radiative transfer. However, the ocean

was only considered as a heat bath. This model was sub-

sequently modified by Nese and Dutton (1993), in which

oceanic transport is incorporated in a way similar to Veronis

(1963). The final version of this model contains 31 prognos-

tic variables and several diagnostic relations. The coupled

model developed by Nese and Dutton (1993) was used to

evaluate the impact of the ocean transport on the predictabil-

ity of the coupled system. They have found that when the

ocean dynamics is activated, the predictability as measured

by the Lyapunov exponents is increased. Another interest-

ing model developed by van Veen (2003) and derived from

first principles combines the three-variable atmospheric sys-

tem of Lorenz (1984a) and the four-variable ocean model of

Maas (1994). In this seven-variable model, a clear distinc-

tion between three different timescales is made, one for the

atmosphere, one for the deep ocean and one for the ocean

surface layer. In this model, a systematic bifurcation analy-

sis has been undertaken and compared with the bifurcation

structure of the atmospheric component only. In particular it

was shown that the ocean plays an important role close to the

bifurcation points of the model, but much less in the chaotic

regime. In the latter case the ocean integrates the rapid fluc-

tuations of the atmosphere in a quite passive manner without

providing a strong feedback toward the atmosphere. In addi-

tion, only single oceanic gyres can develop.

Building on the latter stream of ideas, Vannitsem (2014)

proposed to couple two low-order models for the atmo-

sphere and the ocean, derived from quasi-geostrophic equa-

tions. This model is intermediate between the “very low-

order” coupled models proposed by van Veen (2003), and

the more sophisticated process-oriented low-order coupled

models of Lorenz (1984b) and Nese and Dutton (1993).

It is based on the low-order quasi-geostrophic model of

Charney and Straus (1980) and the shallow water quasi-

geostrophic model of Pierini (2011). The latter is able to

simulate the dynamics of single or double oceanic gyres,

typical in the Northern Atlantic and Pacific. The coupling

is done through momentum transfer at the interface, only.

This model has the advantage to be derived from first prin-

ciples as in van Veen (2003) and Lorenz (1984b), but fo-

cusing only on the coupled dynamics associated with the

momentum forcing between the two components. It will

be referred to as OA-QG-WS v1 (OA-QG-WS for Ocean–

Atmosphere Quasi-Geostrophic Wind Stress). An extension

has also been proposed in Vannitsem (2014), by adding at-

mospheric modes as in Reinhold and Pierrehumbert (1982).

This second version of the model, whose dynamics was only

slightly touched upon in Vannitsem (2014), is the central sub-

ject of the present paper, and will be referred to as OA-QG-

WS v2.

The degree of sophistication of this low-order model is

such that it is not straightforward to evaluate all the coupling

coefficients (and the coefficients of the oceanic part), due to

the presence of different orthogonal basis functions and in-

ner products for both climate components. These are there-

fore made available here and some validation test cases are

provided for subsequent use of the model by the atmospheric

and climate communities. The revision of the model also al-

lowed correcting a few coefficients of the first model version

presented in Vannitsem (2014), without qualitative modifi-

cations of the results and conclusions. In addition, a few re-

sults concerning the dynamical instability of the system are

provided, and similarities and dissimilarities with the trends

already found in Vannitsem (2014) are discussed.

The original partial differential equations of the model and

the choice of the orthogonal modes are presented in Sect. 2.

Section 3 is devoted to some properties of the model that

could serve as a benchmark. The appendix contains all the

coefficients of the model, as described in Sect. 2. In Sect. 4,

some conclusions are drawn.

2 The model equations of OA-QG-WS v2

2.1 The atmospheric model

The atmospheric model, developed by Charney and

Straus (1980) and subsequently extended by Reinhold and

Pierrehumbert (1982), is a two-layer quasi-geostrophic flow

defined on a beta plane. The equations in pressure coordi-

nates are

∂

∂t

(

∇2ψ1
)

+ J (ψ1,∇2ψ1)+β
∂ψ1

∂x

= −k′
d∇

2(ψ1 −ψ3)+
f0

1p
ω, (1)

∂

∂t

(

∇2ψ3
)

+ J (ψ3,∇2ψ3)+β
∂ψ3

∂x

= +k′
d∇

2(ψ1 −ψ3)−
f0

1p
ω− kd∇2(ψ3 −9), (2)
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∂

∂t
(ψ1 −ψ3)+ J ((ψ1 +ψ3)/2,ψ1 −ψ3)−

σ1p

f0
ω

= h′
d[(ψ

1 −ψ3)∗ − (ψ1 −ψ3)], (3)

where ψ1, ψ3, ω are the streamfunction fields at 250 and

750 hPa, and the vertical velocity (i.e., dp/dt), respectively.

f0 is the Coriolis parameter at latitude φ0, β = df/dy at φ0,

σ = −R/p
(

∂T
∂p

− RT
pcp

)

is the static stability (where T is the

temperature, R the gas constant and cp the heat capacity at

constant pressure) considered as constant. kd and k′
d are the

coefficients multiplying the surface friction term and the in-

ternal friction between the layers, respectively. (ψ1 −ψ3)∗

is a constant thermal forcing of the atmosphere (Newtonian

heating). An additional term has been introduced in this sys-

tem in order to account for the presence of a surface boundary

velocity of the oceanic flow defined by 9 (see next section).

This would correspond to the Ekman pumping on a moving

surface and is the mechanical contribution of the interaction

between the ocean and the atmosphere (e.g., Deremble et al.,

2012).

Note also that the heating term has not been modified even

if heating is coming mostly from the ocean. It is assumed that

this heating is a fast process as compared to the dynamics of

heat transport in the ocean, thereby transferring almost in-

stantaneously the energy toward the atmosphere. This strong

assumption allows isolating the impact of wind-driven in-

teractions between the ocean and the atmosphere. This as-

sumption could be relaxed in a future version of the model

in a similar way as in van Veen (2003) or Deremble et al.

(2012).

These equations are then adimensionalized by scaling

x′ = x/L and y′ = y/L, t by f−1
0 , ω by f01p and ψ by

L2f0 and the parameters are then also rescaled as σ0 =
(σ1p2)/(2L2f 2

0 ),2k = kd/f0,k
′ = k′

d/f0,h
′′ = h′

d/f0. The

fields are expanded in Fourier series over the domain y′ =
[0,π ] and x′ = [0,2π/n], and only 10 modes, Fk , are re-

tained, obeying the boundary conditions ∂Fk/(∂x
′)= 0 at

y′ = 0,π . n is the aspect ratio between the lengths of the

domain in y and in x, n= 2Ly/Lx = 2πL/(2πL/n). These

modes are

F1 =
√

2cos(y′),

F2 = 2cos(nx′)sin(y′),

F3 = 2sin(nx′)sin(y′),

F4 =
√

2cos(2y′),

F5 = 2cos(nx′)sin(2y′),

F6 = 2sin(nx′)sin(2y′),

F7 = 2cos(2nx′)sin(y′),

F8 = 2sin(2nx′)sin(y′),

F9 = 2cos(2nx′)sin(2y′),

F10 = 2sin(2nx′)sin(2y′),

and the fields are then expressed as

ψ =
10
∑

k=1

ψkFk,

θ =
10
∑

k=1

θkFk,

ω =
10
∑

k=1

ωkFk,

(ψ1 −ψ3)∗ = 2

10
∑

k=1

θ∗
k Fk,

where θ = (ψ1 −ψ3)/2 and ψ = (ψ1 +ψ3)/2. Using the

usual inner product,

〈f,g〉 =
n

2π2

π
∫

0

dy′
2π/n
∫

0

dx′fg, (4)

one gets the set of equations reported in the Appendix of the

paper of Reinhold and Pierrehumbert (1982) and in Reinhold

and Pierrehumbert (1985), leading to 20 ordinary differential

equations for the dependent variables ψk and θk . The dynam-

ics of this atmospheric model has also been explored with

emphasis on the predictability of the atmosphere in the pres-

ence of weather regimes in Trevisan et al. (2001).

The presence of the ocean is felt through the coupling as-

sociated with the motion of the ocean surface, kd∇29 where

9 is the streamfunction of the oceanic flow as defined in the

next section. It is also projected on the different atmospheric

modes using the inner product of Eq. (4). The coefficients are

given in Appendix B.

Note that the thermal forcing term is fixed as in Charney

and Straus (1980) and Reinhold and Pierrehumbert (1982) in

which the only nonzero term is θ∗
1 , which will be referred

to as θ∗ in the sequel. This corresponds to a thermal forcing

only dependent on the latitude with a larger contribution in

the southern part of the domain.

2.2 Ocean model

The ocean model is based on the reduced-gravity quasi-

geostrophic shallow water model (Vallis, 2006). The basic

assumptions behind this equation are that (i) the ocean dy-

namics can be described by a shallow water fluid layer su-

perimposed over a quiescent deep fluid layer, (ii) the Rossby

number Ro = U/(f0L) is small, and (iii) the space scale of

the process under investigation should not be significantly

larger than the deformation radius (typically of a few hundred

kilometers for a fluid layer depth of the order of 100 m). The

forcing is provided by the wind generated by the atmospheric

component of the coupled system. The equation reads

∂

∂t

(

∇29 −
9

L2
R

)

+ J (9,∇29)+β
∂9

∂x

www.geosci-model-dev.net/7/649/2014/ Geosci. Model Dev., 7, 649–662, 2014



652 S. Vannitsem and L. De Cruz: Low-order O–A model

= −r∇29 +
curlzτ

ρh
, (5)

where 9 is the velocity streamfunction (or pressure), ρ the

density of water, h the depth of the fluid layer,LR the reduced

Rossby deformation radius, r a friction coefficient at the bot-

tom of the fluid layer, and curlzτ the vertical component of

the curl of the wind stress. Usually in low-order oceanic mod-

eling the latter is provided as an ideal profilein the meridional

direction (e.g., Simonnet and Dijkstra, 2002). In the present

work, this is provided as a “real” wind field generated by the

atmospheric low-order model. Assuming that the wind stress

is given by (τx,τy)= C(u−U,v−V ) where u and v are the

horizontal components of the lower layer geostrophic wind,

−∂ψ3/∂y and ∂ψ3/∂x, respectively, and U and V the cor-

responding quantities in the ocean, one gets

curlzτ

ρh
=
C

ρh
∇2(ψ3 −9). (6)

Here the wind stress is proportional to the relative velocity

between the flow in the ocean layer and the wind. This slight

modification as compared with the version model OA-QG-

WS v1 in which the stress was only based on the absolute

wind velocity, has been made in order to avoid spurious forc-

ings when the velocities in the atmosphere and the ocean are

similar. It is however a correction which is quite marginal in

view of the (typically) small amplitudes of the flow field in

the ocean.

Using the same domain and the same nondimensionaliza-

tion procedure as in the atmospheric model, one gets

∂

∂t ′

(

∇ ′29 ′ + γ9 ′
)

+ J ′(9 ′,∇ ′29 ′)+β ′ ∂9
′

∂x′

= −r ′∇ ′29 ′ + δ∇ ′2(ψ ′ −9 ′)

= −(r ′ + δ)∇ ′29 ′ + δ∇ ′2ψ ′, (7)

where x′ = x/L, y′ = y/L, t ′ = tf0, 9 ′ =9/(L2f0), ψ
′ =

ψ3/(L2f0), β
′ = βL/f0, γ = −L2/L2

R, r ′ = r/f0 and δ =
C/(ρhf0).

Let us now define the truncated basis functions on which

the streamfunction field is projected. Several truncations

were proposed in the literature from two-mode (Jiang et al.,

1995) up to four-mode truncations (Simonnet et al., 2005;

Pierini, 2011), the latter approach allowing for chaotic be-

haviors. In the present work, we use the following set of

modes,

φ1 = 2e−αx′
sin(nx′/2)sin(y′),

φ2 = 2e−αx′
sin(nx′/2)sin(2y′),

φ3 = 2e−αx′
sin(nx′)sin(y′),

φ4 = 2e−αx′
sin(nx′)sin(2y′), (8)

in order to get the free-slip boundary conditions (and no nor-

mal flow to the wall) in the domain over which the flow is

defined at x = 0,2π/n and y = 0,π . In addition a specific

inner product is adopted for the oceanic model in a similar

way as in Pierini (2011),

(f,g)=
n

2π2

π
∫

0

dy′
2π/n
∫

0

dx′fge2αx′
. (9)

Introducing the truncated fields,
∑

mAmφm, for m= 1,4,

into Eq. (7) and projecting on each mode using the inner

product Eq. (9), one gets a set of four ordinary differential

equations for the variables Am,

dA1

dt
= −

L114 −L314

a1 + b1
A1A4 −

L112 −L312

a1 + b1
A1A2

−
L123 −L323

a1 + b1
A2A3 −

L134 −L334

a1 + b1
A3A4

+
e1 − d1

a1 + b1
A1 +

f1 − c1

a1 + b1
A3 + f (1),

dA2

dt
= −

L211 −L411

m1 + n1
A2

1 −
L233 −L433

m1 + n1
A2

3

−
L213 −L413

m1 + n1
A1A3 +

q1 − o1

n1 +m1
A2

+
r1 −p1

n1 +m1
A4 + f (2),

dA3

dt
=
(

−b1
L114 −L314

a1 + b1
−L314

)

A1A4

+
(

−b1
L112 −L312

a1 + b1
−L312

)

A1A2

+
(

−b1
L123 −L323

a1 + b1
−L323

)

A2A3

+
(

−b1
L134 −L334

a1 + b1
−L334

)

A3A4

+
(

b1
e1 − d1

a1 + b1
+ d0 − e0

)

A1

+
(

b1
f1 − c1

a1 + b1
+ c0 − v0

)

A3 + f (3),

dA4

dt
=
(

−m1
L211 −L411

m1 + n1
−L411

)

A2
1

+
(

−m1
L233 −L433

m1 + n1
−L433

)

A2
3

+
(

−m1
L213 −L413

m1 + n1
−L413

)

A1A3

+
(

m1
q1 − o1

n1 +m1
+ o0 − q0

)

A2

+
(

m1
r1 −p1

n1 +m1
+p0 − r0

)

A4 + f (4), (10)

whose coefficients are all provided in Appendix A. The forc-

ing tendencies, f (m),m= 1,4, associated with the wind
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stress as defined by Eq. (6), are given by

f (1)=
g1,2

a1 + b1
B2 +

g1,3

a1 + b1
B3 +

g1,4

a1 + b1
B4

+
g1,7

a1 + b1
B7 +

g1,8

a1 + b1
B8 ,

f (2)=
s2,1

n1 +m1
B1 +

s2,5

n1 +m1
B5

+
s2,6

n1 +m1
B6 +

s2,9

n1 +m1
B9

s2,10

n1 +m1
B10 ,

f (3)=
(

δK3,2

u1
+
b1g1,2

a1 + b1

)

B2 +
(

δK3,3

u1
+
b1g1,3

a1 + b1

)

B3

+
(

δK3,4

u1
+
b1g1,4

a1 + b1

)

B4 +
(

δK3,7

u1
+
b1g1,7

a1 + b1

)

B7

+
(

δK3,8

u1
+
b1g1,8

a1 + b1

)

B8 ,

f (4)=
(

m1s2,1

n1 +m1
+
δK4,1

u2

)

B1 +
(

m1s2,5

n1 +m1
+
δK4,5

u2

)

B5

+
(

m1s2,6

n1 +m1
+
δK4,6

u2

)

B6 +
(

m1s2,9

n1 +m1
+
δK4,9

u2

)

B9

+
(

m1s2,10

n1 +m1
+
δK4,10

u2

)

B10 , (11)

whose coefficients are provided in Appendix B, where Bi =
ψ3
i = ψi − θi . Note that the f (i) should not be confused

with the Coriolis parameter f0 and the parameter f1 of Ap-

pendix A.

2.3 Estimation of the main parameters

The estimation of the main physical parameters is made as

follows. For the atmosphere, the parameter k is related to

the surface drag felt by the lower layer of the two-layer QG

model. This is estimated based on the Ekman layer theory

(p. 115, Vallis, 2006) as

k =
d

2D
(12)

after dividing by f0, and where D and d are the thickness

of the lower atmospheric layer and the thickness of the Ek-

man surface layer, respectively. Typically D is of the order

of 5000 m and d of the order of 100–1000 m. This implies

that k falls in a range of [0.01,0.1]. Here the value is fixed

to k = 0.02 (and the other dissipation parameters are fixed

to h′′ = k′ = 2k). For parameter δ, one can use the estimate

done by Nese and Dutton (1993). The dimensional forcing

coefficient is given by

ko =
|V |ρa CD

ρoh
, (13)

where ρa and ρo are the densities of the air and of the sea

water, respectively. h is the thickness of the ocean layer

and CD the surface friction coefficient. With CD ≈ 0.001,

-300000
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-100000

-50000
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 50000

 100000

 150000
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 250000

 200000  201200  202400  203600

Α
i

Time (days)

i=1 i=2 i=3 i=4

Fig. 1. Temporal evolution of the four modes of Ai for θ∗ = 0.14

and δ = 0.001938.

h≈ 20–500 m, |V | ≈ 5–10 ms−1, ρa ≈ 1kgm−3 and ρo ≈
1000kgm−3, one gets values (once normalized by f0) in the

range [0.0001,0.01]. Note that C in Eq. (6) is equivalent to

C = |V |ρa CD .

For the thermal forcing, the same approach as in Charney

and Straus (1980) and in Reinhold and Pierrehumbert (1982)

is adopted, through the use of the thermal wind relation. θ∗

is therefore allowed to vary from [0,0.2].

3 Results of the integration of OA-QG-WS v2

In this section, some statistical and dynamical properties

of the model are reported as a benchmark. The numerical

scheme used is a second-order temporal scheme known as

the Heun scheme (see Kalnay, 2003) with a time step of 0.01

time unit. The parameter values used are listed in Table 1,

while the behavior of the system is explored by varying δ

and θ∗. The dimensional time unit is equal to 0.11215 days.

3.1 Model trajectories and mean fields

Figure 1 displays the temporal evolution of the Ai variables

of the ocean component for about 10 years starting after

200 000 days of integration. Interestingly a long-range vari-

ability emerges as in Vannitsem (2014).

As already alluded in Vannitsem (2014), this new version

of the model allows for the development of double gyres.

Figure 2 displays the mean streamfunction fields for differ-

ent values of the key parameters θ∗ = 0.077, θ∗ = 0.10, and

θ∗ = 0.14, after a long integration of about 3.5 × 108 days.

Two different initial states in phase space are used for θ∗ =
0.077 in panels a and b. Depending on parameter (and maybe

initial state in phase space) choice, different mean configu-

rations and sizes of gyres could develop in the basin. But

as reflected in Fig. 1, a large variability on a wide range

of timescales is also present around these mean fields lead-

ing to a variable transport in the ocean basin. The temporal

www.geosci-model-dev.net/7/649/2014/ Geosci. Model Dev., 7, 649–662, 2014
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Fig. 2. Average streamfunction field of the ocean for δ = 0.001938 and θ∗ = 0.077 (a), 0.077 (b), 0.10 (c) and 0.14 (d), as obtained from

a long integration of about 3.5 × 108 days. Note that (a) and (b) are obtained with the same parameters but different initial states in phase

space.

Table 1. Dimensional and nondimensional parameters used in the

coupled ocean–atmosphere model.

Dimensional parameters Nondimensional parameters

L= 5000
π km n= 1.5

Lx = 2πL
n α = 1

Ly = πL γ = −L2/L2
R

= −1741

f0 = 1.03210−4s−1 h′′ = k′ = 2k = 0.04

LR =
√
g′H
f0

= 38 002 m β ′ = βL/f0 = 0.2498

σ0 = 0.1

r ′ = 0.0000969

δ = [10−4,10−2]
θ∗ = [0.,0.2]

variation of these mean values are illustrated in Fig. 3, for

θ∗ = 0.077 and θ∗ = 0.14, starting from two different initial

conditions. The convergence is very slow due to the natu-

ral long-term variability of the ocean embedded in this sys-

tem. The presence of different attractors cannot be confirmed

or excluded at this stage, due to the blurring of the large

natural variability of the system. This analysis would need

even longer model integrations, with a higher-order numer-

ical scheme in order to better control the numerical error

as suggested by the anonymous referee. Two codes (in For-

tran and Lua) used to integrate the model (with the second-

order Heun method) and compute these averaged quantities

are provided as Supplement and can be used freely, provided

proper reference to the source is made.

Figure 4 displays the power spectra of modes ψ1 and A1,

as obtained using a time series of about 73 500 days for

θ∗ = 0.14 (sampled every 0.56075 days, one point every 500

adimensionalized time steps). The atmospheric field displays

a flat spectrum for small frequencies and decays at the large

ones. The typical timescale of transition between these two

regimes is of the order of 30 days for this large-scale atmo-

spheric mode. For the oceanic mode, the power spectrum is

continuously decaying closely following a power law, indi-

cating long-range time dependences (in agreement with the

visual inspection of Fig. 1). A change of slope is also visible

in this log–log plot, around a timescale of 30 days, reflect-

ing the change of statistical properties in the atmosphere. For

low frequencies (between ω = 0.0001 and ω = 0.2, the slope

of the decay is close to −2, suggesting a dynamics close to

a red noise. For large frequencies, the slope is much sharper

with a value close to −4. At low frequencies the ocean acts

as an integrator of the “white” noise produced by the atmo-

sphere, by analogy with a Brownian motion or an Ornstein–

Uhlenbeck process.

3.2 Chaotic dynamics

Sensitivity to initial conditions is one of the main properties

of the atmosphere. In dynamical systems theory, this prop-

erty is usually quantified by evaluating the Lyapunov expo-

nents. These quantities also allow for distinguishing between

the typical solutions generated by the system of ordinary dif-

ferential equations for some specific parameters. For a de-

tailed discussion of these typical solutions and the numerical

algorithms used for their evaluation, see Parker and Chua

(1989). In short, these quantities characterize the amplifica-

tion of small amplitude initial condition errors in time and are

evaluated in the so-called tangent space of the model trajec-

tory (Legras and Vautard, 1996), formally characterized by

the Jacobian matrix of the flow. In this tangent space, it can
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Fig. 3. Temporal variation of the mean values of the oceanic modes Ai for (a) θ∗ = 0.077, δ = 0.001938 and (b) θ∗ = 0.14, δ = 0.001938.
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Fig. 4. Power spectra for ψ1 and A2 obtained using a time series of about 73 500 days, for θ∗ = 0.14, and δ = 0.001938 (= 2 × 10−7f0).

be shown that there exists a set of (characteristic) vectors,

ui(t), i = 1, . . . ,n, and a corresponding set of (characteris-

tic) numbers, σi , quantifying the degree of amplification of

small perturbations, δxi(t), along these vectors. These char-

acteristic numbers are known as the Lyapunov exponents and

are given by

σi = lim
t→∞

1

t
ln

(

|δxi(t)|
|δxi(0)|

)

. (14)

If one of these exponents is positive, then the system is

sensitive to initial conditions and the solution is chaotic. If

the largest one is 0 and the others negative, then the solution

is periodic. If the two largest exponents are 0 and the others

negative, the solution lives on a 2-torus. Practically it is not

necessary to know these specific vectors, ui(t), i = 1, . . . ,n,

to get the Lyapunov exponents and any basis of indepen-

dent vectors can be used, because the amplification of any

L-dimensional volume in phase space will amplify on aver-

age with a rate equal to the sum of the first L Lyapunov expo-

nents (e.g., Legras and Vautard, 1996). Numerically one uses

a basis which is regularly orthonormalized in order to avoid

the collapse of all the vectors along the dominant instability

direction (e.g., Parker and Chua , 1989).

One of the main properties of this new version of the

model is the possibility of having a “large” number of

positive Lyapunov exponents, and hence a “large” attrac-

tor dimension. Figure 5a displays the variations of the first,

second and third Lyapunov exponents as a function of θ∗

for δ = 0.001938. For values of θ∗ smaller than 0.055, sta-

ble steady states are found with a set of four negative Lya-

punov exponents of very small amplitude (e.g., for θ∗ =
0.02, σ1 = −0.00128,σ2 = −0.00128, σ3 = −0.00133, and

σ4 = −0.00133 day−1 ) and the next ones with an am-

plitude 1000 times larger. At θ∗ = 0.055, a periodic solu-

tion emerges with a first exponent equal to σ1 = −1.110−8

day−1. For larger values up to θ∗ = 0.065, quasi-periodic so-

lutions (2-torus) appear, as well as for parameter values be-

tween 0.087 and 0.095. Between 0.065 and 0.087, chaotic

solutions separated by small periodic windows are prevail-

ing. Beyond 0.095, the dynamics become chaotic and no

periodic solutions were found for the parameter values ex-

plored. For large values of θ∗ the dynamics becomes wilder

with a dominant exponent close to σ1 = 0.50 day−1 for θ∗ =
0.16, a value larger than the ones found for more realistic

synoptic-scale dynamics (Vannitsem and Nicolis, 1997; Sny-

der and Hamill, 2003). Figure 5b displays the Kolmogorov–

Sinai entropy (sum of the positive Lyapunov exponents) and

the number of positive exponents as a function of θ∗. The

entropy is increasing steadily in the chaotic regime after

θ∗ = 0.1 and the number of positive exponents increases.

This contrasts with the model version OA-QG-WS v1 for

which only one positive exponent was found for small val-

ues of the coupling parameter δ. This second version of the
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Fig. 5. Values of the first three Lyapunov exponents, (a), and the Kolmogorov–Sinai entropy and the number of positive Lyapunov exponents,

(b), as a function of θ∗ for δ = 0.001938.

model has therefore more flexibility since one can easily get

different configurations in terms of dynamical instability, by

changing the main parameter θ∗. A detailed analysis of the

transitions from quasi-periodic motions to chaotic behaviors

will be investigated in the future as in recent works (Broer et

al., 2011; Sterk et al., 2010, among others).

Figure 6 displays the dependence of the amplitudes of

the Lyapunov exponents and the number of positive ex-

ponents as a function of the coupling parameter δ, for

three different values of θ∗. As in Vannitsem (2014),

the trends of the Lyapunov properties as a function of

δ can be very different for different values of θ∗. The

values of the exponents for θ∗ = 0.0825 are very sen-

sitive to δ, with sharp transition from (quasi-)periodic

solutions to chaotic behaviors around δ = 0.009. This in-

teresting feature suggests that δ plays a crucial role in set-

ting up the transition from nonchaotic to chaotic regimes in

the coupled system. A full understanding of this transition

should be obtained through a systematic analysis of the bi-

furcation diagram of this system (and it will be the subject

of a future investigation). For θ∗ = 0.10 and θ∗ = 0.14 an in-

crease is found for the first two exponents (but very weak

for θ∗ = 0.14), while a third positive one emerges when δ

is increased. Interestingly, these results confirm the tendency

already reported in van Veen (2003), indicating that the pres-

ence of the ocean has a stronger influence on the dynamics

of the atmosphere close to the periodic windows.

The sensitivity to δ is also illustrated in Fig. 6d in which

the Kolmogorov–Sinai entropy is shown, displaying a sys-

tematic increase for the three values explored. These trends

are opposite to those discovered in Nese and Dutton (1993).

Their results are most probably associated with the way the

heat is transported in the ocean basin and then transferred to-

ward the atmosphere in their model, a feature not present in

our model. This is worth investigating further in the future

by adding thermal exchanges between the atmosphere and

the ocean.

For all the cases explored, the number of positive Lya-

punov exponents also has a tendency to increase with the am-

plitude of the coupling δ. This feature is similar to what was

found in OA-QG-WS v1, further reflecting the importance of

the coupling between the ocean and the atmosphere.

To further understand this increase of instability as a func-

tion of the coupling parameter, the mean absolute amplitude

of the (backward) Lyapunov vectors along the different vari-

ables of the coupled system has been computed. Figure 7

displays the results for the first (backward) Lyapunov vector

(see Legras and Vautard, 1996) corresponding to the domi-

nant Lyapunov exponent for the same parameter as in Fig. 5c

and for three different values of δ. The first 10 points corre-

spond to the barotropic variables of the system, the next 10

points to the baroclinic ones, and the last 4 points to the ocean

variables. Clearly the projections along the atmospheric vari-

ables do not change as a function of the coupling δ, contrary

to the projection along the ocean variables. A similar picture

is found for the other backward Lyapunov vectors. This sug-

gests that the increase of instability is mainly associated with

an increase of the projection of the vectors along the ocean

variables, and not the baroclinic or barotropic instability

within the atmosphere. This conjecture is worth investigating

further in the future through a detailed analysis of the bifur-

cation diagram and of the characteristic vectors (also called

covariant vectors) of the system, which are (nonorthogonal)

intrinsic directions of instabilities (see Legras and Vautard,

1996).

4 Conclusions

In this paper, a new version (OA-QG-WS v2) of a low-order

coupled ocean–atmosphere model is presented, containing

24 ordinary differential equations. This model describes the

dynamics of the large-scale flows at midlatitudes of a baro-

clinic atmosphere interacting with an ocean layer under wind

forcings (or momentum exchanges). This coupled model dis-

plays features with strong resemblance with the dynamics

found at midlatitudes, with a chaotic dynamics of the atmo-

sphere at short timescales of the order of a day and a decadal

variability of the ocean layer. In contrast with the model ver-

sion OA-QG-WS v1 (Vannitsem, 2014), higher dimensional
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attractors (associated with a larger number of positive Lya-

punov exponents) can be found, and double gyres can de-

velop in the ocean basin in the presence of a chaotic atmo-

sphere.

The Lyapunov instability properties of the flow have also

been explored. Interestingly, for the set of parameters chosen,

a transition from periodic to chaotic regimes occurs at a value

of the bifurcation parameter close to θ∗ = 0.065. Close to

this value, the dynamics is also highly sensitive to the val-

ues of the coupling parameter δ, with a possibility of a sharp

transition from periodic to chaotic regimes. For large values

of θ∗, the dominant exponent is less sensitive to δ, in con-

trast to the lowest amplitude positive exponent. In addition,

the number of positive Lyapunov exponents has a tendency

to increase with δ regardless of what θ∗ is, suggesting an in-

crease of the dimension of its attractor in phase space. The

latter characteristic was also found in the first version (OA-

QG-WS v1) of the model.

As suggested by the analyses reported above, this new

model version is an interesting candidate for subsequent

analyses of the dynamical properties of coupled systems. In

addition, it can be used for testing tools developed for cou-

pled ocean–atmosphere systems in the context of data assim-

ilation, post-processing, and ensemble forecasting, among

others. All the coefficients of the (ocean) model and of the

coupling terms are also provided, allowing for an easy im-

plementation. Two codes (in Fortran and Lua) combining the

atmospheric and oceanic components are also provided as

Supplement.
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Appendix A

Coefficients of the ocean component of the model

a1 =
3π

8αn
(α2 − n2/4 − 1 + γ ), b1 =

8αn

3πu1

c1 =
αβ ′

u1
−
β ′

2α
, d1 =

−4nβ ′

3πu1
−

3πβ ′

8n

e1 = −(r ′ + δ)
(

(α2 − n2/4 − 1)
3π

8αn
+

8αn

3πu1

)

,

f1 = −(r ′ + δ)
(

1 −
(α2 − n2 − 1)

u1

)

c0 =
αβ ′

u1
, d0 =

−4nβ ′

3πu1

e0 = −(r ′ + δ)
8αn

3πu1
, v0 = (r ′ + δ)

(α2 − n2 − 1)

u1

n1 =
3π

8αn
(α2 − n2/4 − 4 + γ ), m1 =

8αn

3πu2

o1 =
−4nβ ′

3πu2
−

3πβ ′

8n
, p1 =

αβ ′

u2
−
β ′

2α

q1 = −(r ′ + δ)
(

(α2 − n2/4 − 4)
3π

8αn
+

8αn

3πu2

)

,

r1 = −(r ′ + δ)
(

1 −
(α2 − n2 − 4)

u2

)

o0 =
−4nβ ′

3πu2
, p0 =

αβ ′

u2

q0 = −(r ′ + δ)
8αn

3πu2
, r0 = (r ′ + δ)

(α2 − n2 − 4)

u2

u1 = α2 − n2 − 1 + γ, u2 = α2 − n2 − 4 + γ

and

L112 =
3π

8αn
(C112 +C121), L114 =

3π

8αn
(C114 +C141)

L123 =
3π

8αn
(C123 +C132), L134 =

3π

8αn
(C134 +C143)

L312 =
1

u1
(C312 +C321), L314 =

1

u1
(C314 +C341)

L323 =
1

u1
(C323 +C332), L334 =

1

u1
(C334 +C343)

L211 =
3π

8αn
C211, L233 =

3π

8αn
C233

L213 =
3π

8αn
(C213 +C231), L413 =

1

u2
(C413 +C431)

L411 =
1

u2
C411, L433 =

1

u2
C433

where

Cijk =
n

2π2

π
∫

0

dy′
2π/n
∫

0

dx′e2αx′
φiJ (φj ,∇2φk)

giving

C112 =
2

π

αn4(4α2 − 3n2 − 48)

(4α2 + 9n2)(4α2 + n2)
(1 + e−α2π/n),

C121 =
1

π

αn4(−4α2 + 15n2 + 24)

(4α2 + 9n2)(4α2 + n2)
(1 + e−α2π/n),

C114 =
1

π

αn4(α2 + n2 − 12)

(α2 + 4n2)(α2 + n2)
(1 − e−α2π/n),

C141 = −
1

4π

αn4(2α2 − 19n2 − 12)

(α2 + 4n2)(α2 + n2)
(1 − e−α2π/n),

C123 = −
1

2π

n4(α4 − 2α2n2 − 6α2 − 3n4 − 3n2)

α(α2 + 4n2)(α2 + n2)

(1 − e−α2π/n),

C132 =
−1

8π

n4(16α2n2 − 8α4 + 96α2 + 3n4 + 48n2)

α(α2 + 4n2)(α2 + n2)

(1 − e−α2π/n),

C134 =
−8

π

αn4(39n4 − 16n2(−21 +α2)− 16α2(−12 +α2))

(4α2 + n2)(4α2 + 9n2)(4α2 + 25n2)

(1 + e−α2π/n),

C143 =
4

π

αn4(303n4 − 16α2(−6 +α2)+ 8n2(21 + 13α2))

(4α2 + n2)(4α2 + 9n2)(4α2 + 25n2)

(1 + e−α2π/n),

C231 =
1

8π

n4(−4α4 − 22α2n2 + 3n4 + 12n2)

α(α2 + 4n2)(α2 + n2)

(1 − e−α2π/n),

C213 = −
1

2π

n4(α4 + 4α2n2 + 3n4 + 3n2)

α(α2 + 4n2)(α2 + n2)
(1 − e−α2π/n),

C211 = −
1

π

n4α

(4α2 + n2)
(1 + e−α2π/n),

C233 = −
4

π

αn4

(4α2 + n2)
(1 + e−α2π/n),

C312 =
1

8π

n4(8α4 − 28α2n2 − 96α2 + 3n4 + 48n2)

α(α2 + 4n2)(α2 + n2)

(1 − e−α2π/n),

C321 = −
1

8π

n4(4α4 − 44α2n2 − 24α2 + 3n4 + 12n2)

α(α2 + 4n2)(α2 + n2)

(1 − e−α2π/n),

C323 =

−
4

π

αn4(16α4 − 128α2n2 − 345n4 − 120n2 − 96α2)

(4α2 + n2)(4α2 + 9n2)(4α2 + 25n2)

(1 + e−α2π/n),

C332 =
8

π

αn4(16α4 − 56α2n2 − 15n4 − 240n2 − 192α2)

(4α2 + n2)(4α2 + 9n2)(4α2 + 25n2)
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(1 + e−α2π/n),

C314 =
8

π

αn4(16α4 − 8α2n2 − 81n4 − 144n2 − 192α2)

(4α2 + n2)(4α2 + 9n2)(4α2 + 25n2)

(1 + e−α2π/n),

C341 = −
4

π

αn4(16α4 − 248α2n2 − 63n4 − 72n2 − 96α2)

(4α2 + n2)(4α2 + 9n2)(4α2 + 25n2)

(1 + e−α2π/n),

C334 =
−4

π

αn4(−α2 + 3n2 + 12)

(α2 + n2)(α2 + 9n2)
(1 − e−α2π/n),

C343 =
1

π

αn4(−2α2 + 30n2 + 12)

(α2 + n2)(α2 + 9n2)
(1 − e−α2π/n),

C433 = −
2

π

n4α

(α2 + n2)
(1 − e−α2π/n),

C411 = −
1

2π

n4α

(α2 + n2)
(1 − e−α2π/n),

C431 = −
4

π

αn4(16α4 + 136α2n2 + 33n4 − 48n2)

(4α2 + n2)(4α2 + 9n2)(4α2 + 25n2)

(1 + e−α2π/n),

C413 = −
4

π

αn4(16α4 + 112α2n2 + 183n4 + 48n2)

(4α2 + n2)(4α2 + 9n2)(4α2 + 25n2)

(1 + e−α2π/n).

Appendix B

Coefficients of the coupling between the ocean

and the atmosphere

g1,2 = δ

(

3π

8αn
K1,2 −

K3,2

u1

)

,

s2,1 = δ

(

3π

8αn
K2,1 −

K4,1

u2

)

g1,3 = δ

(

3π

8αn
K1,3 −

K3,3

u1

)

,

s2,5 = δ

(

3π

8αn
K2,5 −

K4,5

u2

)

g1,4 = δ

(

3π

8αn
K1,4 −

K3,4

u1

)

,

s2,6 = δ

(

3π

8αn
K2,6 −

K4,6

u2

)

g1,7 = δ

(

3π

8αn
K1,7 −

K3,7

u1

)

,

s2,9 = δ

(

3π

8αn
K2,9 −

K4,9

u2

)

g1,8 = δ

(

3π

8αn
K1,8 −

K3,8

u1

)

,

s2,10 = δ

(

3π

8αn
K2,10 −

K4,10

u2

)

with

Ki,j =
n

2π2

π
∫

0

dy′
2π/n
∫

0

dx′e2αx′
φi∇2Fj

giving

K1,2 = −
2

π

(n2 + 1)n2(4α2 − 3n2)

(4α2 + 9n2)(4α2 + n2)
(1 + eα2π/n),

K1,3 =
16

π

(n2 + 1)αn3

(4α2 + 9n2)(4α2 + n2)
(1 + eα2π/n),

K1,4 =
16

√
2

3π2

n2

(4α2 + n2)
(1 + eα2π/n),

K2,1 = −
8
√

2

3π2

n2

(4α2 + n2)
(1 + eα2π/n),

K2,5 = −
2

π

(n2 + 4)n2(4α2 − 3n2)

(4α2 + 9n2)(4α2 + n2)
(1 + eα2π/n),

K2,6 =
16

π

(n2 + 4)αn3

(4α2 + n2)(4α2 + 9n2)
(1 + eα2π/n),

K3,2 =
−1

π

n2(n2 + 1)

(α2 + 4n2)
(1 − eα2π/n),

K3,3 =
2

π

n3(n2 + 1)

α(α2 + 4n2)
(1 − eα2π/n),

K3,4 =
8
√

2

3π2

n2

(α2 + n2)
(1 − eα2π/n),

K4,1 = −
4
√

2

3π2

n2

(α2 + n2)
(1 − eα2π/n),

K4,5 =
−1

π

n2(n2 + 4)

(α2 + 4n2)
(1 − eα2π/n),

K4,6 =
2

π

n3(n2 + 4)

α(α2 + 4n2)
(1 − eα2π/n),

K1,7 =
n2

π

(30n2 − 8α2)(4n2 + 1)

(4α2 + 25n2)(4α2 + 9n2)
(1 + eα2π/n),

K1,8 =
32αn3

π

(4n2 + 1)

(4α2 + 25n2)(4α2 + 9n2)
(1 + eα2π/n),

K2,9 =
4n2

π

(30n2 − 8α2)(n2 + 1)

(4α2 + 25n2)(4α2 + 9n2)
(1 + eα2π/n),

K2,10 =
128αn3

π

(n2 + 1)

(4α2 + 25n2)(4α2 + 9n2)
(1 + eα2π/n),

K3,7 = −
n2

π

(α2 − 3n2)(4n2 + 1)

(α2 + n2)(α2 + 9n2)
(1 − eα2π/n),

K3,8 =
4αn3

π

(4n2 + 1)

(α2 + n2)(α2 + 9n2)
(1 − eα2π/n),

K4,9 = −
4n2

π

(α2 − 3n2)(n2 + 1)

(α2 + n2)(α2 + 9n2)
(1 − eα2π/n),
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K4,10 =
16αn3

π

(n2 + 1)

(α2 + n2)(α2 + 9n2)
(1 − eα2π/n),

and where theBi = ψ3
i = ψi−θi are the atmospheric stream-

function variables (mode amplitudes) in the lower layer.

The coupling term appearing in the lower layer of the at-

mospheric model equations, kd∇29, is expressed in the ith

atmospheric ordinary differential equation as
∑

j DijAj us-

ing the inner product of Eq. (4), where

D1,2 =
−2

√
2

3π2

n2(4α2 + n2 + 16)

(4α2 + n2)
(1 + e−α2π/n),

D1,4 =
−4

√
2

3π2

n2(α2 + n2 + 4)

(α2 + n2)
(1 − e−α2π/n),

D2,1 =
n

π

(−8α4n− 28α2n3 − 8α2n+ 3/2n5 + 6n3)

(4α2 + n2)(4α2 + 9n2)

(1 + e−α2π/n),

D2,3 =
−n2

π

(α2 + 5n2 + 1)

(α2 + 4n2)
(1 − e−α2π/n),

D3,1 =
−16

π

αn3(n2 + 1)

(4α2 + n2)(4α2 + 9n2)
(1 + e−α2π/n),

D3,3 =
−2

π

n3(n2 + 1)

α(α2 + 4n2)
(1 − e−α2π/n),

D4,1 =
4
√

2

3π2

n2(α2 + n2/4 + 1)

(4α2 + n2)
(1 + e−α2π/n),

D4,3 =
2
√

2

3π2

n2(α2 + n2 + 1)

(α2 + n2)
(1 − e−α2π/n),

D5,2 =
n2

2π

(−16α2(α2 + 4)+ 3n4 − 8n2(7α2 − 6))

(4α2 + n2)(4α2 + 9n2)

(1 + e−α2π/n),

D5,4 =
−n2

π

(α2 + 5n2 + 4)

(α2 + 4n2)
(1 − e−α2π/n),

D6,2 =
−16

π

αn3(n2 + 4)

(4α2 + n2)(4α2 + 9n2)
(1 + e−α2π/n),

D6,4 =
−2

π

n3(n2 + 4)

α(α2 + 4n2)
(1 − e−α2π/n),

D7,1 =
n

π

(−8α4n− 100α2n3 − 8α2n+ 15/2n5 + 30n3)

(4α2 + 25n2)(4α2 + 9n2)

(1 + e−α2π/n),

D7,3 =
n2

π

(−α4 − 14α2n2 −α2 + 3n4 + 3n2)

(α2 + n2)(α2 + 9n2)
(1 − e−α2π/n),

D8,1 = −
32n3α

π

(4n2 + 1)

(4α2 + 25n2)(4α2 + 9n2)
(1 + e−α2π/n),

D8,3 = −
4αn3

π

(4n2 + 1)

(α2 + n2)(α2 + 9n2)
(1 − e−α2π/n),

D9,2 =
n2

2π

(−16α2(α2 + 4)+ 15n4 − 40(5α2 − 6)n2)

(4α2 + 25n2)(4α2 + 9n2)

(1 + e−α2π/n),

D9,4 =
n

π

(−14α2n3 − nα4 − 4nα2 + 3n5 + 12n3)

(α2 + n2)(α2 + 9n2)

(1 − e−α2π/n),

D10,2 = −
128n3α

π

(n2 + 1)

(4α2 + 25n2)(4α2 + 9n2)
(1 + e−α2π/n),

D10,4 = −
16n3α

π

(n2 + 1)

(α2 + n2)(α2 + 9n2)
(1 − e−α2π/n).
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Supplementary material related to this article is

available online at http://www.geosci-model-dev.net/7/

649/2014/gmd-7-649-2014-supplement.zip.
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