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Abstract—A 24-GHz +14.5-dBm fully integrated power ampli-
fier with on-chip 50-
 input and output matching is demonstrated
in 0.18- m CMOS. The use of substrate-shielded coplanar wave-
guide structures for matching networks results in low passive loss
and small die size. Simple circuit techniques based on stability
criteria derived result in an unconditionally stable amplifier. The
power amplifier achieves a power gain of 7 dB and a maximum
single-ended output power of+14.5-dBm with a 3-dB bandwidth
of 3.1 GHz, while drawing 100 mA from a 2.8-V supply. The chip
area is 1.26 mm2.

Index Terms—Amplifier stability, CMOS integrated circuits,
coplanar waveguides, phased arrays, radio transmitters, silicon.

I. INTRODUCTION

T
HE quest for multigigabit-per-second data rates in wire-

less networks has generated interest in the large band-

width available at high frequencies. The Industrial, Scientific,

and Medical (ISM) band at 24 GHz has emerged as a viable

candidate for gigabit-per-second wireless network solutions [1].

The allocation of the 22–29-GHz band for wireless vehicular

radar applications has added to the attractiveness of the fre-

quency spectrum around 24 GHz [2]. As a result, research on

24-GHz-band wireless technologies has accelerated, with re-

ceiver building blocks being demonstrated in GaAs pHEMPT

[3] and SiGe BiCMOS [4], [5]. A fully integrated eight-path

phased-array receiver in SiGe has also been reported at this fre-

quency [6]. The implementation of these high-frequency sys-

tems in CMOS technologies will enable unprecedented levels of

integration, making it possible to realize new architectures that

combine microwave, analog, and digital circuitry on the same

substrate at low cost. While there have been some recent ef-

forts to implement building blocks above 20 GHz on CMOS

processes [7]–[10], the power amplifier (PA) reported in this

paper, and the fully integrated four-element phased-array trans-

mitter of which it is a part [11], represent the first efforts to in-

tegrate a complete multi-element transmitter with on-chip PAs

in a CMOS process, at 24 GHz.

An integrated CMOS PA at 24 GHz presents several chal-

lenges. The two most important issues are the low unity power

gain frequency, , of MOS transistors and the loss of

on-chip passive elements, such as inductors and transmission

lines, required for impedance matching. For narrowband ampli-

fiers, where device capacitance is normally tuned out, is a

better metric for device speed than . In MOSFETs, is
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Fig. 1. A four-path phased array transmitter for a 24-GHz point-to-point
wireless connection.

limited primarily by the series gate resistance [10]. Generally,

MOS transistors have lower and as compared to SiGe

bipolar transistors fabricated with the same feature size [12]. In

the 0.18- m process used in this design, the NMOS transistors,

with an optimum layout, have an of 65 GHz, which is

almost a factor of two smaller than the of their SiGe

bipolar counterparts.

Lossy on-chip passives present another barrier to the full in-

tegration of a high-frequency PA. Skin effect results in larger

ohmic losses in inductors and transmission lines at high frequen-

cies. The skin depth in aluminum at 24 GHz is 0.5 m, which

negates some of the advantages of a thick top metal layer, though

the lateral sidewalls still help in reducing loss. Although copper

has better conductivity, in practice, its performance can be ad-

ditionally degraded by the cheese and fill rules necessary for

stress relief during fabrication. Due to the relatively high con-

ductivity of the substrate in most CMOS processes, the induc-

tors and coplanar waveguide transmission line structures have

substrate-induced losses as well. The combination of low active

gain at high frequencies and high loss in impedance-matching

networks reduces the power gain of a single-stage amplifier.

As a result, it becomes necessary to cascade an impractically

large number of amplifier stages to achieve desired output power

levels.

In this design, a substrate-shielded coplanar waveguide struc-

ture is implemented that effectively lowers substrate loss and

reduces on-chip wavelength. This is an enhanced version of

the slow-wave coplanar structure presented in [13]. This struc-

ture is used to design the fully integrated 24-GHz CMOS PA

described in this work. In Section II, we calculate the output

power required at 24 GHz for two applications, namely wireless

point-to-point communication and short-range radar. In Sec-

tion III, the transmission-line structure is described. The design

of the amplifier is also detailed and the stability of a single tran-

sistor element and a cascode transistor pair is analyzed. Mea-

surement results for the amplifier are presented in Section IV.

0018-9200/$20.00 © 2005 IEEE
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Fig. 2. Combination of (a) CPW and (b) microstrip structures to realize (c) substrate-shielded CPW structure.

II. POWER REQUIREMENTS IN THE 24-GHZ BAND

The Federal Communications Commission (FCC) permits

point-to-point wireless communication in the 24–24.25-GHz

band, subject to limitations on the transmitted power and

directionality of the transmitter. At a distance of 3 m from the

transmitter, the maximum electric field permitted is 2.5 V/m.

This translates to an average effective isotropically radiated

power (EIRP) of 29.7 dBm.1 As shown in Fig. 1, a phased-array

transmitter could be employed to achieve the required EIRP

and provide electronic beam-steering capability. For an antenna

array, the total gain is the product of the gain of each antenna

and the array factor. The PA reported in this study is capable of

generating up to 14.5-dBm power at 24 GHz. By using this

PA in a four-element phased-array system (that provides 12 dB

of array gain), with antennas that have at least 3 dB gain, an

EIRP of 29.5 dBm can be achieved [11].

The FCC has also opened up 7 GHz of bandwidth from 22

to 29 GHz for vehicular short-range radar applications. In this

case, there is an average radiated power limit of 41 dBm/MHz

which, if used over the entire 7-GHz bandwidth, corresponds to

an EIRP of 2.5 dBm. Therefore, an amplifier designed for this

application does not need to generate high output power and

must instead be designed to have large bandwidth.

III. CIRCUIT DESIGN

This section describes the design evolution of the amplifier.

First, the substrate-shielded coplanar waveguide structure, an

important element in the design of the PA, is presented. Next,

we discuss amplifier stability and the design techniques used

to achieve unconditional stability for all bias points, followed

by the design of the amplifier matching networks. Finally, we

describe the techniques used to minimize the effect of pad ca-

pacitances and wire-bond inductances.

1S = jEj =2� , where S is power density, jEj is the magnitude of the elec-

tric field in space, and � = � =" � 377 
 is the characteristic impedance
of free space.

A. Substrate-Shielded Coplanar Waveguide Structure

At 24 GHz, large capacitive coupling to substrate lowers the

quality factor of inductors, making inductor-based impedance

matching networks lossy. On the other hand, this frequency is

not high enough for direct application of standard transmis-

sion line structures. For example, in SiO dielectric, the wave-

length at 24 GHz is 6.3 mm. Therefore, the transmission

lines required for on-chip matching networks will have high loss

because of their long length.

As shown in Fig. 2(a), in coplanar waveguide (CPW) struc-

tures designed in CMOS processes with a relatively high sub-

strate conductivity cm , capacitive coupling to the

substrate is often the dominant source of high-frequency loss

[14]. On the other hand, in the on-chip microstrip structure,

shown in Fig. 2(b), substrate-induced losses are minimal due to

the shielding effect of ground plane. However, the close prox-

imity of the ground plane to the signal line results in a narrow

signal line for practical impedance levels. This constraint in-

creases ohmic losses in the signal line. Fig. 2(c) shows the sub-

strate-shielded coplanar structure that is a combination of the

two structures. Slotting the bottom plate forces the return cur-

rent to be mostly concentrated in the coplanar ground lines. The

large separation between signal and return currents causes more

magnetic energy to be stored in space, resulting in a larger dis-

tributed inductance per unit length, . However, the proximity

of the slotted ground line to the signal line results in high ca-

pacitance per unit length, . Simultaneously high values of

and lead to slower wave velocity ( ) and

hence shorter wavelengths.

Another way to look at this structure is to view it as a CPW

structure with periodic capacitive loading. This is similar to the

inductive loading concept [15], however, in this case, extra ca-

pacitance is added by placing the patterned ground beneath the

coplanar structure. Therefore, the capacitance per unit length of

the structure is increased, thereby slowing down the wave.

In the implemented structure, the velocity is reduced by more

than a factor of two, and as a result the wavelength at 24 GHz in
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Fig. 3. Electric and magnetic field distributions from 3-D EM simulations of (a), (b) a normal CPW structure and (c), (d) a substrate-shielded CPW structure.

this structure is 3 mm. Furthermore, as opposed to a microstrip

structure, reasonable impedance levels are achieved for large

signal line widths of 60 m thereby decreasing ohmic losses.

The combination of lower ohmic losses and shorter length of

the transmission lines lead to a much lower passive loss in the

matching networks. As the MOS transistor gain at high frequen-

cies is low, this reduction in passive loss is critical to achieving

desired gain and output power.

As shown in Fig. 2(c), in the implemented structure, the two

coplanar ground lines are forced to the same potential with vias

to the patterned shield. This acts as an airbridge, allowing only

one fundamental TEM mode to propagate. Also, a second shield

layer is placed beneath the first shield layer, with metal stripes

covering slots of the first layer, thereby completely isolating the

coplanar structure from the substrate.

B. Characterization of the Substrate-Shielded CPW Structure

The simulated electric and magnetic fields of a cross section

of the substrate-shielded CPW structure with and without

slotted shields is shown in Fig. 3. In the shielded structure

the electric fields do not penetrate into the substrate, reducing

capacitively coupled substrate losses. Though the penetration

of the magnetic field into the substrate is not affected by the

presence of the shield, EM simulations indicate that this does

not contribute significantly to the loss as the eddy currents are

limited.

To characterize the substrate-shielded CPW structure, a

separate test structure was fabricated in the same process as

the amplifier. The test structure was designed for a charac-

teristic impedance of 27.5 , the same impedance used for

impedance matching in the PA. This choice of low characteristic

impedance, as described in Section III-E, minimizes passive

loss. Fig. 4 shows the die photograph of this test structure.

Fig. 4. Die photograph of the substrate-shielded CPW test structure; shield
layer consists of 4-�m-wide stripes with 2-�m spacing.

The top three metal layers were used for the transmission-line

structure. The top metal layer is 4- m-thick aluminum and is

located 11.7 m above the substrate. The two shield layers use

1.25- m aluminum and 0.3- m copper metal layers placed

5.3 m and 9.5 m beneath the bottom of the top metal.

Three-dimensional (3-D) electromagnetic simulations with

HFSS were performed to accurately simulate a short length of

the line, while quasi-planar electromagnetic simulations with

IE3D were used as a faster approach to simulate T-junctions

and discontinuities [16], [17].

The -parameters of the line measured in a 50- environ-

ment are shown in Fig. 5. A Short-Open-Line-Thru (SOLT)

calibration was performed up to the probe tips. A wideband

model of the transmission line with parameters shown in Table I

was fitted to the measurement results. Compared to a single-fre-

quency fit [18], this is a more physical interpretation of the

measured data and is less susceptible to measurement errors

at a single frequency. To accommodate the skin effect, the

loss of the transmission line, in decibels, was assumed to be

proportional to the square root of the frequency [19]. As shown

in Fig. 5, this results in a wideband curve fit.
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Fig. 5. Simulated and measured S-parameters of the transmission line
embedded in a 50-
 system. (a) Reflection parameters. (b) Transmission
parameters.

C. Single-Transistor Power Gain and Stability

The effect of loss elements in a MOS transistor can be better

understood by calculating its maximum available power gain

which is the maximum gain that can be achieved from the tran-

sistor and is realized when both transistor input and output are

simultaneously conjugate-matched to the source and load im-

pedances, respectively. Although the power gain can be readily

derived from the -parameters of the transistor [20], the re-

lationship between -parameters and the transistor’s physical

parameters (such as and ) is often complicated and does

not provide good insight into the gain-limiting mechanisms in a

MOS transistor.

As shown in Fig. 6, by ignoring the gate–drain capacitance

of the transistor (assuming unilaterality), a simple equation

for maximum available power gain can be derived.2 By

choosing source and load impedances as in Fig. 6 and setting

and , the reactive parts

cancel and the input and output ports of transistor are conjugate

2The ratio of the transducer power gain (G ) and the unilateral power
gain (G ) (calculated by ignoring C ) or G =G is bounded
by (1=(1 + U) ) < (G =G ) < (1=(1 � U) ) where U =
((jS jjS jjS jjS j)=((1 � jS j )(1 � jS j ))) is a metric for
unilaterality [20].

TABLE I
SIMULATED AND MEASURED PARAMETERS OF THE TRANSMISSION LINE

AT 24 GHZ, WITH WIDEBAND FITTING

Fig. 6. Unilateral model of MOS transistor with conjugate-matched source
and load terminations is used to calculate the maximum unilateral power gain.

matched. Therefore and the resulting

(unilateral) power gain is

Output Available Power

Source Available Power

(1)

where

The gain of a conjugate-matched FET drops off as . To

maximize the power gain, the gate resistance should be reduced

by having smaller finger gate lengths and increasing number of

fingers. However, in practice, the gate-drain capacitance, ,

cannot be ignored, as it is the source of feedback and can cause

instability. A more detailed analysis shows that for small values

of the presence of feedback capacitor can make the am-

plifier unstable [21]. Hence, in order to have a stable amplifier

with a conjugate-matched input and output, should be large

in which case the power gain of the transistor will be signifi-

cantly reduced as per (1). This conflict can be resolved by using

a cascode design for the amplifying stages.

D. Stability of the Cascode Amplifier

As discussed in the previous section, a single MOS tran-

sistor designed for maximum power gain in a common source

configuration and conjugate matched at input and output can

be unstable. At 24 GHz, this is true for the 0.18- m CMOS

transistors used in this design. The cascode structure makes

the device more unilateral and hence unconditionally stable.

Also, as the cascode pair has a higher drain–source breakdown

voltage, a 2.8-V supply can be used for 0.18- m devices that

have a drain–source breakdown voltage of 2.5 V.

The output stage cascode pair is shown in more detail in

Fig. 7(a). The gate of is self-biased by and bypassed by

. In [22], a self-biased cascode structure has been proposed

in which the gate of the cascode device is not grounded at RF.
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Fig. 7. (a) Self-bias of cascode transistor pair. (b) Equivalent circuit for the
analysis of stability.

Although such a structure reduces the stress on the cascode tran-

sistor, the amplifier has a nonoptimal gain performance. Due to

the limited gain at 24 GHz, the gate of the cascode device in

this work was RF grounded with a large bypass capacitor .

Careful layout was carried out to minimize , the parasitic se-

ries inductance of . When is large, there remains a poten-

tial for high-frequency instability. A simple model for the circuit

is shown in Fig. 7(b). Neglecting gate–drain capacitance of ,

the impedance looking into gate of is

(2)

The real part of this impedance has a negative component

equal to , indicating that the circuit can os-

cillate if there is a parasitic inductance between the gate and

ground. By introducing the series resistance the circuit can

be stabilized. The value of is chosen such that the amplifier

remains stable for the largest estimated value of . Using (2),

the condition for the stability can be expressed as

(3)

For parasitic inductances up to 100pH, by placing a 2.7

series resistance the amplifier will be unconditionally stable.

E. Amplifier Design

The 24-GHz PA shown in Fig. 8 is a single-ended two-stage

design that can directly feed a single-ended 50- antenna,

thereby making a Balun or a differential antenna unnecessary.

If a differential antenna is available, two amplifiers in parallel

can produce 3 dB higher output power similar to [23].

The PA is designed to operate in class AB mode. As the tran-

sistor is 65 GHz, the harmonic content at the drain of the

transistor for the 24-GHz input signal is low. Therefore har-

monic-matching based classes such as class E and class F did

not increase efficiency significantly.

To minimize the effect of gate series resistance, , which

can be the limiting factor for , the finger width of transistors

was chosen to be 2 m with gate contacts at both ends. This

also allows substrate contacts to be placed closer to the device,

minimizing substrate losses in transistor.

As shown in Fig. 8, the stages are designed such that all

the phase shifts provided by transmission lines required for

impedance matching are small. The output stage matching is

designed to convert the 50 antenna impedance to the proper

impedance at the drain of M4, maximizing output power and

efficiency. This proper impedance is chosen by the load pull

simulations of the cascode pair when the gate of the input

transistor is driven by a large-signal source. As shown in Fig. 9,

brings down the 50 antenna impedance to achieve higher

output power while acts as a shorted-stub inductor to res-

onate drain-substrate capacitance of M4. Inter-stage matching

is designed to achieve optimum impedance at the drain of the

cascoded transistor, while input matching is designed to ensure

good match for large input signal amplitudes.

For minimum passive loss, the output stage characteristic

impedance should be lower than the interstage one, but to

simplify the design and test procedures a single characteristic

impedance of 27.5 was used for the transmission lines across

the chip. A weighted least-mean-square (LMS) optimization

with gradient-descent scheme was used to choose this char-

acteristic impedance and all of the transmission-line lengths.

All 2-pF MIM capacitors used to short parallel stubs have a

high width-to-length ratio to make the electrical length of the

shorted stubs more accurate.

F. Low-Frequency Stability of the Amplifier

In addition to the stability analysis discussed in Section III-D,

some additional measures have been taken to improve the

low-frequency stability of the amplifier. In particular, as shown

in Fig. 8, and coupling capacitors are shunted with

a series RC network designed to introduce resistive loss at

low frequencies while maintaining the necessary dc blocking.

The simulated Rollett stability factor [20] of the amplifier

was greater than 30 for all frequencies between dc and 65 GHz.

This was done for all gate and drain biases. During measure-

ments, there were no signs of oscillation with any bias condi-

tion, drive level, or wirebond inductance.

G. Wirebond and Pad Parasitic Effects

The amplifier is designed to accommodate a large range of

wirebond inductances. The change in inductance is caused by

variations in the length and curvature of the wirebond. Three-di-

mensional electromagnetic simulations for the intended test

board reveal a range of 0.2–0.5 nH for the inductance, de-

pending on different wirebond curvatures.

Capacitors are placed in series with the input and output

pads to resonate out this inductance, as shown in Fig. 8. In

the large-inductance mode (wirebond inductance greater than

0.4 nH), the voltage swing across the series capacitance can

exceed the breakdown voltage of the MIM capacitors available

in the process ( 5 V). A vertical parallel-plate (VPP) capacitor

with a breakdown voltage in excess of 100 V is used to prevent

capacitor breakdown [24].

The substrate shield of the transmission line structure is

extended beneath the bondpads, making the bondpads part of

the transmission line structure. Therefore, the pad capacitance

no longer needs to be de-embedded or taken into account

separately in the design. Furthermore, a large signal width of

60 m ensures that no tapering is necessary to connect the

pads into the structure, eliminating tapering discontinuities.
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Fig. 8. Schematic of the 24-GHz, 14.5-dBm fully integrated CMOS PA.

Fig. 9. Design of the output matching network; the Smith chart reference
impedance is the characteristic impedance of the transmission lines (27.5 
).

IV. EXPERIMENTAL RESULTS

The PA was fabricated using 0.18- m CMOS transistors in

a process with a substrate resistivity of 10 cm. As shown in

Fig. 10, the chip occupies an area of 0.7 mm 1.8 mm including

pads. Quasi-3-D simulations were performed on the complete

structure as a part of the design cycle to verify the amplifier’s
performance. In our measurement, the chip was attached to a

gold-plated brass substrate using conductive epoxy to function

as a heat sink and mechanical support.

Large-signal measurements were performed using the mea-

surement setup shown in Fig. 11. The output is connected to a

power meter with an Agilent HP8485A 26.5 GHz power sensor.

The sensor attenuates all harmonic signal power and therefore

eliminates the need for a harmonic filter. The power losses in the

measurement setup are calibrated out with a thru measurement

consisting of two cables and two probes connected in series.

With similar cable and probes, loss of a cable/probe pair is half

of the total series configuration.

As shown in Fig. 12, at 24 GHz the amplifier has a small-

signal gain of 7 dB and can produce 14.5 dBm of output

power, while drawing 100 mA from a 2.8 V supply. The cor-

responding peak drain efficiency is 11%. The output-referred

1 dB compression point is 11 dBm.

To test the linearity of the amplifier, a two-tone test was

performed with a tone spacing of 100 MHz. As shown in

Fig. 13, the output-referred third-order intercept point (OIP3) is

14 dBm. The measurement was limited by the maximum output

Fig. 10. Die microphotograph of the amplifier. Chip size: 0.7 mm � 1.8 mm.

Fig. 11. Large-signal measurement setup.

Fig. 12. Output power and amplifier gain versus available input power using
a 2.8-V supply.

power from one of the signal generators used to synthesize

the two-tone signal. IMD asymmetries on the order of 10 dB

were observed at low output powers. These asymmetries can

be explained using a nonlinear dynamical model [25].
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Fig. 13. Two-tone measurement of the amplifier; the two tones are applied at
23.9 and 24 GHz.

Fig. 14. Measured S-parameters of the amplifier,V = V = 1V,V =

2:8 V, and I = 100 mA. (a) Reflection parameters. (b) Transmission
parameters.

Small-signal measurements were also done using the Agi-

lent E8364A 50-GHz network analyzer. A Thru-Reflection-Line

(TRL) calibration was performed at the probe tips using CPW

calibration standards on an Alumina substrate to measure the

-parameters of the amplifier, shown in Fig. 14. The 3-dB band-

width is 3.1 GHz from 22.9 to 26 GHz, while the peak gain is at

23.9 GHz and the maximum and within the ISM band

at 24–24.25 GHz are 6.9 and 16 dB, respectively. Measured

of the amplifier across the 15–35-GHz band is lower than

38 dB. The measured performance of the amplifier is summa-

rized in Table II.

The measured gain of the amplifier using network analyzer

and power meter has less than 1 dB difference. Part of this dif-

ference (0.3 dB) is due to the measurement uncertainty of the

TABLE II
MEASURED PERFORMANCE SUMMARY OF THE PA

network analyzer at this frequency [26]. The uncertainty in the

power meter measurement at this frequency is less than 0.1 dB.

V. CONCLUSION

A substrate-shielded CPW structure has been designed re-

sulting in low passive loss and small impedance transformation

network area. The structure enables the design of a fully inte-

grated 24-GHz PA, using 0.18- m MOSFETs, that is a key ele-

ment in a integrated phased-array transmitter. This study shows

that CMOS technology is a viable candidate for building fully

integrated transceivers at frequencies above 20 GHz.
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