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Abstract— This article presents a low-cost and area-efficient
28-GHz CMOS phased-array beamformer chip for 5G
millimeter-wave dual-polarized multiple-in-multiple-out (MIMO)
(DP-MIMO) systems. A neutralized bi-directional technique is
introduced in this work to reduce the chip area significantly.
With the proposed technique, completely the same circuit chain is
shared between the transmitter and receiver. To further minimize
the area, an active bi-directional vector-summing phase shifter is
also introduced. Area-efficient and high-resolution active phase
shifting could be realized in both TX and RX modes. In mea-
surement, the achieved saturated output power for the TX-mode
beamformer is 15.1 dBm. The RX-mode noise figure is 4.2 dB at
28 GHz. To evaluate the over-the-air performance, 16 H+16 V
sub-array modules are implemented in this work. Each of the
sub-array modules consists of four 4 H+4 V chips. Two sub-
array modules in this work are capable of scanning the beam
from −50◦ to +50◦. A saturated EIRP of 45.6 dBm is realized
by 32 TX-mode beamformers. Within 1-m distance, a maximum
SC-mode data rate of 15 Gb/s and the 5G new radio downlink
packets transmission in 256-QAM could be supported by the
module. A 2×2 DP-MIMO communication is also demonstrated
with two 5G new radio 64-QAM uplink streams. Thanks to
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the proposed area-efficient bi-directional technique, the required
core area for a single element-beamformer is only 0.58 mm2.
Compact and low-cost 5G millimeter-wave MIMO systems could
be realized.

Index Terms— 28 GHz, 5G new radio, beamformer,
bi-directional, CMOS, dual-polarized multiple-in-multiple-out
(MIMO) (DP-MIMO), error vector magnitude (EVM), neutral-
ization, phased-array.

I. INTRODUCTION

ULTRA-FAST wireless data access will be provided by

the incoming 5G new radio (NR). Spectrum resource

at millimeter-wave frequency band is ready to boost the

available data rate significantly with the enlarged chan-

nel bandwidth. The dual-polarized multiple-in–multiple-out

(MIMO) (DP-MIMO) technique will also be employed

in 5G NR to improve the spectrum efficiency with spatial

multiplexing [1], [2].

Recent research has been focused on high-performance 5G

millimeter-wave phased-array transceivers [1]–[16]. However,

to realize the 5G millimeter-wave DP-MIMO systems, which

require numerous transceiver paths, the conventional phased-

array solutions are still expensive regarding the total die area.

[11] and [12] based on the LO phase shifting architecture real-

ize gain-invariant and high-resolution phase shifting. However,

additional power and area are consumed for the distrib-

uted LO. [1] and [2] are capable of steering the dual-polarized

beams. However, the separated beamformer circuits for the

TX and RX still occupy large die area. Due to the reduced

array antenna pitch at millimeter-wave frequencies, the chip

area reduction becomes essential not only for a minimized

manufacturing cost but also for a low-loss distribution from

the chip to the antenna.
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Fig. 1. Block diagrams of (a) conventional phased-array transceiver, (b) conventional bi-directional phased-array transceiver, and (c) proposed bi-directional
phased-array transceiver.

This article introduces an eight-element 28-GHz phased-

array beamformer chip for the 5G millimeter-wave DP-MIMO

systems. To minimize the chip area and the manufac-

turing cost, a neutralized bi-directional technique is pro-

posed in this article, which allows for the transmitter and

receiver to share the same beamformer chain without any

modifications. An active vector-summing phase shifter sup-

porting bi-directional operation is also presented for an

improved RF-path gain. From 26.5 to 29.5 GHz, the mea-

sured rms gain and phase errors during phase shifting are

less than 0.5 dB and 2.1◦, respectively. In measurement,

the implemented 16H+16V sub-array module is capable of

supporting a maximum single-carrier-mode (SC-mode) data

rate of 15 Gb/s within 1-m distance. Standard-compliant 5G

NR orthogonal-frequency-division-multiplexing-access-mode

(OFDMA-mode) data streaming in 256-QAM is realized with

a 400-MHz bandwidth. A 2 ×2 DP-MIMO communication in

64-QAM is also demonstrated in this work. Thanks to the pro-

posed bi-directional technique, the element-beamformer in this

work consumes only 0.58-mm2 core area. High-performance

and area-efficient chips are realized for low-cost and compact

5G millimeter-wave MIMO systems.

This article is an extension of [17] and is organized as

follows. The transceiver architecture considerations for 5G

DP-MIMO systems are introduced in Section II. Section III

presents the detailed analysis for the proposed neutralized

bi-directional circuits. The beamformer chip implementation

and the corresponding measurement results are demonstrated

in Section IV. Finally, Section V concludes this article.

II. ARCHITECTURE CONSIDERATIONS

5G millimeter-wave MIMO systems are costly in various

aspects. Simply by increasing the number of antenna paths,

MIMO communication could be supported. However, the sys-

tem physical size will be enlarged due to the additional anten-

nas. Polarized MIMO utilizes cross-pol. isolation to transmit

two independent data streams. Due to the shared aperture

between different streams, the system size could be minimized

with a decreased antenna number. Fig. 2(a) shows a single-user

Fig. 2. (a) Usage scenario for dual-polarized MIMO and (b) link budget.

MIMO scenario with DP-MIMO configuration. Two data

streams are transmitted through the horizontal-polarization

(H-polarization) and vertical-polarization (V-polarization) of

a dual-polarized antenna simultaneously. The communication

distance is 500 m (line-of-sight). Fig. 2(b) shows the link

budget example for such a data link. A four-element receiver

array is adopted for the user equipment (UE), considering

the system size and power dissipation. At the transmitter

side, an output power of 5 dBm including the power backoff

is usually available for supporting 64-QAM (OFDM-mode)

communication in CMOS technology [3], [18], [19]. Thus,

regarding a target 64-QAM SNR of 26 dB, a 256-element

array will be required in the base station (BS) for maintaining a

32-dB TX-to-RX SNR over 500-m communication distance.
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Even more element-transceivers will be demanded for sup-

porting the DP-MIMO. Thus, area and cost reductions

should also be considered for such millimeter-wave MIMO

systems.

Fig. 1(a) shows the block diagram of conventional phased-

array transceiver [10]. The antenna is shared by the TRX

switch. However, the separated transmitter and receiver chains

along with the up- and down-conversion circuits are not

area-efficient. To realize a compact and low-cost phased-

array system, the bi-directional architecture is employed

in Fig. 1(b) [20], [21]. With another switch for the power

amplifier (PA) and low noise amplifier (LNA), the signal

flow direction of such a bi-directional amplifier could be

reconfigured. Thus, the bi-directional operation could be sup-

ported. The area reduction is realized by sharing the passive

phase shifters, the combiner/divider, the mixer, and the LO

distribution between TX mode and RX mode. However, for a

multistage amplifier operating in millimeter-wave frequencies,

the occupied area is usually dominated by the interstage

passive components. Thus, the system size reduction for a

conventional bi-directional transceiver is still limited due to

the unshared passives.

To further minimize the area consumption, Fig. 1(c) presents

the proposed bi-directional transceiver. A differential neutral-

ized bi-directional amplifier is introduced in this work. The

inter-stage passives are completely shared between TX mode

and RX mode. The required die area for each beamformer

path is further minimized. Additionally, the proposed bi-

directional amplifier maintains the cross-coupling-capacitor

(CCC) neutralization in both TX and RX modes [22], [23].

Thanks to the gate–drain capacitance neutralization, the inser-

tion loss caused by the matching sharing is compensated by an

improved RF-path gain. A high-stability beamformer circuit

with independent phase and gain tuning is realized by the

enhanced reverse isolation.

III. PROPOSED NEUTRALIZED BI-DIRECTIONAL CIRCUITS

Neutralized bi-directional circuits are introduced in this

work to minimize the cost of 5G millimeter-wave DP-MIMO

systems. The remaining part of this section will introduce the

circuit implementation of several key building blocks for the

proposed bi-directional beamformer.

A. Neutralized Bi-Directional Amplifier

The operation of bi-directional transceiver relies on the

bi-directional amplifier. As mentioned in Section II, the con-

ventional bi-directional amplifier based on the TRX switches

still occupies large ON-chip area due to the unshared inter-

stage passives. As a result, this work introduces a neutralized

bi-directional amplifier to support the bi-directional operation

with a compact chip size.

Fig. 3. (a) Circuit schematic of proposed bi-directional core and (b) TX-mode
small-signal equivalent circuit.

Fig. 3(a) presents the circuit schematic of the neutralized

bi-directional amplifier core. Two transistor pairs in cross-

coupling connection are included. Transistors M1 and M2 are

utilized for TX mode, while M4 and M5 are utilized for RX

mode. The TRX mode selection is realized by switching the

tail bias (M3 and M6). Cgs1,2, Cgd1,2 and Cgs4,5, Cgd4,5 in

the figure denote the parasitic capacitances for M1, M2 and

M4, M5, respectively. Fig. 3(b) demonstrates the small-signal

equivalent circuit for the bi-directional amplifier in TX mode.

Cs and Ls represent the passive components for input match-

ing, while CL and LL represent the output matching. The

voltage gain of the TX-mode amplifier could be derived with

(1) (shown at the bottom of this page), where C1 and C2 in

the equation are defined as follows:

C1 = Cgd1,2 + Cgd4,5 + Cs + Cgs1,2 (2)

C2 = Cgd1,2 + Cgd4,5 + CL + Cgs4,5. (3)

To neutralize the gate–drain capacitance Cgd1,2, the same

transistor size should be applied between M1, M2 and M4,

M5 [22], which leads to Cgd1,2 = Cgd4,5. Therefore, (1) could

be simplified with the following equation:

Vout+

Vin+

( jω)

=
gm ZL_TX

(

1 +
ZL_TX

jωLL

+ jωZL_TXC2

)(

1 +
Zs_TX

jωLs

+ jωZs_TXC1

).

(4)

Vout+

Vin+

( jω) =
gm ZL_TX + jωZL_TX(Cgd1,2 − Cgd4,5)

(

1 + ZL_TX/jωLL + jωZL_TXC2

)(

1 + Zs_TX/jωLs + jωZs_TXC1

)

+ gm Zs_TX ZL_TX jω(Cgd1,2 − Cgd4,5)
(1)
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Fig. 4. Simulated performance for proposed bi-directional core:
(a) MAG/MSG and (b) reverse isolation. Simulated performance for single-
stage bi-directional amplifier: (c) TX-mode and RX-mode gain, (d) TX-mode
return loss, (e) RX-mode return loss, and (f) TX-mode and RX-mode reverse
isolation.

Thanks to the gate–drain capacitance neutralization, the pro-

posed neutralized bi-directional core achieves improved

MAG/MSG and reverse isolation. Fig. 4(a) and (b) compares

the proposed core with a differential pair without neutraliza-

tion. The transistor size (40 × 2 µm/60 nm, defined with

finger number × finger width/channel length), bias condition,

and power dissipation are kept to be the same for comparison.

After canceling the feedback path caused by the gate–drain

capacitance of transistors, the MAG/MSG of the proposed

neutralized core is improved from 12.2 to 21.4 dB at 28 GHz.

The reverse isolation is also improved from −16.2 to

−35.2 dB, which contributes to a higher stability. This

improvement is also robust against the process variation

because the neutralization is achieved by an additional tran-

sistor pair.

The realized gain also depends on the matching. The

denominator in (4) demonstrates the input and output matching

conditions for the TX-mode amplifier. The voltage gain of the

RX-mode amplifier could also be derived with a similar analy-

sis. If we define the source and load impedances for the RX-

mode amplifier as Zs_RX and ZL_RX, respectively, the optimum

gain is obtained in both TX- and RX-mode when Zs_TX equals

ZL_RX and Zs_RX equals ZL_TX. This condition can be satisfied

when the neutralized bi-directional amplifier is connected with

non-switchable circuits. Appropriate values of Cs, Ls, CL, and

LL could be selected considering the resonant frequency and

the required bandwidth. Fig. 4(c)–(f) present the simulated

performance of a single-stage bi-directional amplifier with

100-� source and load impedances. The RX-mode bias is

slightly reduced for power saving. At 28 GHz, 10.7-dB gain

is achieved in TX mode, while 9.9-dB gain is realized in RX

mode. The return loss for all conditions is lower than −9 dB

from 26.5 to 29.5 GHz. The reverse isolation is improved to

lower than −30 dB.

When the proposed bi-directional amplifier is cascaded,

Zs_TX = ZL_RX and Zs_RX = ZL_TX cannot be maintained any

Fig. 5. (a) Circuit schematic of three-stage cascaded bi-directional amplifier
and inter-stage matching conditions for (b) TX mode and (c) RX mode.

Fig. 6. Simulated performance of three-stage neutralized bi-directional
amplifier in (a) TX mode and (b) RX mode.

more due to the switchable circuits. Additional optimization is

required for the inter-stage matching networks. Fig. 5(a) shows

a three-stage cascaded bi-directional amplifier. The Zs_TX,

ZL_TX, Zs_RX, and ZL_RX of the middle-stage amplifier are

plotted in Fig. 5(b). ZL_TX and ZL_RX are almost along the

edge of Smith chart due to the capacitive load impedance from

the next-stage core. For inter-stage matching, the conjugate

impedances Z∗
s_TX and Z∗

L_RX, Z∗
L_TX and Z∗

s_RX are required to

be maintained. At millimeter-wave frequencies, the differences

between Z∗
s_TX and Z∗

L_RX, Z∗
L_TX and Z∗

s_RX are not so large.

Thus, passive components with fixed values could still be

selected for minimizing the TX-mode and RX-mode insertion

loss [Z in_TX, Zout_TX, Z in_RX, and Zout_RX in Fig. 5(b) and (c)].

The simulated performance of the three-stage neutralized

bi-directional amplifier is demonstrated in Fig. 6. A TX-mode

gain of 33 dB and an RX-mode gain of 28 dB are realized

at 28 GHz. The return loss is always less than −10 dB

within 26.5 GHz to 29.5 GHz. The TX-mode and RX-mode

power consumptions are 46 and 27 mW, respectively, for the
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Fig. 7. (a) Circuit schematic of proposed PA-LNA based on unbalanced
neutralized bi-directional technique. (b) MAG/MSG and (c) reverse isolation
of PA-LNA core with and without proposed extra Cgdex compensation.
(d) TX-mode ZL and (e) RX-mode ZL created by switchable matching.

three-stage amplifier. The matching networks are realized with

the transmission lines in this work. The transmission lines are

folded for a compact layout.

Transformers with large impedance transformation ratio

are sometimes utilized for realizing optimum matching at

lower frequencies. However, the input impedance of transistors

at millimeter-wave frequencies is significantly smaller than

that at low frequencies. As a result, reasonable matching

performance can still be maintained by the proposed matching

sharing.

B. PA-LNA

The bi-directional amplifier mentioned previously achieves

the gate-drain capacitance neutralization with the same-sized

transistor pairs. However, for PA and LNA, the requirements

on transistor size are usually different. For improving power

delivery, large-sized transistors are usually utilized in PA.

While, small-sized transistors are employed in LNA for power

saving. Therefore, an unbalanced neutralized bi-directional

Fig. 8. Measured (a) PA-mode output power and (b) PA-mode PAE.

amplifier is further proposed for the PA and LNA in this

work. Fig. 7(a) shows the circuit schematic. Two capacitors

Cgdex are attached to the LNA transistors to compensate

the additional gate-drain capacitance from the PA transistors.

Thus, the neutralization condition can still be maintained in

both operation modes. Fig. 7(b) plots the MAG/MSG and

reverse isolation against the LNA transistor size. The size of

PA transistors is fixed (60 × 2 µm/60 nm). As demonstrated

in the figure, with Cgdex, a much smaller transistor size could

be selected for the LNA. The power consumption could be

saved along with an improved gain in RX mode.

Considering the TX-mode linearity and RX-mode noise fig-

ure (NF), the antenna-sharing network requires careful design

considerations. In this work, an adaptive antenna-sharing net-

work is utilized for minimizing the insertion loss and the

ON-chip area. As shown in Fig. 7(a), the proposed adaptive

network consists of a large-sized capacitor and a small-sized

switching transistor. The required impedance for PA-mode

optimum output power (Psat_max) and the required impedance

for LNA-mode minimum NF (NFmin) are simulated at the

interface of ZL and plotted in Fig. 7(d) and (e). By switching

the transistor, the proposed adaptive antenna-sharing network

is optimized to realize the required impedances for Psat_max

and NFmin in PA mode and LNA mode, respectively. Fig. 7(d)

and (e) also demonstrate the realized ZL in simulation. The

induced loss during switching are both 0.6 dB in PA- and

LNA-mode at 28 GHz. In measurement, a saturated output

power of 15.4 dBm and an output P1 dB of 13 dBm are achieved

by the PA [Fig. 8(a)]. As demonstrated in Fig. 8(b), the mea-

sured maximum power-added-efficiency is 20% including the

TRX switch. Fig. 9 shows the LNA-mode NF along frequency.

An NF of 4.6 dB is achieved at 28 GHz.

C. Active Bi-Directional Phase Shifter

The bi-directional phase shifter architecture also requires

design considerations. To support the bi-directional operation,

passive phase shifters with reciprocal characteristics have

been widely used [20], [21], [24]–[26]. However, to maintain

enough phase-shifting coverage and resolution, an insertion

loss of around −8 dB is usually induced at RF path by the

passive phase-shifting circuitry [27]–[29]. RF buffers for gain

compensation will be required, which occupies extra area.

To address this issue, this work introduces a gain-improved



2376 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 9, SEPTEMBER 2020

Fig. 9. Measured LNA-mode NF.

Fig. 10. Beamformers with (a) passive bi-directional phase shifter and
(b) active bi-directional phase shifter.

bi-directional phase shifter based on the active vector-summing

method. Fig. 10 shows a simplified system comparison. The

characteristics for each building block here are example values.

Fig. 10(a) summarizes the system gain, area, and power con-

sumptions for a TX-mode conventional bi-directional beam-

former with passive phase shifting. Additional buffers will be

required at the RF path for compensating the induced loss.

Fig. 10(b) shows the bi-directional beamfomer with active

phase shifting. Further area reduction could be achieved by

the proposed active bi-directional phase shifter. Regarding the

RX-mode performance, comparisons on NF and IIP3 have also

been included in Fig. 10. Although the passive phase shifter

can realize a much better IIP3 than the active phase shifter,

with the same RX-mode gain, the system performance will

not be so different between using passive and active phase

shifters.

Fig. 11(a) shows the circuit schematic of the active

vector-summing bi-directional phase shifter. Two switchable

poly-phase filters (PPFs) and two bi-directional variable gain

amplifiers (VGAs) are included. The proposed switchable PPF

can be configured into normal PPF mode or adder mode with

additional control switches. During the operation, one of the

switchable PPF is in PPF mode, while the other one is in adder

mode. As a result, active vector-summing could be realized in

both TX and RX modes. Fig. 11(b) demonstrates the circuit

of bi-directional VGA. Two balanced neutralized bi-directional

cores with flipped input connection are utilized for the VGA.

Fig. 11. (a) Block diagram of proposed bi-directional phase shifter, (b) circuit
schematic of bi-directional VGA, (c) circuit schematic of switchable PPF, and
(d) equivalent circuit of switchable PPF in adder mode.

The gain control is realized by tuning the tail bias with a

10-bit digital-to-analog converter (DAC). Because the gate-

drain capacitance neutralization is realized by the proposed

bi-directional core, the phase variation will be suppressed

during gain tuning [30]. The proposed VGA achieves 23-dB

gain control with less than 3.6◦ phase variation at 28 GHz.

Fig. 11(c) shows the circuit schematic of the switchable

PPF. Totally four NMOS switches are implemented in shunt

with the capacitors. In normal PPF mode, the switches will

be turned off, and the parasitic capacitance will be part of

the required capacitance for PPF. While, in adder mode,

the switch will be turned on to short the capacitor path for

summing up the I/Q signals. The ON-resistance Ron is required

to be minimized in this design due to the imperfect I/Q

summing. Fig. 11(d) shows the equivalent circuit of the adder-

mode switchable PPF. The output voltage swing Vout could be

derived regarding the input voltages �VI and �VQ

Vout = −
ZL(RPPF − RON)

RPPF RON + ZL RPPF + ZL RON

�VI

+
ZL(RPPF + RON)

RPPF RON + ZL RPPF + ZL RON

�VQ (5)

RPPF in the equation represents the resistance of PPF, while

RON is the ON-resistance of the NMOS switches. Ideally, RON

equals zero and the proposed switchable PPF functions as an

ideal adder. However, when RON equals a non-zero value, gain

imbalance between the I and Q path will be induced. The

I/Q gain imbalance due to the imperfect summing could be

expressed with the following equation:

Gain Imbalance = 20log
RPPF + RON

RPPF − RON

(dB). (6)

Thus, a comparatively large transistor size is selected consid-

ering the I/Q gain imbalance in adder mode. The measured I/Q

gain imbalance caused by the proposed adder-mode PPF is less
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Fig. 12. Measured 5-bit (a) TX-mode phase shifting and (b) RX-mode phase
shifting of proposed beamformer.

Fig. 13. Measured (a) rms gain and phase errors of proposed beamformer
and (b) linearity of the phase shifter.

than 2 dB. During simulation and measurement, the adder gain

imbalance is compensated by the DAC-controlled I/Q VGAs.

Fig. 12 shows the measured 5-bit TX-mode and RX-mode

phase shifting for the beamformer. 360◦ could be covered by

the proposed phase shifter. A −2.5-dB gain is achieved by the

phase shifter at 28 GHz, which is much higher than the passive

solutions. Fig. 13(a) demonstrates the measured rms gain and

phase errors during phase shifting. The measured TX-mode

and RX-mode gain errors are always less than 0.5 dB from

26.5 to 29.5 GHz. The rms phase errors are always less

than 2.1◦. Fig. 13(b) shows the measured linearity of the

proposed phase shifter at 28 GHz within ±45◦. The measured

worst I P1dB is −8 dBm. The proposed RX-mode beamformer

is carefully designed and the IIP3 is not limited by the phase

shifter. The RX-mode IIP3 can be improved by decreasing the

gain along the RX path.

IV. TRANSCEIVER IMPLEMENTATION AND MEASUREMENT

Fig. 14 shows the system block diagram of the pro-

posed bi-directional beamformer chip. Totally eight element-

beamformers are implemented into the same chip, and they

are divided into two groups for the H- and V-polarizations,

respectively. Thanks to the circuits introduced in Section III,

the proposed phased-array beamformer is capable of operating

in TX and RX modes with the same bi-directional circuit

chain. Each of the element beamformers in this work consists

of a two-stage PA-LNA, an RF buffer, a bi-directional phase

shifter, and an isolation buffer. The gain control for each

antenna path is realized by tuning the RF buffer. The RF buffer

Fig. 14. Block diagram of proposed 4H+4V bi-directional beamformer.

Fig. 15. (a) Block diagram of on-chip distribution and isolation buffers.
(b) Comparison on T-junction divider and Wilkinson divider. (c) Simulated
isolation between antenna paths for T-junction divider with isolation buffers.

in this work adopts a similar circuit topology with the VGA

utilized in the phase shifter. Wide-range and phase-invariant

gain tuning is maintained for each path.

The 28-GHz input–output signal is distributed in single-

ended formation. The T-junction dividers/combiners are uti-

lized for dividing/combining the RF signals. Fig. 15 shows the

RF signal distribution. Compared with the Wilkinson dividers,

the T-junction dividers realize acceptable insertion loss and

return loss with compact chip area. However, the isolation

between paths will be degraded in this case. To improve the

isolation, isolation buffers are added in each element beam-

formers. The simulated isolation between element beamfomers

are improved to over 34 dB in both TX- and RX-modes. Thus,

only the failure in isolation buffers may influence the dividing

network characteristics, but the following stages such as phase

shifter, power amplifier can also be isolated from the dividing

network. The loss caused by the distribution and balun is also

compensated by the buffers. The simulated distribution gain

is around 4 dB in TX mode and 5 dB in RX mode.

To calibrate the mismatches between different element

beamformers, the magnitude and phase detection circuits sim-

ilar to [11] are also included in this work. The signals for
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Fig. 16. Die micrograph of proposed phased-array beamformer chip.

TABLE I

CORE AREA OF BLOCKS

detection from each element beamformers are redirected to

the calibration block by configuring the switches. After the

magnitude and phase detections, the readout values are sent out

from the chip through the SPI. The corrections for magnitude

and phase errors are further done by tuning the VGA and phase

shifter. For saving the area, the calibration paths are shared

between the H and V beamformers. To improve the on-chip

H–V isolation, shielded transmission lines are utilized for

H- and V-pol. signal distributions [31]. Additionally, the

switches for signal re-direction are properly sized considering

the off-state isolation. As a result, over 39-dB ON-chip H-V

isolation is achieved at 28 GHz.

The proposed beamformer is fabricated in a standard 65-nm

CMOS process to further minimize the manufacturing cost.

Fig. 16 shows the die micrograph of the chip. The chip size is

3 mm × 4 mm. Table I summarizes the core area breakdown

of the chip. Thanks to the proposed neutralized bi-directional

technique, the required core area for the element-beamformer

is only 0.58 mm2.

Fig. 17(a) demonstrates the measured on-wafer frequency

response of the single-path TX-mode beamformer. The mea-

sured gain excluding the divider is around 20 dB at 28-GHz

band. The gain variation over frequency is less than 2 dB. The

measured TX-mode output power at 28 GHz for the element-

transceiver is shown in Fig. 17(b). The achieved Psat and P1dB

are 15.1 and 11.3 dBm, respectively. Fig. 17(c) shows the

measured gain for the single-path RX-mode beamformer. The

measured gain excluding the combiner is around 17 dB.

The measured RX-mode NF is shown in Fig. 17(d). The

NF is on-wafer measured with the Keysight PNA-X network

analyzer N5247A. The achieved RX-mode NF is 4.2–5.0 dB

from 26.5 to 29.5 GHz. Additionally, the output power, output

noise floor, and IM3 are measured at 28 GHz for the RX-mode

Fig. 17. Measured transceiver characteristics: (a) TX-mode gain,
(b) TX-mode output power, (c) RX-mode gain, and (d) RX-mode NF.

Fig. 18. Measured SNDR for RX-mode beamformer.

beamformer and presented in Fig. 18. With 100-MHz channel

bandwidth, the calculated SNDR of the RX-mode beam-

former is also shown in the same figure. A maximum SNDR

of 43.6 dB is realized.

The single-path TX-mode beamformer is further evaluated

with the SC-mode and OFDMA-mode modulated signals.

Fig. 19(a) summarizes the measured EVMs in 64-QAM with

100- and 400-MHz signal bandwidths. The achieved peak

EVMs are −41.4 and −37.5 dB for 100- and 400-MHz

bandwidths, respectively. In both bandwidth conditions, over

10.6-dBm output power is available for an EVM of lower

than −25.5 dB. Fig. 19(b) summarizes the measured EVMs

in 256-QAM. Minimum EVMs of −40.7 and −36.7 dB are

achieved with bandwidths of 100 and 400 MHz, respectively.

An output power of 6.6 dBm is available for a lower

than −32.5-dB EVM. The TX-mode beamformer is also

evaluated with 5G NR OFDMA-mode downlink packets.

In this measurement, the center frequency is 28 GHz, and

the channel bandwidth is fixed to 400 MHz. Fig. 20(a)

demonstrates the measured OFDMA-mode EVMs in QPSK,

16-QAM, 64-QAM, and 256-QAM. The modulation coding

schemes (MCSs) in the figure are defined in 5G NR MCS

index table 2 [32]. According to the 5G NR standard [33],
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Fig. 19. Measured SC-mode EVMs in (a) 64-QAM and (b) 256-QAM for
TX-mode beamformer.

Fig. 20. Measured (a) OFDMA-mode EVMs and (b) ACLRs for TX-mode
beamformer.

less than −15.1-dB (17.5%), −18.1-dB (12.5%), −21.9-dB

(8.0%), and −29.1-dB (3.5%) EVMs are required for the BS

downlink regarding modulation schemes of QPSK, 16-QAM,

Fig. 21. (a) Photograph of transceiver module for OTA measurement and
(b) connections between chips and dual-pol. antenna array.

64-QAM, and 256-QAM, respectively. Adjacent channel leak-

age ratios (ACLRs) of less than −28 and −17 dBc are also reg-

ulated in 5G NR standard for the BS and UE, respectively [33].

Fig. 20(b) shows the measured ACLRs for the TX-mode

beamformer. This work realizes the maximum output power

of 5.6 dBm in 64-QAM and 0.1 dBm in 256-QAM with EVMs

of −25 and −32 dB, respectively. The measured ACLRs at the

output power mentioned above are −28.4 dBc in 64-QAM

and −33.1 dBc in 256-QAM. For modulation schemes of

QPSK and 16-QAM, the maximum output power is limited

to 5.6 dBm due to the ACLR limitation.

To evaluate the over-the-air (OTA) performance of the

proposed bi-directional beamformer, the fabricated chips

are implemented into phased-array transceiver modules.

Fig. 21(a) shows the module photograph and Fig. 21(b) further

explains the connection between the chips and the dual-pol.

antenna array. In this work, each sub-array module printed

circuit board (PCB) shown in the figure has four chips on

the front and a 4 × 4 dual-polarized array antenna on the

back. Each antenna element has H and V ports for dual-

polarized excitation. Each chip has eight RF-signal ports and

is connected to the 2 × 2 array of the 4 × 4. The cross

section view of the PCB is also shown in Fig. 21(a). Seven-

layer metals are utilized for the module, and the RF ports are

connected to the antennas through the vias. Multiple 4×4 sub-

array module PCBs in this work can be combined side by side

to make a larger array such as 8×4. The dual-pol. antenna and

PCB are designed carefully considering the isolation between

H- and V-polarization. The simulated antenna gain including

the feed loss is 4 dB at 28 GHz. Fig. 22 shows the measured
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Fig. 22. Simulated and measured (a) H-to-V isolation and (b) V-to-H isolation
for proposed dual-polarized antenna in azimuth plane.

Fig. 23. Measured (a) V-polarization and (b) H-polarization beam patterns
for two sub-array modules.

Fig. 24. (a) Measured saturated EIRP within scan angle from −50◦ to +50◦

and (b) measured saturated EIRP against element number at 0◦.

cross-pol. isolations. Only one beamformer path is utilized

for this measurement. Both H-to-V and V-to-H isolations are

over 25 dB at 0◦. Fig. 23 demonstrates the measured TX-mode

beam patterns for two sub-array module PCBs in the azimuth

plane. Fig. 23(a) shows the beam pattern for V-polarization and

Fig. 23(b) shows the beam pattern for H-polarization. Beam

scan range from −50◦ to +50◦ is covered by the proposed

phased-array module. The measured sidelobe-levels are always

lower than −11.4 dBc for V-polarization and −9.4 dBc for

H-polarization. The measured saturated V-pol. EIRPs within

the beam scan angle from −50◦ to +50◦ are summarized

in Fig. 24(a) and the measured V-pol. EIRP against the element

number is plotted in Fig. 24(b). External dividers are included

in this measurement and an external amplifier is utilized for

compensating the dividing loss. At 0◦, the achieved EIRPs

are 36.4 dBm for 2 × 4 elements and 31.4 dBm for 2 × 2

Fig. 25. Equipment setups for the 1-m OTA measurement: (a) SC mode and
(b) 5G NR OFDMA mode.

TABLE II

POWER CONSUMPTION OF BLOCKS

elements. A maximum saturated EIRP of 45.6 dBm is achieved

by this work with 2 × 16 TX-mode element beamformers.

A 1-m OTA data transmission measurement is further

carried on from TX to RX in this work. Fig. 25(a) demon-

strates the equipment setup for SC-mode transmission. Two

sub-array module PCBs are utilized in this measurement. One

is operating in TX mode, while the other one is operating

in RX mode. The modulated signals in QPSK, 16-QAM,

64-QAM, and 256-QAM with a center frequency of 28 GHz

are directly generated by an arbitrary waveform generator

(AWG). For TX-to-RX EVM measurement, the RX-mode

sub-array module PCB is used. While, for TX EVM and

constellation measurements, a 14-dBi horn antenna is uti-

lized instead. After receiving, the combined signal is down-

converted to low frequency by an external mixer. The EVMs

and constellations are evaluated by the oscilloscope. The

communication distance in this work is limited by the size

of the chamber. The TX-to-RX EVMs are optimized con-

sidering the TX power backoff and RX SNDR. Fig. 26

summarizes the measured SC-mode performance with the

setup mentioned above. At 0◦ scan, the measured maximum

V-pol. data rates are 6 Gb/s in QPSK, 12 Gb/s in 16-QAM,

15 Gb/s in 64-QAM, and 6.4 Gb/s in 256-QAM. The achieved
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TABLE III

PERFORMANCE COMPARISON OF 28-GHz PHASED-ARRAY TRANSCEIVERS

Fig. 26. Summarized SC-mode and OFDMA-mode constellations,
TX EVMs, and TX-to-RX EVMs for sub-array transceiver module in 1-m
OTA measurement.

corresponding TX EVMs and TX-to-RX EVMs are −25.3 dB

and −22.5 dB for QPSK, −24.2 dB and −22.1 dB for

16-QAM, −24.2 dB and −22.6 dB for 64-QAM, −29.7 dB,

and −29.1 dB for 256-QAM. For realizing a bit error rate

of 10−3, SC-mode TX-to-RX EVMs of −9.8 dB, −16.5 dB,

−22.5 dB, and −28.4 dB are required for QPSK, 16-QAM,

64-QAM, and 256-QAM, respectively. Thus, all of the

measured SC-mode EVMs meet the requirements for a bit

error rate of less than 10−3.

Fig. 25(b) shows the equipment setup for OFDMA-mode

measurement. The input 5G NR downlink packets with

400-MHz channel bandwidth in QPSK, 16-QAM. 64-QAM

and 256-QAM are generated with an AWG and a signal

generator. While, at the RX side, a signal analyzer is used

for evaluating the constellations and EVMs. The measured

constellations, TX EVMs and TX-to-RX EVMs at 0◦ are also

summarized in Fig. 26. Data transmissions of up to 256-QAM

could be supported by this work. The measured TX EVMs

are −37.5, −37.3, −37.0, and −36.8 dB for QPSK, 16-QAM,

64-QAM, and 256-QAM, respectively. The standard require-

ments for 5G OFDMA-mode TX EVM mentioned previously

are satisfied in this measurement. The measured TX-to-RX

EVMs are −35.1 dB for QPSK, −34.8 dB for 16-QAM,

−34.6 dB for 64-QAM, and −34.4 dB for 256-QAM in this

work.

The proposed sub-array module PCB is also evaluated in a

2 × 2 DP-MIMO configuration with 5G NR uplink signals in

QPSK, 16-QAM, 64-QAM, and 256-QAM. Simultaneously,

two-stream input signals with the same center frequency are

generated from the Keysight AWG 8190A for the TX-mode

module. While, the RX-mode module output signals are

analyzed by the Keysight digitizer M9703B along with the

Keysight 89600 VSA software (2018 U_1.0 BETA5). Fig. 27

summarizes the measured TX-to-RX constellations and EVMs.

Due to the limitation of the measurement equipment, the
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Fig. 27. Summarized TX-to-RX EVMs and constellations for DP-MIMO
operation.

constellations are shown together for H- and V-pol. streams.

With 100-MHz channel bandwidth, TX-to-RX EVMs of

−31.7, −31.2, and −31.1 dB are realized in 16-QAM,

64-QAM, and 256-QAM, respectively. With 400-MHz channel

bandwidth, the measured TX-to-RX EVMs are −26.7 dB in

QPSK, −26.2 dB in 16-QAM, and −26.2 dB in 256-QAM.

Table II shows the power consumption breakdown for the

proposed phased-array beamformer. The measured power con-

sumption in TX mode is 252 mW per path at an output power

of 11.4 dBm. The measured RX-mode power consumption is

112 mW per path. Table III compares this work with state-of-

the-art 28-GHz dual-pol. phased-array transceivers. This work

based on the proposed neutralized bi-directional technique

achieves 15.3-dBm TX-mode Psat and 4.2-dB RX-mode NF

with decent power consumption. The proposed sub-array mod-

ule PCB is capable of scanning the beam from −50◦ to +50◦

for both H- and V-polarizations. The measured saturated EIRP

for 32 TX-mode element-beamformers is 45.6 dBm. With

1-m distance, a maximum SC-mode data rate of 15 Gb/s

in 64-QAM is achieved by the sub-array module PCB. 5G

NR standard-compliant downlink packets of up to 256-QAM

could be supported with 400-MHz channel bandwidth. The

proposed 4H+4V beamformer chip reports a 2 × 2 DP-

MIMO communication with 5G NR 64-QAM uplink signals.

The data rate is improved for the future 5G NR with minimized

system size and cost.

V. CONCLUSION

A 28-GHz CMOS 4H+4V phased-array beamformer chip

supporting DP-MIMO for 5G NR is introduced in this arti-

cle. Area-efficient neutralized bi-directional techniques are

proposed for sharing the circuit chain between TX and RX

modes. Two of the fabricated 16H+16V sub-array module

PCBs are capable of scanning the beam from −50◦ to +50◦.

Within 1-m distance, a maximum SC-mode 64-QAM data rate

of 15 Gb/s and the 256-QAM 5G NR OFDMA-mode downlink

packets transmission are supported by the sub-array module

PCB. This article also reports the first 2 × 2 DP-MIMO com-

munication with standard-compliant 5G NR uplink signals.

Remarkably improved data access speed is achieved for the

next-generation mobile network with minimized system area,

size, and cost.
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