
Research Article

A 2D Markerless Gait Analysis Methodology:
Validation on Healthy Subjects

Andrea Castelli,1,2 Gabriele Paolini,1,2 Andrea Cereatti,1,2 and Ugo Della Croce1,2

1Department of Information Engineering, Political Sciences and Communication Sciences, University of Sassari, 07100 Sassari, Italy
2Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Sassari, Italy

Correspondence should be addressed to Andrea Cereatti; acereatti@uniss.it

Received 9 January 2015; Revised 5 April 2015; Accepted 7 April 2015

Academic Editor: Reinoud Maex

Copyright © 2015 Andrea Castelli et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A 2D markerless technique is proposed to perform lower limb sagittal plane kinematic analysis using a single video camera. A
subject-speci	c, multisegmental model of the lower limb was calibrated with the subject in an upright standing position. Ankle
socks and underwear garments were used to track the feet and pelvis segments, whereas shank and thigh segments were tracked
by means of reference points identi	ed on the model. �e method was validated against a marker based clinical gait model.
�e accuracy of the spatiotemporal parameters estimation was found suitable for clinical use (errors between 1% and 3% of the
corresponding true values). Comparison analysis of the kinematics patterns obtainedwith the two systems revealed high correlation
for all the joints (0.82 < �2 < 0.99). Di�erences between the joint kinematics estimates ranged from 3.9 deg to 6.1 deg for the
hip, from 2.7 deg to 4.4 deg for the knee, and from 3.0 deg to 4.7 deg for the ankle. �e proposed technique allows a quantitative
assessment of the lower limb motion in the sagittal plane, simplifying the experimental setup and reducing the cost with respect to
traditional marker based gait analysis protocols.

1. Introduction

�ree-dimensional (3D) marker-based clinical gait analysis
is generally recognized to play an important role in the
assessment, therapy planning, and evaluation of gait related
disorders [1]. It is performed by attaching physical markers
on the skin of the subject and recording their position via
multiple cameras. To date, optoelectronic stereophotogram-
metric systems represent the most accurate technology for
the assessment of joint kinematics [2]. While the 3D char-
acterization of motion represents the standard for clinical
gait analysis laboratories and research environments, 3D
gait analysis remains underused in ambulatory environments
due to the costs, time, and technical requirements of this
technology.

Multicamera, video-based markerless (ML) systems can
represent a promising alternative to 3Dmarker-based systems
[3–5]. In fact, the use of ML techniques does not require the
application of 	xtures on the skin of the patients [1], making
the experimental sessions faster and simpler (e.g., do not

have to worry about markers falling o� during the sessions)
[1]. 3D ML motion capture techniques have been extensively
presented in [5–9] for di�erent types of applications, includ-
ing clinical gait analysis and biomechanics. However, 3D
ML approaches, similarly to 3D marker-based techniques,
require the use of multiple cameras [5], speci	c calibration
procedures, time synchronization between cameras, and
a considerable dedicated space. Furthermore, the number
of cameras and their high image resolution dramatically
increase the computing time and resources required.

When a 3D analysis is not strictly required, a simpler 2D
analysis on the sagittal plane could be successfully used to
quantify gait and to address speci	c clinical questions [10, 11].
A single-camera approach is su�cient for the description of
gait in 2D and allows for a simpli	ed experimental setup
reducing the space needed for the equipment, the number
of cameras, and the costs associated. Video recording in
combination with observational gait evaluation scales [11] is
commonly employed to perform visual and qualitative gait
analysis. In this regard, amethodology to quantitatively assess
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joint kinematics from the video footage can provide added
value to the patient care with no extra resources involved.

Single-camera ML techniques have been mainly devel-
oped for motion recognition and classi	cation [12–19]. To
the best of our knowledge, only a paucity of studies have
proposed ML methods for the estimation of the lower limb
joint kinematics for clinical evaluations [20–24]. However, in
the abovementioned studies, the analyses were either limited
to a single joint [20, 21], or they lacked a validation against
a clinically accepted gold standard [22, 23]. �ese limitations
hampered the wide spread use of such techniques in clinical
settings [4, 7, 9].

In this study, we present a novel 2D, model-based, ML
method for clinical gait analysis using a single camera: the
SEGMARK method. It provides unilateral joint kinematics
of hip, knee, and ankle in the sagittal plane, along with
the estimation of gait events and spatiotemporal parameters.
�e method uses garments (i.e., socks and underwear) worn
by the subjects as segmental markers to track the pelvis
and feet segments. �e segments’ model templates and the
relevant anatomical coordinate systems are calibrated in a
static reference image from anatomical landmarks manually
identi	ed by an operator.�emethod applicability was tested
and the performance evaluation was carried out on ten
healthy subjects walking at three di�erent speeds using an
optoelectronic marker-based system as gold standard.

2. Materials and Methods

2.1. Experimental Protocol and Setup. Ten healthy subjects
(males, age 33±3 y.o.), wearing only homogeneously coloured
(white) and adherent ankle socks and underwear, were asked
to walk at comfortable, slow, and fast speed along a straight 8-
meter walkway. An RGB video camera (Vicon Bonita Video
720c, 1280 × 720 p, 50 fps) was positioned laterally to the
walkway. A homogenous blue background was placed oppo-
site to the camera. To prevent blurred images, the exposure
time was set to a low value (5ms), and the illumination level
was set accordingly.�e image coordinate system (CSI) of the
video camera was aligned to the sagittal plane, identi	ed by
the direction of progression and the vertical direction.

�ree trials per subject were captured for each gait speed.
�e starting line was set so that the foot in the foreground
could enter the 	eld of view 	rst and hit the ground when
fully visible. A static reference image, with the subject in
an upright standing position, centered in the 	eld of view
of the camera, was captured prior to each experimental
session. �e subjects were then asked to walk along a line
drawn on the �oor, placed at a known distance from the
image plane, identical to the distance between the camera
and the subject during the static reference image acquisition.
For validation purposes, 3Dmarker-based data, synchronous
with the video data, was captured at 50 fps using a 6-camera
stereophotogrammetric system (Vicon T20). Retrore�ective
spherical markers (14mm diameter) were attached to the
subjects according to the Davis model [26] provided by the
Vicon Nexus so�ware (Plug in Gait).

2.2. Image Preprocessing. Camera lens distortion was cor-
rected using the Heikkilä undistortion algorithm [27]. �e
spatial mapping of the camera image was determined by
associating the measured foot length to the foot segmental
marker length expressed in pixels, from the static reference
image (1 pixel ≈ 1mm).

To separate the moving subject from the background, a
segmentation procedure based on background subtraction in
the HSV color space was applied [6]. �e underwear and
ankle socks were extracted using a white color 	lter and
used as segmental markers. An automatic labelling process
to identify the segmental markers was performed. �e pelvis
segmental marker was identi	ed as the group of white pixels
with higher vertical coordinates in theCSI.�e feet segmental
markers were identi	ed and tracked using the predicted
positions of their centroids, based on their velocity at the
previous two frames. Canny’s edge operator [28] was used
to obtain the silhouette (Figure 1) and the segmental markers
contours.

2.3. Cycle Segmentation and Gait Parameters Determination.
Heel strike and toe o� events were automatically estimated
using a method originally developed for marker-based sys-
tems [29] and adapted to our ML method. Per each time
frame, the centroids of the pelvis and both feet were deter-
mined. �e gait events (heel strike and toe o�) instants were
determined when the maximum horizontal relative distance
between the pelvis and the foot centroids is achieved.

An expert operator manually identi	ed the same gait
events, using the video footage and the heel and toe 3D
marker trajectories as reference. �e following spatial and
temporal parameters were then calculated for both ML and
marker-based data: cadence, walking speed, stride time, and
stride length. �e estimated parameters were compared for
validation purposes.

2.4. Model Calibration. A subject-speci	c, multisegmental
model of the lower limb, was used to track the segments and
to compute the relevant joint kinematics. �e model is made
of four segments (foot, tibia, femur, and pelvis) connected by
hinges. �e position of the following anatomical landmarks
wasmanually identi	ed by the operator in the static reference
image: lateral malleolus (LM), lateral femoral epicondyle
(LE), and greater trochanter (GT) (Figure 2(a)).

�e foot model template was de	ned as the posterior
half of the foot segmental marker contour. �e anatomical
coordinate system (CSA) of the foot was de	ned on the
foot model template, with the positive �-axis coincident
with the line 	tting the lower-posterior contour and oriented
towards the toes. �e origin was made to coincide with the
most posterior point of the foot segmental marker contour.
A technical coordinate system (CST) was de	ned with the
�-axis coinciding with the corresponding axis of the CSI
and centred in LM (Figure 2(b)). �e transformation matrix

between the CST andCSA of the foot was computed fCSATfCST
.

�e CSA of the tibia was de	ned with the �-axis joining
LM with LE (origin on LM). �e tibia model template
was de	ned based on ten reference points identi	ed on the
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Figure 1: Contour extraction and silhouette contour deformation for three di�erent gait cycle percentages. It can be noticed that in cases (b)
and (c) there is an overlap between the foreground and background legs that prevents the identi	cation of the correspondent boundaries of
the segments.
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Figure 2: (a) Anatomical landmarks and anatomical coordinate systems (CSA) for the segments analyzed; femur CSA (yellow axes) and femur
reference points (yellow points) identi	ed by the yellow arcs; tibia CS

A
(cyan axes) and tibia reference points (cyan points) identi	ed by the

cyan arcs. (b) Foot CSA and model template. (c) Double anatomical calibration of the most lateral point (PL) in the 	rst and last frame of the
gait cycle.

silhouette as the intersections between the shank contour and
the circles of radius �sh,�, centered in LM (Figure 2(a)). �e
length of the imposed radii was chosen so that the reference
points would fall within the middle portion of the shank
segment (between the 25% and 75% of the segment length).
�is avoided the reference points to fall on the portions of
the segment adjacent to the joints. �ese areas are, in fact,
subject to a larger so� tissue deformation during gait [2].�e
tibia CST was de	ned with the �-axis parallel to the �-axis
of the CSI and centred in the centroid of the tibia reference
points. �e transformation matrix between CST and CSA of

the tibia was computed tibCSATtibCST
(Figure 2(a)). LM and LE

positions and the tibia reference points were then expressed

in the tibia CST (tibCSTp0�, � = 1, . . . , 10).

�e CSA of the femur was de	ned with the �-axis joining
LE with GT (origin on LE). �e femur model template
was de	ned based on six reference points identi	ed on the
silhouette as the intersections between the thigh contour and
the circles of radius �th,�, centered in LE (Figure 2(a)). �e
femur CST was de	ned with the �-axis parallel to the �-axis
of the CSI and centred in the centroid of the thigh reference
points. �e transformation matrix between the CST and CSA
of the femur was computed femCSATfemCST

(Figure 2(a)). LE
and GT positions and the femur reference points were then

expressed in the femur CST (femCSTp0�, � = 1, . . . , 6).
�e pelvis CSA origin was set in the most lateral

point (PL) of the pelvis segmental marker upper contour
(Figure 2(a)). �e �-axis was oriented as the line 	tting
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the portion of the pelvis segmental marker upper contour
de	ned from PL ± 20 pixels and pointing towards the
direction of progression. Due to both parallax e�ect and
pelvis axial rotation during gait, the shape of the pelvis
segmental marker changes remarkably throughout the gait
cycle (Figure 2(c)). To improve the quality of the PL tracking
process, a double calibration approach was implemented. At
the 	rst and last frames of the gait cycle, the PL positions were
manually identi	ed by the operator (PL�rst, PLlast) whereas
the positions of the most posterior point (PP�rst and PPlast)
of the pelvis upper contour were automatically identi	ed.
�e horizontal distances between PL�rst and PP�rst (��,	rst)
and between PLlast and PPlast (��,last) were calculated and
the incremental frame by frame variation Δ was computed
according to

Δ =




��,last − ��,	rst






� , (1)

with� representing the number of frames.
�e incremental frame variation was then used to com-

pute the distance ��,� between the points PP and PL in
correspondence of the �th frame:

��,� = ��,	rst + (Δ ⋅ �) . (2)

�e position of PL at the �th instant (PL�) was determined
from the automatically detected position of PP at the same
time instant (PP�):

PL� = PP� + ��,�. (3)

2.5. Dynamic Processing. �e dynamic trials were processed
using a bottom-up tracking approach, starting from the foot
and moving up the chain. �e foot was tracked using an
iterative contour subtraction matching technique between
the contour at the �th frame and the template foot contour.
At the �th frame, the foot CST was rotated and translated
around the prediction of the LMposition based on its velocity
estimated in the previous two frames. To make the process
more e�cient, the rotational span limits were de	ned based
on the gait cycle phase: ±10 degrees during the stance phase
and ±30 degrees during the swing phase. �e transformation

matrix fCSTT(�)fCSI between the foot CST and the CSI was
determined by maximizing the superimposition between the
foot template and the foot contour at the �th frame (i.e., the
minimum number of active pixels resulting from the image
subtraction). �e transformation matrix between the foot
CSA and the CSI was computed as

fCSAT (�)fCSI =
fCSAT (�)fCST ⋅

fCSTT (�)fCSI . (4)

Due to leg superimposition and so� tissues deformation,
the silhouette contours of the shank and thigh change during
the gait cycle, making the tracking di�cult (Figure 1). To
overcome this issue, the following procedure was adopted for
the tibia. At the �th frame, a registration of 	rst approximation
between the tibia CST and the CSI was carried out using the
position of LM and the prediction of LE. An approximated
estimate of the tibia reference points positions with respect

Contourarc

LM

�k�0k

Figure 3: Tibia reference points detection. �ese points are identi-
	ed on the silhouette as the intersections between the shank contour
and the circles of radius �sh,�, centered in LM. LM (cyan circle);
predicted LE (white cross);magni	ed: arc of circumference of radius
�sh,� (yellow curve); y�: reference point detected in the current frame

(red circle); p0� : template reference point a�er 	tting (cyan circle);
silhouette contour line (contour).

to the CSI was then obtained and a 10 × 10 pixels region of
interest was created around each point. �e 	nal reference

position vectors CSIy� of the tibia were detected as the
intersection, where available, between the portion of the
shank contour included in the region of interest, and the

circle of radius �tib,�.�e transformationmatrix tibCSTT(�)tibCSI
between the CSI and CST was determined using a Singular
Value Decomposition procedure [25] between the position

vectors tibCSTp0� and the corresponding points tibCSIy0. Due to

leg superimposition, the number of points tibCSTp0� involved
in the 	tting procedure varied according to the number of

intersections tibCSIy0 available (Figure 3). �e transformation
matrix between the tibia CSA and the CSI was computed as

tibCSAT (�)tibCSI =
tibCSAT (�)tibCST ⋅

tibCSTT (�)tibCSI . (5)

An identical procedure was employed to determine the
transformation between the CSI and CSA of the femur
femCSAT(�)femCSI

at the �th frame.

From the relevant transformation matrices, the joint
angles between the pelvis and the femur (hip �ex/ext.),
between the femur and the tibia (knee joint �ex/ext.), and
between the tibia and the foot (ankle joint �ex/ext.) were
computed.

2.6. Data Analysis. For each gait speed, the accuracy of
the spatiotemporal gait parameters estimated by the ML
approach was assessed in terms of the mean absolute error
(MAE) and MAE% over trials and subjects (3 × 10 trials).
Both the ML and marker-based angular kinematic curves
were 	ltered using a fourth-order Butterworth 	lter (cut-o�
frequency at 10Hz).�e sagittal angular kinematics produced
by the Plug in Gait protocol was used as gold standard [26].

�e kinematic variables were time-normalized to the
gait cycle. Furthermore, for each gait trial and each joint,
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Table 1: Gait spatiotemporal parameters.Mean absolute (MAE) and
percentage errors of the cadence, walking speed, stride time, and
stride length for di�erent gait speeds (slow, comfortable, and fast).

Slow speed Comfortable speed Fast speed

MAE MAE% MAE MAE% MAE MAE%

Cadence
(steps/min)

0.93 1% 1.34 1% 2.23 2%

Walking
speed (m/s)

0.02 2% 0.03 3% 0.05 3%

Stride time
(s)

0.01 1% 0.01 1% 0.02 2%

Stride
length (m)

0.03 3% 0.04 3% 0.05 3%

the average root-mean-square deviation (RMSD) value
between the joint kinematic curves estimated by the ML
method and the gold standard were computed over the gait
cycle and averaged across trials and subjects. �e similarity
between the curves provided by the MLmethod and the gold
standard was assessed using the linear-	t method proposed
by Iosa and colleagues [30]. �e kinematic curves produced
by the ML system were plotted versus those produced by the
gold standard, and the coe�cients of the linear interpolation
were used to compare the curves in terms of shape similarity

(�2), amplitude (angular coe�cient,�0), and o�set (constant
term,�1).�e average of�0 and�1 across trials and subjects
was calculated for each gait speed.

3. Results

�e results relative to the spatiotemporal gait parameters are
shown in Table 1. For all parameters and gait speeds, the
errors were between 1% and 3% of the corresponding true
values.

Results relative to the joint kinematics are shown in
Table 2. Average RMSD values, over trials and subjects,
ranged from 3.9 deg to 6.1 deg for the hip, from 2.7 deg to
4.4 deg for the knee, from 3.0 deg to 4.7 deg for the ankle, and
from 2.8 deg to 3.8 deg for the pelvic tilt.

�e results of the linear-	t method (�2) highlighted
excellent correlation (from 0.96 to 0.99 for all gait speeds) for
hip and knee joint kinematics. �e ankle kinematics showed
strong correlation (from 0.82 to 0.87 for all gait speed).
Conversely, the pelvic tilt showed no correlation. �e hip
and ankle joint kinematics were underestimated in terms of
amplitude (�0 ranged from 0.73 to 0.76 and from 0.82 to 0.87
for the hip and ankle, resp.), whereas the knee kinematics
were overestimated (�0 from 1.08 to 1.11). �e values of the
o�set �1 were consistent amongst the di�erent gait speeds
(maximum di�erence of 2.4 deg for the hip joint, across all
gait velocities) and ranged from −0.1 deg to 2.3 deg, from
−7.7 deg to−6.4 deg, and from−4.7 deg to−3.3 deg for the hip,
knee, and ankle, respectively. �e joint kinematics and pelvic
tilt curves, averaged over trials and subjects and normalised
to the gait cycle, are reported in Figures 4, 5, 6, and 7.

4. Discussion and Conclusion

�e aim of this study is to implement and validate a ML
method based on the use of a single RGB camera for
lower limb clinical gait analysis (SEGMARK method). �e
estimated quantities consist of hip, knee, and ankle joint
kinematics in the sagittal plane, pelvic tilt, and spatiotemporal
parameters of the foreground limb. �e SEGMARK method
is based on the extraction of the lower limbs silhouette and
the use of garment segmental markers for the tracking of the
foot and pelvis.

Key factors of the proposed method are the use of
anatomically based coordinate systems for the joint kinemat-
ics description, the automatic management of the superim-
position between the foreground and background legs, and a
double calibration procedure for the pelvis tracking.

For a clinically meaningful description of the joint kine-
matics, it is required, for each bone segment, to de	ne a
coordinate system based on the repeatable identi	cation of
anatomical landmarks [31]. In our method, the anatomical
calibration is performed by an operator on the static reference
image, by clicking on the relevant image pixels. Although
it might sound as a limitation, the manual anatomical
landmarks calibration is a desired feature because it allows
the operator to have full control on the model de	nition.

When using a single RGB camera for recording gait,
the contours of the foreground and background legs are
projected onto the image plane, and their superimposition
makes di�cult the tracking of the femur and tibia segments
during speci	c gait cycle phases (Figure 1). To overcome
this problem, the model templates of the femur and tibia
segments werematched, for each frame, to an adaptable set of
target points automatically selected from the thigh and shank
contours.

�e use of a silhouette-based approach implies that no
information related to the pixel greyscale intensity or color
values are exploited, except for the background subtraction
procedure [7, 8]. �is should make the method less sensitive
to change in light conditions or cameras speci	cations [7, 8].

�e accuracy with which the spatiotemporal parameters
are estimated (Table 1) is slightly better than other ML
methods [14, 15]. Furthermore, the percentage error was
always lower than 3%. �e errors associated to the gait
temporal parameter (stride time) estimation were less than
0.02 s, for all gait speeds.

�e kinematic quantities estimated by the SEGMARK
method and those obtained using a clinically validated gait
analysis protocol were compared in terms of root-mean-

square deviation (RMSD), shape (�2), amplitude (�0), and
o�set (�1) (Table 2). In this respect, it is worth noting that
the di�erences found are not entirely due to errors in the joint
kinematics estimates, but also to the di�erent de	nitions used
for the CSA and the di�erent angular conventions adopted
(2D angles versus 3D Euler angles).

Overall, the RMSD values ranged between 2.7 and 6.1 deg
across joints and gait speeds.�e smallest RMSD values were
found for the knee joint kinematics, followed by the hip
and ankle joints kinematics. We reckon that the di�erences
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Table 2: Lower limb joint and pelvis kinematics.�e average root-mean-square deviation (RMSD) value between the joint kinematics curves
estimated by the ML method and the gold standard are computed over the gait cycle and averaged across trials and subjects. �e similarity
between the curves obtained with the proposedMLmethod and the gold standard is assessed using the linear-	tmethod [25].�e coe�cients
of the linear interpolation were used to compare the curves in terms of shape similarity (�2), amplitude (angular coe�cient, �0), and o�set
(constant term, �1). �e average of �0 and �1 across trials and subjects is calculated for each gait speed.

Speed
Hip Knee Ankle Pelvis

RMSD
(deg)

�2 �0 �1
(deg)

RMSD
(deg)

�2 �0 �1
(deg)

RMSD
(deg)

�2 �0 �1
(deg)

RMSD
(deg)

�2 �0 �1
(deg)

Slow 3.9 .97 .76 1.02 2.7 .99 1.08 −6.36 3.2 .84 .82 −4.67 2.8 .06 .05 −3.04
Comfortable 4.8 .97 .76 −.09 3.6 .99 1.11 −7.71 3.0 .87 .74 −3.64 3.0 .01 .38 −6.71
Fast 6.1 .96 .73 2.31 4.4 .98 1.10 −6.47 4.7 .82 .68 −3.35 3.8 .18 −.72 −.19
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Figure 4: Hip �exion/extension averaged over subjects and trials for the selected gait speed (average: solid lines; SD: shaded area; red = ML;
blue = Plug in Gait protocol).
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Figure 5: Knee �exion/extension averaged over subjects and trials for the selected gait speed (average: solid lines; SD: shaded area; red =ML;
blue = Plug in Gait protocol).

at the hip angle between the SEGMARK method and the
Plug in Gait model were mainly due to inaccuracies in the
pelvis tracking, which proved to be a critical aspect of the
single-camera technique proposed. �is is mainly due to
intrinsic di�culties associated to the pelvis tracking, such
as the small range of motion in the sagittal plane during
gait (<5 deg), the wider range of motion in the frontal and
horizontal planes, and the di�culty to isolate the pelvis from
the lower trunk.�e di�erences in the ankle joint kinematics

observed between the SEGMARK method and the Plug in
Gait model (Table 2) can be probably ascribed to the 2D
tracking of the foot segment. In fact, the SEGMARKmethod
cannot account for the foot motion in the transverse plane,
leading to an underestimation of the ankle joint motion
amplitude (�0 varied from 0.82 to 0.68 for increasing gait
speed).�e waveform similarity analysis highlighted that the
amplitude of the knee joint angle was consistently overes-
timated (�0 equals to 1.11 for comfortable speed) whereas
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Figure 6: Ankle plantar/dorsi�exion averaged over subjects and trials for the selected gait speed (average: solid lines; SD: shaded area; red =
ML; blue = Plug in Gait protocol).

the hip and ankle joint kinematic curves were consistently
underestimated (�0 equals to 0.76 and 0.74 for hip and ankle,
resp., for comfortable speed). �is can be explained by the
consistent overestimation of the pelvis motion, which was in
phase with the femur angular displacement, combined with
the underestimation of the foot motion in the sagittal plane.
An increase of the gait speed showed a negative e�ect on the
accuracy of the kinematics estimation for all the joints due
to the signi	cantly smaller number of frames recorded at the

fast gait (≈40 frames) compared to the slow gait (≈80 frames).
�is result underlines the importance of a su�ciently high
frame rate when recording the video footage.

To our knowledge, amongst the 2D ML methods for
clinical gait analysis proposed in the literature, just a few use
anatomically relevant points to de	ne the CSA [22, 32, 33].
Go�redo and colleagues [22] used an approach based on
skeletonisation and obtained the proportions of the human
body segments from anatomical studies [34]. �is approach,
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Figure 7: Pelvic tilt averaged over subjects and trials for the selected gait speed (average: solid lines; SD: shaded area; red = ML; blue = Plug
in Gait protocol).

although completely automatic, neglects the subject-speci	c
characteristics, possibly leading to joint angles estimation
inaccuracies. Other recent ML validation studies rely upon
the built-in algorithmof theMicroso�Kinect to identify joint
centres [33, 35], which are therefore not based on anatomical
information, making the use of such techniques questionable
for clinical applications. Another important limitation of
the 2D ML methods previously proposed is the lack of a
systematic validation via a well-established gold standard for

clinical gait analysis applications [13–19]. To our knowledge,
only the work presented by Majernik [32] compared the
joint kinematics with the sagittal plane joint angles produced
by a simultaneously captured 3D marker-based protocol.
However, neither reference to the speci	c clinical gait analysis
protocol used nor a quantitative assessment of the method
performance is reported. Similarly, Go�redo and colleagues
[22] only performed a qualitative validation of their method
by comparing the estimated joint kinematics to standard



10 Computational and Mathematical Methods in Medicine

patterns taken from the literature. Moreover, none of the
abovementionedworks described the procedure used to track
the pelvis, which is critical for the correct estimation of the
hip joint angle.

Interestingly, when comparing our results with the joint
sagittal kinematics obtained from more complex 3D ML
techniques, we found errors either comparable or smaller.
Speci	cally, Sandau et al. [3] reported a RMSD of 2.6 deg for
the hip, 3.5 deg for the knee, and 2.5 deg for the ankle, which
are comparable with the RMSD values reported in Table 2 for
the comfortable gait speed. Ceseracciu et al. [4] reported a
RMSD of 17.6 deg for the hip, 11.8 deg for the knee, and 7.2 deg
for the ankle, sensibly higher than the values reported in this
work. �is further con	rms the potential of the SEGMARK
approach for the study of the lower limbmotion in the sagittal
plane for clinical applications.

�is study has limitations, some of them inherent to
the proposed ML technique, whereas others related to the
experimental design of the study. First, the joint kinematics
is only available for the limb in the foreground, while
other authors managed to obtain a bilateral joint kinematics
description using a single camera [22]. �erefore, to obtain
kinematics from both sides, the subject has to walk in
both directions of progression. Second, the segmentation
procedure for the subject silhouette extraction takes advan-
tage of a homogeneous blue background. �is allows for
optimal segmentation results, but it adds a constraint in the
experimental setup. For those applications where the use
of a uniform background is not acceptable, more advanced
segmentation techniques can be employed [7–9]. Finally, the
anatomical calibration procedure requires the operator to
visually identify the anatomical landmarks in the static image,
and this operation necessarily implies some repeatability
errors which would need to be assessed in terms of inter and
intra observer and inter and intrasubject variability [35]. As
a future step, the present methodology will be applied and
validated on pathological populations such as cerebral palsy
children.
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