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Abstract 

Carbon nanotubes (CNT) have attracted considerable attention due to their unique electrical,

mechanical, and electromechanical properties. In particular, thin films formed by embedding

CNTs in polymer matrices have been shown to exhibit  strain-sensitive electromechanical

properties,  which  can  serve  as  an  alternative to  traditional  strain  sensors.  Although

numerous  experimental  studies  have  characterized  their  electrical  properties  and

piezoresistivity, it remains unclear as to what nano-scale mechanisms dominate to govern

nanocomposite  electromechanical  properties.  Therefore,  the objective  of  this  study  is  to

create  a  two-dimensional  (2D)  percolation-based  numerical  model  to  understand  the

electrical  and  coupled  electromechanical  behavior  of  CNT-based  thin  films.  First,  a

percolation-based  model  with  randomly  dispersed  straight  nanotubes  was  generated.

Second, the percolation and unstrained electrical properties of the model were evaluated as

a function of CNT density and length. Next, uniaxial tensile-compressive strains were applied

to the  model  for  characterizing  their  electromechanical  response and piezoresistivity.  In

addition, the effects of different intrinsic strain sensitivities of individual nanotubes were also

considered. The results showed that bulk film strain sensitivity was strongly related to CNT

density,  length,  and its  intrinsic  strain  sensitivity.  In  particular,  it  was found  that  strain

sensitivity decreased with increasing CNT density. While these strain sensitivity trends were

consistent for different intrinsic CNT gage factors, the results were more complicated near

the percolation threshold. These results were also compared to other experimental research



so as to understand how different nano-scale parameters propagate and affect bulk film

response.

Keywords:  carbon nanotube; electromechanical properties; numerical model; percolation;

piezoresistivity; strain sensing; thin film.



Introduction

Carbon  nanotubes  (CNT)  are  long  and  hollow cylindrically  shaped

nanomaterials that physically represent that of a rolled graphene structure.

They can exist  as single-walled (SWNT) or  multi-walled carbon nanotubes

(MWNT),  which  depends  on  the  number  of  concentrically  stacked  tubes.

While  MWNTs  are  metallic,  SWNTs  can  be  semiconducting  or  metallic

depending on its chirality. Their popularity for engineering applications ([1-

5])  is  largely  due  to  their  impressive  intrinsic  properties  [3],  which  are

derived from their unique nano-scale structure [3,4,6]. To be specific, CNTs

are characterized by extremely high aspect ratios, where its diameter can be

as small as 0.4 nm, while its length can be up to a few centimeters [4,6]. In

addition, the surface of nanotubes, like each layer of graphite or graphene,

consists  of  strong  carbon-carbon  covalent  bonds  [6].  This interesting

structure results  in  exceptional  mechanical  properties;  for  instance,  the

Young’s modulus and bending strength of MWNTs can be up to 1.28 TPa and

63 GPa, respectively [1]. In addition, its one-dimensional (1D)-like structure

enables  each  nanotube  to  transport  electrons  almost  without  scattering,

which results in near-ballistic electron transport properties [3,7]. In fact, the

electrical conductivity of SWNTs and MWNTs have been found to be up to 106

and 105 S-cm-1, respectively [8].

However,  as  with  many  nanomaterials,  carbon  nanotubes  also  tend  to

agglomerate  in  its  pristine  form,  and  it  becomes  challenging  to  take

advantage of their unique properties in this case  [9]. Scalability is another

issue in which some applications demand the fabrication of tangible devices

that incorporate nanomaterials such as CNTs [10]. To overcome these two

challenges,  one  solution  is  to  create  nanocomposites  by  embedding

dispersed nanotubes within a polymer matrix [11]. In doing so, the polymer

matrix  can  prevent  CNTs  from re-agglomerating  (as  they would  in  many



solutions or solvents), while the nanocomposite becomes easier to handle,

manipulate,  and use.  As an example,  researchers have investigated CNT-

polymer  nanocomposites  for  fabricating  next-generation  ultra-strong

coatings [12]. Specifically,  when nanotubes are embedded in the polymer

matrix,  the  nanocomposite’s  mechanical  properties  (e.g., stiffness  and

strength) can be significantly enhanced. Gojny et al. [13] demonstrated that

the  stiffness  and  fracture  toughness  of  1  wt%  CNT-epoxy  composites

increased by 6% and 26%, respectively. Similarly,  Qian et al. [14] showed

that the stiffness of 1 wt% CNT-polystyrene composites improved by ~40%

compared to that of the pristine polymer. 

Besides  using  CNTs  for  mechanical  reinforcement,  one  can  also  take

advantage of their high electrical conductivity for fabricating thin film strain

sensors.  Early research by Dharap  et al.  [15] and Li  et al. [16] proposed

buckypaper-type strain sensors fabricated by mixing unpurified SWNTs with

N,N-dimethylformamide, filtering the solution, and then peeling off the thin

film  after  drying.  The  buckypaper  showed  linear  changes  in  electrical

properties  (i.e.,  current-voltage  response)  when  subjected  to  mechanical

deformations (i.e., exhibiting piezoresistivity). Kang et al. [17] also employed

buckypaper and proposed them for detecting strain and cracks. On the other

hand,  Loh  et  al. [18] employed  a  layer-by-layer  method  for  assembling

mechanically  strong  SWNT-polyelectrolyte  (PE)  thin  films  that  were  also

multifunctional. The nanocomposite was designed for strain or corrosion/pH,

and its functionality depended on the specific polymer or PE incorporated

during  film  fabrication.  Continued  research  also  showed  that  the  strain

sensitivities  of  the  SWNT-PE thin  films could  be  tuned  by controlling  the

concentration of nanotubes and PE [19]. Other related studies include one by

Pham et al.  [20], in which they employed two different fabrication methods

(i.e.,  dry-blended  and  solution-based)  and  compared  the  resulting  films’

electromechanical response. Park et al. [21] showed that when deformations

were  applied  to  MWNT-polymer  films,  its  electrical  resistance  increased



linearly up to a maximum threshold of strain before becoming nonlinear, as

was also shown by Loyola et al. [22]. 

Complementing  experimental  research on CNT-based nanocomposites  are

numerical studies that focused on advancing the fundamental understanding

of  these  materials  and  the  underlying  mechanisms  that  enabled

piezoresistivity.  To  be specific,  the inherent  properties  of  individual  CNTs

(e.g., intrinsic piezoresistivity, diameter, and length, among others) and how

they are incorporated in the nanocomposite (e.g., CNT density) can affect

the  bulk  film’s  electrical,  mechanical,  and  coupled  electromechanical

properties. In particular, a significant amount of research was dedicated to

understanding the nominal electrical properties of CNT-based thin films. As

an example,  Kumar  et al. [23] estimated the conductance of  a nanotube

network model and considered parameters including channel length between

source  and  drain  electrodes and  nanotube  density.  Behnam  et  al. [24]

investigated  how  different  parameters  (e.g.,  alignment,  resistance  ratio,

nanotube length, and nanotube density) affected the resistivity of a three-

dimensional (3D) model created by stacking multiple two-dimensional (2D)

nanotube  layers.  Li  et  al.  [25] conducted  Monte  Carlo  simulations  and

demonstrated that wavy nanotube networks had lower conductivity than that

which included only straight nanotubes. In addition, Du et al. [26] and Bao et

al. [27] investigated alignment effects on the electrical properties of  2D and

3D model, respectively. 

Building  on  the  body  of  work  dedicated  to  understanding  the  electrical

properties  of CNT-based  nanocomposites,  many  researchers  also  utilized

these thin film numerical models to investigate their electromechanical or

strain  sensing  response.  For  example,  Hu  et  al. [28] regarded  tunneling

effect  as  the core  parameter that  affected the piezoresistive response of

CNT-polymer nanocomposites, and the model incorporated an approximate

tunneling resistance between neighboring nanotubes. The findings were that



higher sensitivity could be achieved when the density of CNTs was near the

percolation threshold. Continued research explored the numerical modeling

of tensile and compressive loading, and the results demonstrated that strain

sensitivity was higher in tension than compression [29]. Rahman et al.  [30]

also  regarded  tunneling  phenomenon  as  the  dominant  parameter  that

governed bulk film piezoresistivity, and the numerical model considered how

tunneling resistance affected strain sensitivity. Amini et al. [31] investigated

how  CNT  densities  and  model  dimensions  affected  the  model’s

electromechanical response, as well as simulation repeatability. Wang et al.

[32] suggested that the piezoresistivity of CNT-polymer composites could be

optimized by maximizing the value of average junction gap variation (AJGV),

which consisted of parameters including Poisson’s ratio of the polymer and

the diameter, orientation, and density of carbon nanotubes.

Despite  these  advances,  additional  research  on  CNT-based  thin  film

numerical  modeling  is  needed  for  complementing  and  explaining  results

obtained  from  experimental  investigations.  For  instance,  thin  film

piezoresistivity was shown to vary depending on the method  and types of

polymers  and  nanotubes  employed  during  fabrication.  To  be  specific,

different  trends  of  strain  sensitivities as  a  function  of  nanotube

concentrations were investigated with different fabrication methods [18,29].

Furthermore,  the  intrinsic  piezoresistivity  of  individual  nanotubes and

incorporating this parameter as part of bulk nanotube network models have

not been emphasized, even though each nanotube could be regarded as a

nano-scale strain sensor  [7]. In fact, Stampfer  et al.  [33] showed that the

gage factor (or strain sensitivity)  of  an SWNT could be as high as 2,900.

Cullinan  et al. [34] considered a resistor network with 100 nanotubes and

demonstrated that the gage factor of the model was 78.5. 

In  this  study,  the  objective  was  to  implement  a  2D  percolation-based

computational  model for investigating the piezoresistive response of  CNT-



based nanocomposites. In addition to characterizing the effects of nanotube

parameters  (e.g.,  length  and  density)  on  thin  film  nominal  electrical

properties, this work also focused on incorporating the effects of the inherent

piezoresistivity  of  individual  nanotubes. Three  different  CNT gage  factors

were  considered,  which  were  based on  results  reported  in  the  literature.

Uniaxial tensile-compressive cyclic loads were applied to the nanocomposite

model,  and  its  electromechanical  properties  (such  as  bulk  film  strain

sensitivity)  were  calculated  and  compared.  This  paper  begins  with  a

discussion  of  the  percolation-based  model,  assumptions,  and  boundary

conditions. Second, the method used for calculating thin film resistance is

presented. Then, the results are discussed, followed by a brief summary and

future research directions.

Background on Modeling and Simulation

Percolation-based Model

Percolation theory was introduced by Broadbent and Hammersley [35,36] in

1957 to explain phase transition of a permeable 3D box. They demonstrated

that low concentrations of fluid could not flow through the permeable box

until the fluid concentration reached a certain percolation threshold. Later in

1973,  Kirkpatrick  [37] applied  percolation  theory  to  describe,  through

numerical  modeling,  phase  transition  (i.e.,  insulator-to-conductor)  of

conductive particle-based composites. 

Similar to these early investigations, one can also expect the same insulator-

to-conductor  phase  transition  with  the  incorporation  of  electrically

conductive  nanotubes  embedded  in  an  insulating  polymer  matrix.  In

particular,  three  different  states  can  be  investigated  depending  on  the

concentration of nanotubes. The first state corresponds to when that of the

insulating  polymer  matrix  is  dominating  the  electrical  properties  of  the



nanocomposite (Fig. 1). Since very few conductive nanotubes are embedded

in the polymer matrix, a continuous conductive pathway for electrical current

to flow from one end of the nanocomposite to the other does not exist. As

the concentration of  nanotubes increases, they start  to create electrically

conductive  clusters,  which  are  formed  by  direct  nanotube-to-nanotube

junctions or other electron transport mechanisms between neighboring CNTs

(e.g., tunneling). At the second state, with the addition of more nanotubes,

the clusters are finally able to connect and form an electrically conductive

path between the two opposite electrodes (Fig. 1). After the formation of one

conductive pathway, any additional nanotubes will induce dramatic increases

in conductivity of the nanocomposite (i.e.,  due to more routes for current

flow). The minimum concentration of nanotubes that causes a remarkable

increase  in  bulk  film  electrical  conductivity  (i.e.,  the  transition  from  an

insulator to conductor) is defined as the percolation threshold. The final state

corresponds to the case with high CNT concentrations (Fig. 1). Here, a dense

network  of  electrical  conductive  paths  exists,  and  electrical  conductivity

increases gradually and finally saturates. 

Modeling and Simulation Procedures

To investigate the electrical and electromechanical properties of CNT-based

nanocomposites,  a  2D percolation-based model  was derived by randomly

distributing  straight  1D  nanotubes  of  a  predefined  length  (LCNT).  The

concentration of nanotubes (N) and the dimensions of the 2D thin film model

(i.e., length,  L  and width,  W) were specified. It should be mentioned that a

2D  model  was  employed  for  reducing  computational  demand  and  as  a

preliminary effort prior to the implementation of a 3D model (which is the

focus of future studies). The location of each nanotube was identified by two

end-points,  namely  (x1,  y1)  and  (x2,  y2),  as  represented  in  a  Cartesian

coordinate  system.  The  first  end-point,  (x1,  y1),  was  determined  using  a

random number generator (e.g., “rand” in MATLAB). The other end point, (x2,



y2),  was  then  calculated  using  the  prescribed  nanotube  length  and  a

randomly generated CNT orientation (): 

 (1)

 (2)

This procedure was reiterated until the exact number of nanotubes desired

(N) was included in the model. A representative numerical model with 400

CNTs in a 1×1 μm2 area is shown in Fig. 2.

In a previous study, if a portion of the nanotube exceeded the boundary of

the thin film model, that portion of the CNT was eliminated so that all the

nanotubes  fit  inside  the  modeling  domain  [38].  In  contrast,  this  study

employed  periodic  boundary  conditions  (PBC)  commonly  used in  creating

representative volume elements (RVE)  [39-41].  In  short,  PBC ensured the

portion of randomly placed CNTs that exceeded the thin film boundary would

appear  on  the  opposite  edge  of  the  film,  as  shown  in  Fig.  3.  The

implementation  of  PBC  also  ensured  that  the  predetermined  density  or

number  of  nanotubes  was  maintained.  Hill  et  al.  [42] explained that  the

characteristics of materials can be represented by a RVE, including sufficient

amounts of inclusions. Odegard [39] mentioned that an RVE could represent

the entire structure of the material in a statistical sense. In fact, RVE was

widely  employed  for  simulating  the  mechanical  properties  of  composite

materials  [42,39-41]. The generated model shown in Fig. 2 utilized periodic

boundary conditions.  It should be mentioned that the models employed in

this study was assumed to be representative of a randomly selected location

of  a  bulk  film.  Therefore,  its  electrical  and  electromechanical  properties

would also be statistically representative of the entire system   [43]  .     

Upon  generating  the  nanotubes  in  the  model,  junction  locations  were

identified.  A  junction  was  defined  as  the  location  where  nanotubes

intersected  one  another.  Since  tunneling  between neighboring  nanotubes

x2 =x1+ LCNT cosq

y2 =y1+ LCNT sinq



was not  considered  in  this  research,  a  junction  corresponded to  a  direct

nanotube-to-nanotube intersection (i.e., direct electrical contact). In addition,

a soft-core model was considered such that CNT elements could penetrate

one  another  [28,44].  In  doing  so,  intersecting  nanotubes  that  formed

junctions remained within the same 2D plane. On the other hand, since the

nanotubes employed in this work were straight, they could also be expressed

as linear equations.  Therefore,  the locations of  junctions  were located by

simply  solving  sets  of  linear  equations,  and the  results  were  stored  in  a

junction matrix. 

In addition to being linear elements, each CNT was considered as a resistive

element. Therefore, after the junction locations were identified, the equation

used  for  calculating  a  nanotube’s  resistance  (R)  between  junctions  was

defined as shown in Eq. 3 [24,45]:

(3)

where  R0 is the theoretical intrinsic resistance of a ballistic SWNT with an

approximate value of   6.5 kRt is  Ohmic  resistance,  and  Rjct is  junction

resistance.  Ohmic  resistance  is  associated  with  dynamic  scattering  of

impurities (i.e., optical phonons) and is defined in Eq. 4 [6]: 

(4)

where h is Plank’s constant, e is the electron charge, l is an electron’s mean

free path length (which is assumed to be 1  m), and  Ln is  the conductor

length  (which  is  the  length  of  the  CNT  between  two  junctions).  Junction

resistance is affected by the electrical characteristics of the junction [46]. To

be specific, since a nanotube could be metallic or semiconducting depending

on its  chirality,  the  value  of  Rjct depends  on junction  characteristics  (i.e.,

whether it is metallic-metallic, metallic-semiconducting, or semiconducting-

semiconducting)  [46]. Despite these complexities, this study assumed that

0 t jctR R R R  

24
n

t

Lh
R
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junction resistance was a constant value of 98 k based on the effective

empirical junction resistance reported in other studies [23,24,47]. 

Upon calculating the resistance of CNTs between different junctions, the final

step was to calculate the resistance of the entire nanotube (or equivalent

resistor) network. For the purposes of this work, the top edge of the model

shown in Fig.  2 is  the source electrode,  whereas the bottom edge is  the

drain. Network resistance was solved using Kirchhoff’s current law and the

conductance version of  Ohm’s law. Kirchhoff’s current law states that the

summation of electrical current, both input and output, at each node (or  at

any point) is equal to zero. The conductance version of Ohm’s law expresses

the conventional  Ohm’s law using conductance in lieu of  its  reciprocal  or

resistance.  Thus,  the  entire  resistance  network  can  be  expressed  using

Kirchhoff’s current law in terms of conductance (Eq. 5) [6,24].  

(5)

where [G] is  the conductance matrix, {c} is the equivalent current vector,

and {v} is the nodal voltage vector. The diagonal components of [G] (or gii)

are the summation of the conductance values connected to node i; the other

elements in [G] (or  gij) is the negative of the conductance between nodes i

and j. It should be mentioned that nodal numbers correspond to the junction

numbers found earlier, and the components of [G]  were acquired by taking

the inverse of the element resistances calculated using Eq. 3. The equivalent

current source vector used in this study was determined using an assumed

voltage source (i.e., 10 V). The nodal voltage vector was then solved with [G]

and {c}. With these results,  the total  current was calculated using nodal

voltage and the resistive nanotube elements connected to the drain (0 V).

Finally, the resistance of the entire nanotube network was evaluated using

the total current and the applied voltage. 

Simulation of Electromechanical Response

     G v c



It  was  shown  in  previous  studies  that  CNT-based  thin  films  subjected  to

mechanical  deformations  resulted  in  changes  in  its  bulk  film  electrical

resistance [18].  A  major  focus  of  this  study  was  to  investigate,  through

numerical  simulations,  how  changes  in  the  intrinsic  piezoresistivity  of

individual  nanotubes  would  affect  the  electromechanical  behavior  of  the

nanocomposite.  Early  experimental  investigation  by  Tombler  et  al. [7]

demonstrated that the conductance of a metallic SWNT decreased by more

than two orders of magnitude when the tube was strained via three-point

bending applied by an AFM tip.  Likewise,  Jang  et al. [48] detected linear

changes  in  resistance  when  both  sides  of  an  MWNT  were  stretched  by

tungsten  tips.  However,  it  remains  unclear  how  the  piezoresistivity  of

individual  tubes  affect  and  propagate  to  large-scale  systems  such  as

percolated nanotube networks.

In this study, the CNT percolation model formulated in the previous section

was subjected to uniaxial tensile and compressive strains in order to quantify

their electromechanical properties. For this specific implementation, tension

and compression  was  applied  in  the  direction  of  the  y-axis  (Fig.  2).  The

coordinate  (0.5W,  0)  was  fixed,  and  the  remainder  of  the  film deformed

accordingly  and  relative  to  this  point.  The  fundamental  assumption  for

updating  coordinates  was  that  the  CNTs  experienced  perfect  mechanical

coupling  with  the  polymer  matrix.  Therefore,  applied  strain  (ε)  deformed

both the nanotubes and polymer  matrix  in  the same way,  and no stress

concentrations or discontinuities existed. In addition, the Poisson’s ratio of

the nanocomposite was assumed to be that of typical polymers (i.e., 0.34),

even  though  an  exact  type  of  polymer  matrix  was  neither  specified  nor

modeled. In essence, the application of strain deformed each nanotube and

altered its orientation. The coordinate of each deformed nanotube was then

updated accordingly using Eqs. 6 and 7: 

(6)
' ( )

2
W

x x x  



(7)

where  x and  y are  the  initial  coordinates,  x’ and  y’ are  the  updated

coordinates, and   is Poisson’s ratio. Upon doing so, the resistance of the

entire CNT network was calculated following the same procedure outlined in

the  previous  section  and  before  the  model  was  subjected  to  a  different

magnitude of applied strain. It should be mentioned that only models whose

CNT  concentrations  or  densities  that  exceeded  the  percolation  threshold

were considered.  The model’s  resistance was then correlated to  different

magnitudes  of  applied  tensile  and  compressive  strains  for  studying  its

electromechanical properties. 

As mentioned before, an objective of this study was to quantify the effects of

different  CNT  gage  factors  or  strain  sensitivities  (SCNT).  In  general,  the

definition of strain sensitivity (S) or gage factor is as follows:

(8)

where  R0 is  the  initial  unstrained  resistanceR  is  change  in  resistance

between the  strained and unstrained states,  and  is  applied  strain.  It  is

known that materials such as copper and aluminum are characterized by S =

2.2 and 2.5, respectively  [33]. In contrast, CNTs exhibit significantly higher

gage  factors  as  compared  to  conventional  materials.  Cao  et  al.  [49]

experimentally  showed  the  intrinsic  strain  sensitivities  of  nanotubes  with

different  electrical  characteristics.  For  example,  the  strain  sensitivities  of

small band-gap semiconducting, semiconducting, and metallic SWNTs were

1,000, 150, and 60, respectively. In this work, the numerical model assumed

three  different  nanotube  strain  sensitivities  (i.e.,  SCNT =  1,  60,  and  150).

These strain sensitivity assumptions affected the Ohmic resistance of each

CNT, as was described in Eq. 4. While SCNT = 60 and 150 corresponded to the

metallic and semiconducting cases, respectively, SCNT = 1 was treated as the

' (1 )y y  

0/R R
S




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control case. When  SCNT = 1, the nanotube’s Ohmic resistance would only

depend on its length, which is directly related to the level of applied strain.

Results and Discussions

Nominal Electrical Properties 

The percolation behavior of the proposed CNT-based model was evaluated

using  percolation  probabilities.  Percolation  probability  is  defined  as  the

probability that the CNT-based nanocomposite would possess at least one

conductive path between the source and drain electrodes, thereby enabling

it  to  conduct  electrical  current  from  one  end  of  the  film  to  the  other.

Percolation probability (P) can be calculated using Eq. 9 [50]:

(9)

where nt is the total number of simulations, and np is the number of cases in

which the model is electrically conductive. In this study, three different CNT

lengths  were  considered  (LCNT =  0.14,  0.16,  and  0.18m);  it  should  be

clarified that each simulation only considered one specific length. In addition,

for each prescribed nanotube density case (i.e.,  N nanotubes defined in the

given model space), 100 simulations were conducted (nt = 100). Nanotubes

were randomly deposited in a 1×1 μm2 area. Electrical percolation threshold

(EPT) was then defined as the density of nanotubes when the CNT-based

nanocomposite  experienced  dramatic  increases  in  conductance  and

corresponded to 50% percolation probability [50]. 

The percolation simulation results are shown in Fig. 4. It can be observed

that, as LCNT increased, the number of nanotubes (or N) required for creating

an electrically conductive model decreased; fewer number of CNTs were also

needed to attain EPT. Specifically, when the length of  nanotubes increased

from  0.14  to  0.18  m,  the  number  of  nanotubes  corresponding  to  EPT

p

t

n
P

n




decreased from 290 to 180, respectively. Similarly, to reach a percolation

probability of 100%, N decreased from 400 to 250. This result was expected,

since  the  length  of  CNTs  was  equivalent  to  the  length  of  the  electrical

conductor,  and longer  nanotubes  had greater  probabilities  of  intersecting

another nanotube to create at least one conductive pathway that spanned

from the source to the drain. These results were also consistent with other

experimental and numerical investigations reported [31,50]. In addition, the

percolation  probability  results  shown in  Fig.  4  were  used for  guiding  the

electrical and electromechanical simulations, as will  be presented next; in

these  cases,  only  percolated  thin  film  models  that  were  electrically

conductive were of interest.

A percolated CNT-based thin film model would be characterized by certain

electrical properties, namely resistivity and conductivity. Various parameters

such as nanotube length, density, aspect ratio, fabrication method, and the

polymer matrix could influence the electrical properties of nanocomposites

[24,51]. Despite the plethora of different parameters, this study considered

only two, specifically CNT length (where  LCNT = 0.14, 0.16, and 0.18m as

mentioned earlier)  and nanotube density (where  N  = 300 to 800,  in  100

increments).  Fig.  5  summarizes  the  results  after  running  numerous

simulations (i.e.,  20 for each unique case) corresponding to different CNT

lengths and densities. It can be seen from Fig. 5 that the resistance of the

model  decreased  with  the  incorporation  of  longer  nanotubes  and  with  a

denser nanotube network. These results were expected, because first, longer

nanotubes  had greater  likelihood  of  intersecting  with  other  nanotubes  to

create  larger  numbers of  conductive  pathways  for  a  given  CNT  density.

Similarly, by increasing the number of nanotubes within the same 2D area,

more  conductive  pathways  could  also  be  formed,  thereby  increasing

electrical conductivity (or decreasing resistivity). It should be noted that, as

LCNT and N continued to increase, the bulk film resistance began to plateau

due to saturation of the number of electrical conductive pathways (Fig. 5). 



Electromechanical Response 

As mentioned earlier, the electromechanical properties of the thin film model

were also investigated by calculating how the models’ electrical properties

varied  with  different  magnitudes  of  applied  strains.  To  investigate  more

realistic  thin  film  models  that  were  comparable  to  ones  used  for  strain

sensing applications, CNTs were deposited within a 0.5×5 μm2 space, and

periodic boundary conditions were employed again. In addition, CNTs were

assigned with three different intrinsic nanotube strain sensitivities, namely

SCNT = 1, 60, and 150. Finally, the thin film model was subjected to uniaxial

tensile-compressive cyclic  strains to ±1% (in 0.025% increments),  and its

electrical resistance was calculated at every strain step.  It should be noted

that the model aimed to simulate a representative element of an actual thin

film rather than the entire film subjected to electromechanical testing.

Fig. 6a shows a representative set of results corresponding to the case of a

thin film model (with SCNT = 150, LCNT = 0.28 μm, and N = 700) subjected to

cyclic  loading.  Fig.  6a shows the applied  one-cycle  load pattern to ±1%.

Furthermore,  the  normalized  change  in  resistance  of  the  film (Rnorm)  was

overlaid in Fig. 6a, and Rnorm was calculated by:

(13)

where R0 is the initial unstrained or nominal resistance, and R is change in

resistance between the strained and unstrained states.  The fact  that  the

model’s  electrical  resistance changed in response to strain confirmed the

electromechanical properties observed by many other research groups. Fig.

6b plots the normalized change in resistance as a function of applied strains.

From Fig. 6b, one could conclude that the normalized change in resistance

varied linearly when the film was strained in both tension and compression.

A linear least-squares regression line was also fit to the raw data shown in

Fig. 6b to demonstrate the model’s strong linearity. It should be noted that

many other CNT-based thin film models also exhibited such linearity. Similar

0
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R
R

R
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electromechanical  properties  were  also  observed  in  numerous  other

experimental studies [15,18,52,53]. 

Despite the similarities, the model employed in this study only investigated a

small  representative  element  of  what  was  typically  tested  in  the

aforementioned experimental studies and not the entire film. In addition, the

conditions  of  the  model  were  specific  to  films  under  perfectly  uniform,

uniaxial,  tensile-compressive  cyclic  loading.  In  experiments,  such  ideal

conditions  may  not  exist,  so  comparison  of  numerical  and  experimental

results  needs  to  be  performed  with  caution.  This  is  particularly  true  for

freestanding  films  subjected  to  tensile  tests  where  non-uniform  stress

distributions could occur near its boundaries. However, such effects can be

negligible if the specimen tested is large enough such that the majority of

the film is subjected to uniaxial loading. In this case, the model results can

serve as a good comparison.

Nevertheless,  the  results  from a  few  models  that  incorporated  higher

nanotube  strain  sensitivities  (i.e.,  SCNT =  60  and  150)  showed  nonlinear

piezoresistivity at relatively higher strains (> 2,500 ) (see Fig. 7). This

result could be explained by the model’s assumption in which the thin film

resistance  depended  on  the  CNTs’  intrinsic  gage  factor,  as  well  as  their

length and orientation, at different levels of applied strains.  Despite this, a

linear least-squares regression line could be fitted to the raw data shown in

Fig. 7b (and similarly in Fig. 6b), and the slope of the best-fit line was also

the strain sensitivity of the modeled film. In particular, it can be seen from

Fig. 7b that the model’s normalized change in resistance deviated from the

linear response shown in Fig. 6b.

Thin Film Strain Sensitivity

Upon  executing  all  the  different  numerical  simulations  that  employed

different numbers of nanotubes, lengths, and intrinsic strain sensitivities, the



results are summarized in Fig. 8. The lowest nanotube concentration (i.e., N

= 330) for the thin film strain sensitivity simulation was chosen based on

percolation  probability  results  in  which  percolation  probability  was ~50%.

Here,  each  data  point  corresponds  to  the  average  strain  sensitivity

determined  from  20  simulations;  the  only  exception  was  those  cases  in

which the films were near the percolation threshold, and 40 simulations were

conducted. From Fig. 8, it can be observed that, when  SCNT = 1, the strain

sensitivity of the bulk film was very low and decreased marginally as CNT

density  or  N  was  increased.  On  the  other  hand,  clear  trends  could  be

identified for the other two cases when SCNT = 60 or 150. As N was increased

from 330 to 800, bulk film strain sensitivity decreased. It should be noted

that with higher CNT gage factors (i.e., SCNT = 150), bulk film strain sensitivity

was also higher as compared to films with the same CNT concentration but

with a lower intrinsic CNT gage factor. When CNT strain sensitivity was 1, the

film’s resistance response only depended on changes in nanotube lengths.

On the other hand, with larger  SCNT,  resistance changes were amplified to

result in high bulk film strain sensitivities, which were consistent with other

experimental and numerical studies [20,54,31]. However, regardless of SCNT,

the same trends existed in which strain sensitivity decreased with increasing

CNT density. 

This  study also investigated how bulk  film strain  sensitivities  varied near

percolation and when even longer nanotubes were incorporated. Similar to

previous cases, CNTs were deposited within a 0.5×5 μm2 space. On the other

hand, the length of nanotubes was varied as follows, where LCNT = 0.213 to

0.53  m for  N  = 500, and  LCNT = 0.195 to 0.4  m for  N = 600. Numerical

simulations  of  films  subjected  to  tensile-compressive  loading  were

conducted, and the strain sensitivities corresponding to the different cases

were calculated as before. It should be noted that the shortest CNT length

was also decided based on percolation probability results; specifically, the

shortest nanotube length corresponded to the case that yielded only 50%



percolation probability.  Here, a total of 20 simulations were performed for

each  CNT  density  case,  except  30  simulations  were  conducted  near  the

percolation threshold. 

The strain sensitivity results are shown in Fig. 9. Similar to the results shown

Fig. 8, strain sensitivity decreased as nanotube length increased. The major

difference  observed  in  this  case,  however,  was  strain  sensitivity  near

percolation.  Here,  the  trend  near  percolation  was  inconsistent,  where  it

appeared that strain sensitivity peaked not when percolation probability was

50% but at higher values (i.e., still close to percolation). It should be noted

that inconsistent strain sensitivity near percolation threshold was clearer for

strain sensitivity results as a function of nanotube lengths (Fig. 9) than that

of nanotube concentration (Fig. 8). A possible explanation could be due to

the  inherent  randomness  of  the  model,  where  the  electrical  and

electromechanical properties were affected by how CNTs were distributed in

the film. As a result, models close to percolation (i.e., with low CNT densities)

would  be  sensitive  to  special  cases  that  could  occur.  Amini  et  al. [31]

demonstrated through numerical modeling that, when the concentration of

MWNTs was near the percolation threshold, the electrical properties deviated

more than that of higher MWNTs concentrations. One could infer that higher

strain sensitivities could be acquired near the percolation threshold, but the

repeatability  would  be  lower  as  compared  to  relatively  higher  nanotube

concentrations [31].

Conclusions

In this study, 2D percolation-based computational models were developed to

investigate  the  electrical  and  electromechanical  properties  of  CNT-based

nanocomposites. First, straight nanotubes were randomly distributed in a 2D

representative area of a thin film. Then, CNT junction locations were found



by solving sets of linear equations that defined the position and orientation

of  each  nanotube.  With  the  nanotube  resistor  network  defined  and  the

location of junctions known, the electrical resistance of the entire model was

then calculated using Kirchhoff’s current law and the conductance version of

Ohm’s  law.  The  numerical  model  was  then  subjected  to  uniaxial  tensile-

compressive  cyclic  strains  in  an  effort  to  study  the  electromechanical

responses of the nanocomposite system. In particular, the objective was to

characterize how the electrical properties of the thin film model would vary

depending  on  different  CNT  lengths,  densities,  and  intrinsic  CNT

piezoresistivity considered. 

First, the numerical model was used for investigating percolation properties.

It  was  found that  the  electrical  percolation  threshold  decreased with  the

incorporation of longer nanotubes, since longer CNTs possessed a greater

probability of intersecting with another longer tube in its vicinity. Second, the

unstrained or nominal electrical resistance of nanocomposites with different

CNT  lengths  and  densities  were  determined.  The  results  showed  that

electrical resistance decreased with the incorporation of longer nanotubes

and at higher nanotube concentrations, both of which were expected. Finally,

the  thin  film’s  electromechanical  or  strain-sensitive  properties  were  also

studied.  It  was  found  that  the  bulk  film’s  resistance  increased  with

increasingly  applied  tensile  strains,  and  the  opposite  was  also  true  (i.e.,

resistance decreased with  greater  compression).  The results  also  showed

that strain sensitivity decreased with increasing CNT lengths, regardless of

their intrinsic gage factor used. However, this trend was not true when the

film was close to the percolation threshold. In addition, non-linear response

at high strains was also observed when higher values of CNT gage factors

were considered. 
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Fig. 1 The electrical conductivity of CNT-based nanocomposites follows 

percolation theory and can be classified by three different states. State 1 is an 

electrically insulating state where very few nanotubes are distributed nor 

connected to one another. State 2 experiences dramatic increases in conductivity

as a result of the creation of at least one or a few electrically conductive 

pathways between opposite electrodes. State 3 consists of a dense network of 

electrically conductive paths



Fig. 2 Nanotubes were randomly distributed in the representative 2D unit area 

model (1×1 m2) with a prescribed nanotube length (LCNT = 0.16 m), nanotube 

concentration (N = 600), and the use of periodic boundary conditions



Fig. 3 Periodic boundary conditions were implemented in this study by cutting 

the nanotubes that exceeded the model boundary and then transferring them to 

the opposite edge



Fig. 4 The  percolation  characteristics  of  1×1  m2 CNT-based  nanocomposite

models were evaluated as a function of nanotube concentration. Three different

nanotube lengths (LCNT = 0.14, 0.16, and 0.18 m) were considered 



Fig. 5 The nominal unstrained resistances of 1×1 m2 CNT-based nanocomposite

models were evaluated with different nanotube lengths (LCNT = 0.14, 0.16, and

0.18 m) and concentrations (N)



(a) (b)

Fig. 6 (a) The CNT-based nanocomposite model (0.5×5 m2) exhibited linear 

piezoresistivity when subjected to a one-cycle tensile-compressive strain pattern 

to ±1%. The model assumed that SCNT =150, LCNT = 0.28 m, and N = 700. (b) The

corresponding film’s normalized change in resistance was plotted as a function of

strain, and the strain sensitivity of this model was 0.28



(a) (b)
Fig. 7 (a) Certain thin film models showed non-linear piezoresistivity. This model

assumed that SCNT  = 150, LCNT = 0.28 m, and N = 700. (b) The corresponding 

film’s normalized change in resistance was plotted as a function of strain, and the

bulk film strain sensitivity was ~0.25



Fig. 8 The strain sensitivities of 0.5×5 m2 CNT-based thin film models with 

three different intrinsic CNT gage factors (SCNT = 1, 60, and 150) and different 

nanotube concentrations were determined. The average strain sensitivities and 

corresponding error bars (i.e., standard error of the mean) are shown



Fig. 9 The average bulk film strain sensitivities were estimated as a function of 

nanotube length. Two different nanotube concentration cases (i.e., N = 500 and 

600) were considered, and their corresponding error bars (i.e., standard error of 

the mean) are also plotted 


