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This paper is concerned with the problem of designing a robust modified repetitive-control system with a dynamic output-
feedback controller for a class of strictly proper plants. Employing the continuous lifting technique, a continuous-discrete
two-dimensional (2D) model is built that accurately describes the features of repetitive control. The 2D control input
contains the direct sum of the effects of control and learning, which allows us to adjust control and learning preferentially.
The singular-value decomposition of the output matrix and Lyapunov stability theory are used to derive an asymptotic
stability condition based on a Linear Matrix Inequality (LMI). Two tuning parameters in the LMI manipulate the preferential
adjustment of control and learning. A numerical example illustrates the tuning procedure and demonstrates the effectiveness
of the method.
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1. Introduction

By repeating the same operation, a person gradually
comes to understand the essential points, and can finally
operate with an extremely high precision. This is a pro-
cess of learning and gradual progress. Repetitive Control
(RC) introduces this kind of human learning capability to
a control system. From the standpoint of control theory,
the self-learning mechanism of an RC System (RCS) in-
volves embedding an internal model of a periodic signal
in a repetitive controller (Inoue et al., 1981). As shown in
Fig. 1, the repetitive controller, CR(s), contains a pure-
delay positive-feedback line with a repetition period, T .
It is used to carry out learning in the following way: the
control input, v(t − T ), of the previous period is added
to the control input, v(t), of the present period to regulate
the current control input. This allows the tracking error to
be reduced step by step and, finally, the output tracks the
periodic reference input without steady-state error.

Linear Repetitive Processes (LRPs) and Iterative
Learning Control (ILC) are other two schemes that use the
control experience of previous periods for regulation and

are closely related to RC. LRPs and ILC are essentially
equivalent (Rogers et al., 2007; Wu et al., 2011a). How-
ever, as pointed out by Songschon and Longman (2003),
Hladowski et al. (2012), Bristow et al. (2006) or She
et al. (2012), there are significant differences between
them. First, the setting of the initial conditions for each
trial is different. RC is intended for continuous operation,
whereas ILC (or the LRP) is intended for discontinuous
operation. For example, RC might be applied to the con-
trol of the reading and writing head of a hard disk drive.
Each trial is a full rotation of the disk, and the next trial
follows the current one. On the other hand, ILC might be
applied to control a robot that performs a task, returns to
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Fig. 1. Configuration of a basic repetitive-control system.
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Fig. 2. Configuration of a modified repetitive-control system with a dynamic output-feedback controller.

its home position, and rests until the next task starts.

The difference in the setting of initial conditions
leads to different criteria of convergence. For an RCS,
we check if the state converges continuously to the steady
one. In contrast, since an ILCS always starts from the
same state at the beginning of each period, we check if the
trial-to-trial error converges; that is, ‖ei+1‖ ≤ λ‖ei‖, 0 <
λ < 1, i ∈ {1, 2, 3, · · · }, where i is the trial number.
Second, the involved stabilization problem is different. In
an RCS, learning occurs through periodic delay-based up-
dates in a neutral-type delay system (Fig. 1). The trans-
fer function of this learning mechanism contains an in-
finite number of poles on the imaginary axis. As a re-
sult, an RCS can only be stabilized when the relative de-
gree of the plant is zero (Hara et al., 1988). This restric-
tion does not exist in an ILCS, which is easy to stabilize
even for a strictly proper plant. So, the stability condi-
tions for an ILCS or LRPS given by Rogers et al. (2007)
and Galkowski et al. (2003), which used Linear Matrix
Inequalities (LMIs) and a 2D system approach, cannot be
directly extended to handle an RCS.

For a plant with a nonzero relative degree or, in other
words, for a strictly proper plant, Hara et al. (1988) de-
vised a Modified Repetitive-Control System (MRCS) by
embedding a low-pass filter in the delay line of CR(s).
The role of the low-pass filter is to move all of the poles
on the imaginary axis to the left half-plane. It relaxes the
stability condition at the expense of tracking performance
for periodic signals in the high-frequency band. For an
MRCS, Li and Yang (2011) proposed a design method for
an H∞ robust repetitive controller with output-feedback.
It used the output-feedback controller to robustly stabilize
the closed-loop system and introduced a feedforward gain
into the repetitive controller to improve the dynamic per-
formance and the control accuracy. However, the forward
coefficient was determined by trial and error.

RC has an inherent two-dimensional (2D) structural
characteristics in that it actually involves two different ac-
tions: continuous control within one repetition period and
discrete learning between periods. However, most design
methods developed for one-dimensional (1D) space (the
time domain) ignore the difference between the two ac-
tions and only consider their overall effect. That makes
it very difficult to dramatically improve the transient
performance (see Roncero-Sanchez et al., 2009; Jarze-
bowska, 2008). In a 2D system setting, Xie and Du
(2002), Wu et al. (2008; 2012; 2010; 2011b), Zhou et al.
(2012) and She et al. (2012) converted the problem of sys-
tem design into that of robustly stabilizing a continuous-
discrete 2D system. Unlike 1D methods, they enable the
preferential adjustment of control and learning. The re-
sulting control systems exhibit both satisfactory robust-
ness and good tracking performance. However, Wu et al.
(2010; 2011b) only considered the case in which the rela-
tive degree of the controlled plant is zero (that is, a proper
plant); Zhou et al. (2012) and She et al. (2012) extended
the result to handle a plant with its relative degree larger
than zero (that is, a strictly proper plant). But it requires
that the whole state of the plant be available. This may be
very hard in many practical applications because of cost
and/or difficulty of the installation of sensors.

To enable the method proposed by Wu et al. (2010;
2011b), Zhou et al. (2012), and She et al. (2012) to han-
dle a larger class of systems, this paper presents the con-
figuration of an MRCS with a dynamic output-feedback
controller. It deals with the problem of designing a ro-
bust MRCS for a class of strictly proper linear plants with
time-varying periodic uncertainties that has satisfactory
performance in both transient and steady states. First, a
continuous-discrete 2D model is established to describe
the features of the MRCS. Then, the stability theory of de-
lay systems and the Singular-Value Decomposition (SVD)
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of the output matrix are used to derive a linear-matrix-
inequality-based robust-stability condition. Two tuning
parameters in the LMI manipulate the preferential adjust-
ment of control and learning. Finally, a numerical exam-
ple demonstrates the validity of the method.

Throughout this paper, R
+ is the set of non-negative

real numbers, C
p is p-dimensional vector space over com-

plex numbers; Z
+ is the set of non-negative integers, ℵ

is the linear space of all the functions from [0, T ] to C
p.

L2(R+, C
p) is the linear space of square integrable func-

tions from R
+ to C

p, and �2(Z+, ℵ) is the linear space of
all the functions from Z

+ to ℵ, while[
Ξ Υ
∗ Ω

]
:=

[
Ξ Υ

ΥT Ω

]
.

2. Problem description

For the MRCS (Fig. 2), r(t) is a periodic reference input
with a period of T and e(t) = r(t) − y(t) is the tracking
error. CMR(s) is the modified repetitive controller, and
q(s) is a first-order low-pass filter,

q(s) =
ωc

s + ωc
, (1)

where ωc signifies the cutoff angular frequency. Thus, the
state-space representation of the modified repetitive con-
troller is{

ẋf (t) = −ωcxf (t) + ωcxf (t − T ) + ωce(t),

v(t) = e(t) + xf (t − T ),
(2)

where xf (t) is the state variable and v(t) is the output of
the modified repetitive controller.

In Fig. 2, the compensated Single-Input, Single-
Output (SISO) uncertain plant is{

ẋp(t)=(Ap+ΔA(t))xp(t)+(Bp+ΔB(t))u(t),

y(t) = Cpxp(t),
(3)

where xp(t) ∈ R
n is the state variable, u(t), y(t) ∈ R are

the control input and output variables, respectively, while
Ap, Bp, and Cp are real constant matrices.

Assume that the uncertainties of the plant are[
ΔA(t) ΔB(t)

]
= MF (t)

[
N0 N1

]
, (4)

where M, N0, and N1 are known constant matrices and
F (t) is a real, unknown, and time-varying matrix with
Lebesgue measurable elements satisfying

FT (t)F (t) ≤ I, ∀t > 0. (5)

Assumption 1. The uncertainties, ΔA(t) and ΔB(t),
vary periodically with the same period as that of the refer-
ence input, r(t), i.e., ∀t > 0,

ΔA(t + T )=ΔA(t), ΔB(t + T )=ΔB(t). (6)

Assumption 1 holds in many control engineering prob-
lems. For example, the stiffness of a chucked work-
piece in a chuck-workpiece system varies periodically
and causes parametric vibration in the cutting process
(Doi et al., 1985); the dynamics of a helicopter rotor
and the horizontal plane motion of ships in waves can be
modeled as a periodically time-varying system (Verdult
et al., 2007). In addition, a nonlinear system can be ap-
proximately represented by a linear periodic model if we
linearize it around a steady-state repetitive operating path.

Remark 1. Due to the existence of the periodic uncer-
tainties (4) and (6), the linear plant (3) always generates
undesired high harmonics, which are integral multiples
of the fundamental frequency, even if the reference sig-
nal simply varies sinusoidally (Omata et al., 1985). We
can use a repetitive controller to produce these harmonic
components. Consequently, a repetitive controller is able
to suppress this effect. In this paper, the period of uncer-
tainty is the same as that of the reference input. If these
two periods are different rational numbers, we only need
to choose the period of the repetitive controller to be their
least common multiple so as to guarantee robust tracking.

The following dynamic output-feedback controller is
used to stabilize the system:{

ẋc(t) = Acxc(t) + Bcy(t),

yc(t) = Ccxc(t),
(7)

where Ac, Bc, and Cc are design parameters to be se-
lected.

Based on the output of the dynamic output-feedback
controller and the modified repetitive controller, a linear
RC law is of the form

u(t) = Kev(t)+yc(t)
= Kev(t) + Ccxc(t), Ke ∈ R, (8)

where Ke is used to enhance the convergence and improve
the tracking performance, and Cc is used to guarantee the
system stability.

Remark 2. Since the tracking accuracy of the modified
repetitive-control system depends on the state of the dy-
namic output-feedback controller, the three undetermined
parameters Ac, Bc, and Cc in (7) provide design freedom
and thus improve the tracking performance of the MRCS.
This is an advantage over other methods.

This paper considers the following design problem.

For a given cutoff frequency, ωc, design a dynamic output-
feedback controller (7) and find a suitable control gain,
Ke, in (8) that guarantee the asymptotic stability of the
MRCS in Fig. 2.

As mentioned in Introduction, RC involves contin-
uous control and discrete learning. Note that the words
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control and learning mean that we use information on the
present and previous periods, respectively, to produce the
present control input. Motivated by the fact that a de-
sign method that enables preferential adjustment of these
two actions can potentially provide better transient perfor-
mance and better tracking performance, below we present
a 2D description for the MRCS in Fig. 2.

First, employing the lifting technique (Yamamoto,
1994) to slice the time axis, [0, +∞), into intervals of
length T , we convert a vector-valued continuous-time sig-
nal, ξ(t), into a function-valued discrete-time sequence,
ξk(τ). Its element is denoted by ξ(k, τ) in this paper. That
is, we have

ξ(k, τ) = ξk(τ) := LC [ξ(t)], (9)

t = kT + τ, τ ∈ [0, T ], k ∈ Z
+,

where LC is an isometric and isomorphic transformation
between L2(R+, C

p) and �2(Z+, ℵ). Setting r(t) = 0
thus yields the following 2D representation from (2), (3),
(7), and (8):

{
ẋ(k, τ)=Ax(k, τ)+A1x(k − 1, τ)+Bu(k, τ),

v(k, τ) = Cx(k, τ) + C1x(k − 1, τ),
(10)

u(k, τ) = Fpx(k, τ) + Fex(k − 1, τ), (11)

where

xT (k, τ) =
[
xT

p (k, τ) xT
f (k, τ) xT

c (k, τ)
]
,

A =

⎡
⎣ Ap + ΔA(k, τ) 0 0

−ωcCp −ωc 0
BcCp 0 Ac

⎤
⎦ ,

A1 =

⎡
⎣ 0 0 0

0 ωc 0
0 0 0

⎤
⎦ , B =

⎡
⎣ Bp+ΔB(k, τ)

0
0

⎤
⎦ ,

C =
[ −Cp 0 0

]
, C1 =

[
0 1 0

]
,

Fp = [Fp1 0 Fp3] , Fe = [0 Fe2 0] , (12)

Fp1 = −KeCp, Fp3 = Cc, Fe2 = Ke. (13)

The above continuous-discrete 2D model converts
the design problem into the robust stabilization of the
continuous-discrete 2D system (10) under the control law
(11). Note that the 2D control law (11) contains the direct
sum of the effects of control and learning. This allows
us to adjust control and learning preferentially by chang-
ing Fp and Fe, which is the big advantage over 1D meth-
ods. In addition, from (13), the control gains in (8) can be
rewritten as

Ke = −Fp1C
T
p Ĉ−1, (14)

where Ĉ = CpC
T
p .

Substituting the control input (11) into the system
(10) yields the closed-loop MRCS:

⎧⎨
⎩

ẋ(k, τ) = Alx(k, τ) + Adlx(k − 1, τ)
+ MlΓ(k, τ) + MlΓ̃(k, τ),

v(k, τ) = Cx(k, τ) + C1x(k − 1, τ),
(15)

where

Al =

⎡
⎣ Ap + BpFp1 0 BpFp3

−ωcCp −ωc 0
BcCp 0 Ac

⎤
⎦ ,

Adl =

⎡
⎣ 0 BpFe2 0

0 ωc 0
0 0 0

⎤
⎦ , Ml =

⎡
⎣ M

0
0

⎤
⎦ ,

Γ(k, τ) = F (k, τ)Ψx(k, τ),

Γ̃(k, τ) = F (k, τ)Ψ̃x(k−1, τ),

Ψ =
[

N0 + N1Fp1 0 N1Fp3

]
,

Ψ̃ =
[

0 N1Fe2 0
]
.

Equation (15) shows that there is a coupling relation-
ship between control and learning, and they affect each
other by means of Al and Adl.

3. Design of a robust MRCS

Definition 1. (Zhou et al., 1996) Assume that the output
matrix Cp ∈ R

m×n in (3) has full row rank. The SVD of
Cp is

Cp = U [S 0]V T . (16)

where S ∈ R
m×m is a diagonal matrix with positive, di-

agonal elements in decreasing order, 0 ∈ R
m×(n−m) is

a zero matrix, U ∈ R
m×m and V ∈ R

n×n are unitary
matrices.

The following lemma presents an equivalent condi-
tion for the matrix equation CpX = X̄Cp.

Lemma 1. (Ho and Lu, 2003) For a given Cp ∈ R
m×n

with rank(Cp) = m, if X ∈ R
n×n is a symmetric matrix,

then there exists a matrix, X̄ ∈ R
m×m, such that CpX =

X̄Cp holds if and only if

X = V diag{X11, X22}V T ,

where X11 ∈ R
m×m and X22 ∈ R

(n−m)×(n−m).

Lemma 2. (Schur complement (cf. Khargonek et al.,
1990)) For any real matrix Σ = ΣT , the following as-
sertions are equivalent:

1. Σ =
[

S11 S12

∗ S22

]
< 0,

2. S11 < 0 and S22 − ST
12S

−1
11 S12 < 0, and

3. S22 < 0 and S11 − S12S
−1
22 ST

12 < 0.
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Lemma 3. (Petersen and Hollot, 1986) For given matri-
ces Υ = ΥT , H , and E with appropriate dimensions,

Υ + HF (t)E + ET FT (t)HT < 0

holds for all F (t) satisfying FT (t)F (t) ≤ I if and only if
there exists an ε > 0 such that

Υ + εHHT + ε−1ET E < 0.

An RC process is basically continuous. Accordingly,
for any variable ξ(t) ∈ C

p of the MRCS in Fig. 2, the im-
age of lifting (10), ξ(k, τ), satisfies the following bound-
ary condition:

ξ(k + 1, 0) = ξ(k, T ), k ∈ Z
+. (17)

Note that (17) provides the fact that, if ξ(k, τ) decreases
monotonically with τ in [0, T ] for k ∈ Z

+, then ξ(k, τ)
decreases monotonically with k for any fixed τ ∈ [0, T ].
Thus, ξ(t) decreases monotonically in the interval [0, +
∞). So, the dynamic-output-feedback based MRCS in
Fig. 2 is asymptotically stable if and only if there ex-
ists a semi-positive definite functional V (k, τ) that is
continuous and decreases monotonically in every interval
[kT, (k + 1)T ] , k ∈ {0, 1, 2, 3, . . .} (She et al., 2012).

Based on the above definition and lemmas, we obtain
the following theorem.

Theorem 1. For a given cutoff angular frequency, ωc,
and two positive scalars, α and β, if there exist symmetri-
cal and positive-definite matrices X11, X22, X2, X3, Y1,
Y2, and Y3, and arbitrary matrices W1, W2, W3, W4, and
W5 such that [

Θ Π
ΠT Ξ

]
< 0, (18)

where

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ11 Θ12 Θ13 0 Θ15 0 εM εM
∗ Θ22 0 0 Θ25 0 0 0
∗ ∗ Θ33 0 0 0 0 0
∗ ∗ ∗ −Y1 0 0 0 0
∗ ∗ ∗ ∗ −βY2 0 0 0
∗ ∗ ∗ ∗ ∗ −Y3 0 0
∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 0 0 X1N
T
0 + WT

1 NT
1 0

0 X2 0 0 0
0 0 αX3 αWT

2 NT
1 0

0 0 0 0 0
0 0 0 0 βWT

4 NT
1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ξ = diag{−Y1 − βY2 − Y3 − εI − εI},
Θ11 = ApX1 + X1A

T
p + BpW1 + WT

1 BT
p ,

Θ12 = −ωcX1C
T
p , Θ13 = CT

p WT
3 + αBpW2,

Θ15 = βBpW4, Θ22 = −2ωcX2,

Θ25 = βωcY2, Θ33 = αW5 + αWT
5 ,

X1 = V diag{X11, X22}V T , (19)

then the MRCS (15) in Fig. 2 is asymptotically sta-
ble. Furthermore, the parameters of the dynamic output-
feedback controller (7) are

Ac = W5X
−1
3 ,

Bc = W3USX−1
11 S−1UT ,

Cc = W2X
−1
3 ,

(20)

where U and V are unitary matrices defined in SVD (16),
and the 2D control gains in (12) are

Fp1 = W1X
−1
1 ,

Fp3 = W2X
−1
3 ,

Fe2 = W4Y
−1
2 .

(21)

Proof. Let

P1 = X−1
1 , P2 = X−1

2 , P3 = X−1
3 ,

Q1 = Y −1
1 , Q2 = Y −1

2 , Q3 = Y −1
3 ,

and choose a Lyapunov functional candidate to be

V (k, τ) = V1(k, τ) + V2(k, τ), (22)

V1(k, τ) = xT (k, τ)Px(k, τ), (23)

V2(k, τ) =
∫ τ

τ−T

xT (k, s)Qx(k, s) ds, (24)

where

P =diag{P1, P2,
1
α

P3}, Q=diag{Q1,
1
β

Q2, Q3}.

Here, V1(k, τ) and V2(k, τ) are two quadratic terms
that are directly related to the control and learning perfor-
mance, respectively, while P and Q can be any positive
definite matrices. This is a standard choice in an nD sys-
tem, and a simple check shows that V (k, τ) > 0 for any
x(k, τ) 	= 0 and V (k, τ) = 0 when x(k, τ) = 0. In or-
der to carry out the preferential adjustment of control and
learning, we choose P and Q as block diagonal matrices.

Based on the above analysis, we only need to con-
sider the associated increment of V (k, τ) in every interval
[kT, (k + 1)T ] , k ∈ {0, 1, 2, 3, . . .}. Along the time tra-
jectory of (15), we have

dV (k, τ)
dτ

= ηT (k, τ)Λη(k, τ), (25)



330 L. Zhou et al.

where

η(k, τ) =
[

xT (k, τ) xT (k − 1, τ)
]T

,

Λ = Υ + HF (k, τ)E + ET FT (k, τ)HT

+ HF (k, τ)Ē + ĒT FT (k, τ)HT ,

Υ =
[

PAl + AT
l P + Q PAdl

∗ −Q

]
,

HT =
[

MT PT
1 0 0 0 0 0

]
,

E =
[

Ψ 0 0 0
]
,

Ē =
[

0 Ψ̄ 0 0
]
,

and Al, Adl, Ψ, and Ψ̄ are defined in (15).
Clearly, if

Υ + HF (k, τ)E + ET FT (k, τ)HT

+ HF (k, τ)Ē + ĒT FT (k, τ)HT < 0, (26)

then
dV (k, τ)

dτ
< 0. (27)

Applying Lemma 3 to (26) shows that the inequality
(26) holds if and only if there exists an ε > 0 such that

Υ + 2εHHT +
1
ε
ET E +

1
ε
ĒT Ē < 0. (28)

Also, from Lemma 2, (28) is equivalent to the following
matrix inequality:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

PAl + AT
l P PAdl εPMl εPMl

∗ −Q 0 0
∗ ∗ −εI 0
∗ ∗ ∗ −εI
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Q ΨT 0
0 0 Ψ̃T

0 0 0
0 0 0

−Q 0 0
∗ −εI 0
∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.

(29)

Since X1 = V diag{X11, X22}V T , there exists a
matrix, X̄1, such that

CpX1 = X̄1Cp . (30)

Also, we have

X̄1 = USX11S
−1UT ,

X̄−1
1 = USX−1

11 S−1UT .
(31)

Define{
W1 = Fp1X1, W2 = Fp3X3, W3 = BcX̄1,

W4 = Fe2Y2, W5 = AcX3.
(32)

Pre- and post-multiplying the matrix on the left side of
(29) by

diag{X1, X2, αX3, Y1, βY2, Y3, I, I, Y1, βY2, Y3, I, I}
and substituting (30) and (32) into (29) yield the required
LMI of (18). The parameters of the dynamic output-
feedback controller in (20) and control law matrices in
(21) can be calculated from (32). �

Theorem 1 constituted an LMI-based design method
for the MRCS in Fig. 2. As for the cutoff frequency, ωc, of
the low-pass filter q(s) in (1), it can be determined by the
system operating frequency range. Combining the tech-
nique of matrix-linear-decomposition given in the work of
She et al. (2012) and Theorem 1, it is easy to develop an
iterative algorithm to optimize both the maximum cutoff
angular frequency and the parameters of the stabilization
controller.

Remark 3. Two tuning parameters α and β in the LMI
(18) are used to justify the choice of 2D control gains, Fp

and Fe, and thereby enable the preferential adjustment of
control and learning. More specifically, we use α to adjust
the weight matrix P3 and β to adjust the weight matrix Q2,
and thus regulate the corresponding feasible solutions Fp3

and Fe2.
From Theorem 1, we can directly obtain a sufficient

stability condition for the nominal continuous-discrete 2D
closed-loop system{

ẋ(k, τ) = Alx(k, τ) + Adlx(k − 1, τ),
v(k, τ) = Cx(k, τ) + C1x(k − 1, τ), (33)

where Al, Adl, C, and C1 are defined in (15).

Corollary 1. For a given cutoff angular frequency, ωc,
and two positive scalars, α and β, if there exist symmetri-
cal and positive-definite matrices X11, X22, X2, X3, Y1,
Y2, and Y3, and arbitrary matrices W1, W2, W3, W4, and
W5 such that the LMI⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ11 Θ12 Θ13 0 Θ15 0
∗ Θ22 0 0 Θ25 0
∗ ∗ Θ33 0 0 0
∗ ∗ ∗ −Y1 0 0
∗ ∗ ∗ ∗ −βY2 0
∗ ∗ ∗ ∗ ∗ −Y3

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

X1 0 0
0 X2 0
0 0 αX3

0 0 0
0 0 0
0 0 0

−Y1 0 0
∗ −βY2 0
∗ ∗ −Y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(34)
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holds, where X1, Θ11, Θ12, Θ13, Θ15, Θ22, Θ25, and Θ33

are defined in (18), then the closed-loop system (33) is
asymptotically stable. Furthermore, the parameters in (7)
and control gains in (13) can be calculated from (20) and
(21), respectively.

4. Numerical example

In this section, we apply our method to the speed control
of a rotational system that consists of two motors: one is
the controlled object, and the other is a disturbance gener-
ator (Fig. 3, (cf., She et al., 2008)). Their axles are cou-
pled together with a spring. The state-space model matri-
ces of the uncertain plant were identified to be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ap =

⎡
⎣−31.31 0 −2.833× 104

0 −10.25 8001
1 −1 0

⎤
⎦ ,

Bp =

⎡
⎣ 28.06

0
0

⎤
⎦ , Cp =

[
1 0 0

]
,

M =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , N0 =

⎡
⎣0 0 0.1

0 0 0.01
0 0 0

⎤
⎦ ,

N1 =

⎡
⎣0

0
0

⎤
⎦ , F (t)=

⎡
⎣sin πt 0 0

0 sin πt 0
0 0 sin πt

⎤
⎦ .

(35)

We consider the problem of tracking the following
periodic reference input:

r(t) = sin πt + 0.5 sin 2πt + 0.5 sin3πt. (36)

The repetition period is

T = 2 s. (37)

Let the cutoff frequency be

ωc = 200 rad/s. (38)

Controlled
motor

Disturbance
generator

Coupling

τp ωp

Jp

τd ωd

Jd

Motor
driver

Motor
driver

d (t)u (t)

Tachometer
generator

Fig. 3. Rotational control system.
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Fig. 4. Tracking error for the parameter sets (40): α =
0.1, β = 0.01 (a), α = 0.1, β = 0.43 (b), α =
0.8, β = 0.43 (c).

Choose the performance index

J10 =
1
2

9∑
k=0

∫ (k+1)T

kT

e2(t) dt (39)

to evaluate the system overall performance and use it as a
criterion for the selection of the tuning parameters, α and
β.

To investigate what effect adjusting the tuning pa-
rameters has, we carry out simulation for three parameter
sets: ⎧⎨

⎩
(a) α = 0.1, β = 0.01,
(b) α = 0.1, β = 0.43,
(c) α = 0.8, β = 0.43.

(40)

The performance indices are

Ja
10 = 0.4984,

Jb
10 = 0.2366,

Jc
10 = 0.1271. (41)
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In the tuning process, the tracking error in the first pe-
riod shows the control performance, and the convergence
speed of the tracking error characterizes the learning effi-
ciency. Figure 4 shows that the tracking error converges
faster for set (b) than for (a). Accordingly, adjusting β pri-
marily affects learning. Increasing α from 0.1 to 0.8, set
(c) greatly improves the control performance. So, adjust-
ing α primarily affects control. Note that, due to the cou-
pling between control and learning, changing α strongly
influences learning, and tuning β also influences the con-
trol action. This can be observed from the tracking error
in Fig. 4. Among the three parameter sets, set (c) pro-
vides the best performance in both the transient and steady
states.

Employing the following optimization:

min J10 such that (18) holds (42)

and combining a fixed-step method in the ranges

α ∈ (0, 1], β ∈ (0, 1] (43)

yield the best tuning parameter set:

α = 0.8, β = 0.25. (44)

The corresponding output-feedback controller pa-
rameters are{

Ac = diag{−1.3144, − 1.3144, − 1.3144},
Bc =

[
3.8321 0 0

]T
, Cc =

[
0.5463 0 0

]
,

(45)
and the feed-forward control gain in Fig. 2 is

Ke = 7.8382. (46)

Simulation results in Fig. 5 show that the system is
robustly stable for the periodic uncertainties and it en-
ters into the steady state in the fourth period. Moreover,
J10 = 0.0441. Compared with the approach of Li and
Yang (2011), we only need to change two tuning param-
eters to improve the convergence speed and the tracking
performance. In comparison with the method of Hlad-
owski et al. (2012), who considered the application of dis-
crete ILC to the nominal plant (35), we improve greatly
the transient performance through the preferential adjust-
ment of control and learning. In addition, we extend
the state-feedback to dynamic output-feedback, which en-
ables RC to be applied to a wider range of control engi-
neering problems.

Furthermore, to verify the robustness of the resulting
system, we simulated adding white noise with a Signal-
to-Noise Ratio (SNR) of 35 dB to the output. The index

Je = sup
t≥ts

|e(t)| (47)

is used to evaluate the steady-state tracking performance,
where ts is the setting time of the control system.
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Fig. 5. Simulation results for a robust MRCS in Fig. 2 for α =
0.8 and β = 0.25.
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Fig. 6. Steady-state tracking error with white Gaussian noise
(SNR: 35 dB) in the output.

Using the parameter set in (44), we found that Je =
0.0008 without noise, and Jenoise = 0.0817 with noise. The
simulation results (Fig. 6) show that the control system
remains stable and the steady-state tracking error remains
very small even with noise.
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5. Conclusion

This paper developed an LMI-based method of design-
ing a robust MRCS with a dynamic output-feedback con-
troller for a class of strictly proper plants. A continuous-
discrete 2D model was established that allows preferential
adjustment of control and learning by means of the gains
in the 2D control law. The combination of Lyapunov sta-
bility theory of delay-time systems and the SVD of the
output matrix was used to derive an LMI-based sufficient
stability condition, and the control gains were given in the
form of the feasible solutions of the LMI. Two tuning pa-
rameters in the condition enabled the preferential adjust-
ment of control and learning. Finally, simulation results
on a two-motor rational system showed that the resulting
system has both a satisfactory convergence rate and good
tracking performance.

On the other hand, a mechatronic system usually
does not have unstable zeros, and we only considered this
case in this study. However, it is of theoretical significance
to develop a method of designing a robust repetitive-
control system based on dynamic output-feedback for a
plant with unstable zeros. We plan to study this topic in
the near future.
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