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Abstract

The global‐scale degradation of coral reefs has reached a critical threshold wherein

further declines threaten both ecological functionality and the persistence of reef

structure. Geological records can provide valuable insights into the long‐term controls

on reef development that may be key to solving the modern coral‐reef crisis. Our anal-

yses of new and existing coral‐reef cores from throughout the Florida Keys reef tract

(FKRT) revealed significant spatial and temporal variability in reef development during

the Holocene. Whereas maximum Holocene reef thickness in the Dry Tortugas was

comparable to elsewhere in the western Atlantic, most of Florida's reefs had relatively

thin accumulations of Holocene reef framework. During periods of active reef devel-

opment, average reef accretion rates were similar throughout the FKRT at ~3 m/ky.

The spatial variability in reef thickness was instead driven by differences in the dura-

tion of reef development. Reef accretion declined significantly from ~6,000 years ago

to present, and by ~3,000 years ago, the majority of the FKRT was geologically senes-

cent. Although sea level influenced the development of Florida's reefs, it was not the

ultimate driver of reef demise. Instead, we demonstrate that the timing of reef senes-

cence was modulated by subregional hydrographic variability, and hypothesize that cli-

matic cooling was the ultimate cause of reef shutdown. The senescence of the FKRT

left the ecosystem balanced at a delicate tipping point at which a veneer of living coral

was the only barrier to reef erosion. Modern climate change and other anthropogenic

disturbances have now pushed many reefs past that critical threshold and into a novel

ecosystem state, in which reef structures built over millennia could soon be lost. The

dominant role of climate in the development of the FKRT over timescales of decades

to millennia highlights the potential vulnerability of both geological and ecological reef

processes to anthropogenic climate change.

K E YWORD S

bioerosion, climate change, coral reefs, ecological tipping points, Holocene, reef accretion, sea

level, western Atlantic

1 | INTRODUCTION

Climate change and other anthropogenic disturbances have reshaped

the ecological and geological dynamics of coral‐reef ecosystems

(Hughes et al., 2017; Kuffner & Toth, 2016; Perry et al., 2014). In

just the past few decades, coral populations have declined by ~50%

globally (Bruno & Selig, 2007; Jackson, Donovan, Cramer, & Lam,
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2014), putting more than a third of coral species at risk of extinction

(Carpenter et al., 2008), and leaving behind a landscape of degrada-

tion that would have been unrecognizable to coral‐reef scientists just

fifty years ago (Hughes et al., 2017; Jackson et al., 2014). Although

acclimatization, adaptation, and human intervention may still have

potential to slow or even reverse these declines (Hughes et al.,

2017; van Oppen et al., 2017), the scale and magnitude of recent

reef degradation has now reached a critical threshold wherein fur-

ther disturbances threaten not only the ecological functionality of

reef ecosystems, but also their persistence as geological structures

(Kennedy et al., 2013; Kuffner & Toth, 2016).

Continuing loss of living coral (Bruno & Selig, 2007; Jackson

et al., 2014) shifts to non‐framework‐building taxa (Kuffner & Toth,

2016; Perry et al., 2015; Toth et al., 2014), and decreasing rates of

coral calcification (Cantin, Cohen, Karnauskas, Tarrant, & McCorkle,

2010; De'ath, Lough, & Fabricius, 2009) reduce carbonate produc-

tion and flatten reef structure (Alvarez‐Filip, Dulvy, Gill, Côté, &

Watkinson, 2009; Perry et al., 2013, 2014, 2015, 2018). Coupled

with the threat of further declines in calcification and enhanced bio-

erosion due to ocean acidification (Enochs et al., 2015; Hughes

et al., 2017), ongoing disturbances are pushing reefs toward a tipping

point beyond which reef erosion, rather than reef growth, will domi-

nate (Kennedy et al., 2013; Perry et al., 2013, 2014, 2015, 2018;

Yates, Zawada, Smiley, & Tilling‐Range, 2017). Given that measurable

declines in reef elevation (Yates et al., 2017) and structural complex-

ity (Alvarez‐Filip et al., 2009) have already been observed in some

locations, there is a critical need to better understand how reef‐

framework production and erosion respond to environmental pertur-

bations over decadal to millennial timescales (Kuffner & Toth, 2016;

Perry et al., 2014).

In many locations, the modern collapse of coral‐reef ecosystems

is without precedent in recent millennia (e.g., Aronson, Macintyre,

Precht, Murdoch, & Wapnick, 2002; Aronson, Macintyre, Wapnick, &

O'Neill, 2004; Montaggioni, 2005); however, locations that have

experienced pre‐anthropogenic shutdowns in reef development can

provide valuable insights into the modern coral‐reef crisis (Budde-

meier & Hopley, 1988; Hubbard, 1988, 2013; Perry & Smithers,

2011; Toth et al., 2012; Toth, Aronson, et al., 2015; Toth, Kuffner,

Cheng, & Edwards, 2015). The subtropical setting of the FKRT is

near several critical environmental thresholds for reef development

(Kleypas, McManus, & Meñez, 1999; Precht & Aronson, 2004;

Precht & Miller, 2007), suggesting that Florida's reefs may be espe-

cially sensitive to any perturbations to the ecosystem state. Further-

more, although most of Florida's coral reefs have degraded

significantly over the last several decades, there is also high spatial

variability in coral cover (Guest et al., 2018; Murdoch & Aronson,

1999; Ruzicka et al., 2013), rates of coral calcification (Kuffner,

Hickey, & Morrison, 2013), and reef erosion (Yates et al., 2017)

across the FKRT, which indicates that natural gradients in environ-

mental conditions may modulate reef development.

Here, we present the first comprehensive reconstruction of

Holocene coral‐reef accretion across the ~350 km extent of the

Florida Keys reef tract (FKRT). Our reconstruction of reef

development is based on analysis of 46 reef cores collected through-

out the region and 147 radiometric ages from those cores. By evalu-

ating the spatial and temporal variability in reef thickness, rates of

accretion, and the timing of geological senescence on the FKRT, we

examine the long‐term controls on reef development and the likely

drivers of a decline in reef accretion that predated modern coral‐reef

degradation by thousands of years.

2 | MATERIALS AND METHODS

2.1 | Regional setting

The FKRT extends ~350 km along Florida's shelf edge, ~5–7 km sea-

ward of the islands of the Florida Keys, from Biscayne National Park

(N.P.) in the northeast to the Dry Tortugas N.P. in the southwest

(Figure 1; Lidz, Reich, & Shinn, 2007, 2003). Although the FKRT is

often considered to be the third largest reef system in the world,

the shelf‐edge reef tract is not continuous. Instead, Holocene reefs

have grown preferentially on topographic highs of the Pleistocene

bedrock (Lidz et al., 2003; Shinn, Hudson, Halley, & Lidz, 1977). Off-

shore of the main FKRT in some locations are a series of “outlier

reefs” that grew on elevated Pleistocene terraces during the early

Holocene (Lidz et al., 2003; Lidz, Hine, Shinn, & Kindinger, 1991).

Small patch reefs are also abundant inshore of the FKRT, but the

geologic history of these reefs is largely unknown (Lidz et al., 2007).

See Lidz et al. (2003) and Shinn and Lidz (2018) for a comprehensive

review of the geological setting of the FKRT.

The FKRT can be divided into six subregions based on unique

physical settings of the contemporary environments (c.f. Murdoch &

Aronson, 1999): Dry Tortugas N.P., the Marquesas, the Lower, Mid-

dle, and Upper Florida Keys, and Biscayne N.P. (Figure 1b). Condi-

tions are most stable in the open‐ocean environments of Dry

Tortugas N.P. and the Marquesas (see Toth, Cheng, Edwards, Ashe,

& Richey, 2017a). In the Keys subregions and Biscayne N.P., out-

flows from Florida Bay and Biscayne Bay, respectively, can transport

water masses with highly variable temperature, salinity, nutrients,

and turbidity onto the reefs: conditions that are generally unfavor-

able or “inimical” to coral‐reef development (sensu Ginsburg &

Shinn, 1994).

2.2 | Collection and description of Holocene reef

cores

The U.S. Geological Survey (USGS) Core Archive (https://doi.org/10.

5066/F7319TR3) housed at the USGS Coastal and Marine Science

Center in St. Petersburg, Florida, contains an extensive collection of

reef cores from throughout the FKRT (Reich et al., 2012). This

archive, which includes 44 Holocene reef cores collected from 1976

to 2009 and 14 new cores collected from 2014 to 2017 for this

study, represents the legacy of more than half a century of geologi-

cal research programs in the region (Reich et al., 2012; Shinn & Lidz,

2018; Toth, Stathakopoulos, & Kuffner, 2018). Data from all 58

cores are summarized in Table S2.
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The majority of the cores were collected using the USGS hydraulic

wireline drilling system (Shinn et al., 1977). During collection, SCUBA

divers position the hydraulic drill over the reef by suspending it from a

cable attached to an aluminum tripod. Core barrels and a water hose

are then attached to the drill, and a water pump is used to force sea-

water down the borehole to facilitate coring. Cores are collected using

a double‐barrel system, in which successive 5‐ft (~1.5 m) sections of

reef framework are cored and then recovered by removing the inner

barrel, while the outer barrel remains in the reef. Three of the cores

(LK‐SK‐6, UK‐CF‐1, and UK‐CF‐4; Table S1) were collected using the

SCARID hydraulic drilling system developed by D.K. Hubbard

(Hubbard, 2013). The general concept of the SCARID system is the

same as the USGS system, but instead of being suspended by a cable

from a tripod, the drill is fixed to a rigid frame (Hubbard, 2013).

The cores were generally collected from reef‐slope environments,

between 0 and −10 m depth relative to mean sea level (MSL; Table S1;

Fig. S1), which are characteristic of the shallow‐water, offshore reef

habitats of the FKRT (Lidz et al., 2007). To ensure that all the cores

included in our study were from a similar environmental setting, we

used the most recent reconstruction of Holocene sea‐level variability in

south Florida (Khan et al., 2017) to estimate the paleodepths of all

dated intervals in the cores (sensu Hubbard, 2009; Fig. S2 and

(a)

(b)

F IGURE 1 Holocene reef thickness throughout the western Atlantic and within the Florida Keys Reef Tract (FKRT). (a) Comparison of

maximum thickness (yellow circles) for each subregion of the FKRT to other reefs in the western Atlantic: Alacran reef, Mexico (Macintyre,

Burke, & Stuckenrath, 1977), the Belize Barrier Reef (Gischler & Hudson, 2004), Galeta Point, Panama (Macintyre & Glynn, 1976), La Parguera,

Puerto Rico (Hubbard, 2013), St. Croix, U.S. Virgin Islands (Hubbard, 2013), and Nonesuch Bay, Antigua (Macintyre et al., 1985). The shaded

area in (a) is expanded in (b), which provides a map of core locations (circles) within the six subregions of the FKRT. The size of the circles is

proportional to the average Holocene reef thickness at a given reef. Colors of the circles distinguish outlier reefs (orange) from the main FKRT

(yellow). At Carysfort Reef in the Upper Keys, these reefs are only separated by ~200 m. Locations of outflows from Florida and Biscayne

Bays onto the FKRT are indicated by red arrows. Impacts are somewhat diffused in the Lower Keys, as indicated by the faded arrow. Imagery

provided by ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, AeroGRID, IGN, and the GIS User Community
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Table S2). We excluded three cores (DT‐GB‐5, DT‐TB‐1, and DT‐TB‐2;

Table S1) that contained intervals deposited in depths significantly dee-

per than 10 m below MSL (i.e., the full 95% confidence intervals [CIs]

of the estimated paleodepths were deeper than 10 m; Table S2). More

than 90% of the remaining intervals were from paleodepths less than

6 m (Fig. S2). We note that because of uncertainties in both the model

of relative sea level and the estimates of depths in the cores, the pale-

odepth estimates for 28 intervals are slightly above MSL; however, the

paleodepths were only significantly higher than MSL (i.e., the 95% CI

did not overlap with zero) in nine cases.

Although we include data on reef thickness from the outlier reefs

at Fowey Rocks in Biscayne N.P. and Carysfort Reef in the Upper

Keys in Figure 1b, they were not included in our reconstruction of

reef development because these reefs represent a separate reef sys-

tem offshore of the main FKRT (Lidz et al., 1991, 2003). We also did

not include data from the Marquesas in our reconstruction because

the sample size from this subregion was too low (i.e., only three

cores, six intervals). Finally, we excluded records from two cores

(DT‐LB‐2 and LK‐WS‐1) that were taken from non‐reef‐building habi-

tats (e.g., on loose sediment in reef grooves). The reasons for exclud-

ing particular cores are summarized in Table S2.

Our reconstruction of reef development was based on analysis of

46 cores collected from the five main subregions of the FKRT: 13 from

Dry Tortugas N.P., eight from the Lower Keys, 10 from the Middle

Keys, seven from the Upper Keys, and eight from Biscayne N.P.

Although data from some of the cores have been published previously,

existing core‐based reconstructions of reef development on the FKRT

were generally site‐specific (Table S1; Shinn & Lidz, 2018). Shinn et al.’s

(1977) compilation of 17 radiocarbon ages from seven reefs was the

only other study to evaluate trends in Holocene reef development

across the FKRT. Our study builds upon the foundation of previous

studies to develop a comprehensive and quantitative reconstruction of

the history of Holocene reef accretion throughout the FKRT.

We estimated percent recovery in the cores using core pho-

tographs (Toth et al., 2018) by dividing the projected surface area of

core constituents in an interval by the theoretical projected surface

area of the interval based on core penetration (as in Toth, Kuffner,

et al., 2015). Recovery of intervals in the cores was highly variable (Toth

et al., 2018; ranging from 25.6% to 55.0% among subregions) and aver-

aged ~42.3% (±1.7 standard error [SE]) for intervals included in our anal-

ysis. This degree of recovery is typical for western Atlantic reef

frameworks, which are often dominated by unconsolidated sediments

and void spaces (Hubbard, 2009). Although allochthonous deposits are

common on many reefs in the western Atlantic (Blanchon et al., 2017;

Hubbard, 2009), there were no statistically significant age reversals in

any of our cores, suggesting that the cores used in this study were pri-

marily composed of autochthonous reef framework. Detailed core logs

are provided in Toth et al. (2018).

2.3 | Radiometric dating of Holocene reef cores

All corals dated in this study were carefully examined prior to analy-

sis and were determined to be in excellent taphonomic condition

(i.e., less than ~20% bioerosion and/or infilling; c.f. Toth et al., 2012).

Some corals were also screened with X‐ray diffraction or scanning

electron microscopy, which confirmed that diagenesis was minimal

(summarized in Toth, Cheng, Edwards, Ashe, & Richey, 2017b). The

majority of the radiocarbon ages were determined using accelerator

mass spectrometry (AMS) at either the Lawrence Livermore National

Laboratory (processed at the USGS Radiocarbon Laboratory in

Reston, VA) or the National Ocean Sciences AMS (NOSAMS) facility

at Woods Hole Oceanographic Institution. Seventeen samples ana-

lyzed in previous studies (see Toth et al., 2018) were dated using

standard radiometric dating at the University of Miami Radiocarbon

Laboratory, Beta Analytic, Inc., or Geochron Laboratories. We report

conventional 14C ages, corrected for fractionation of 13C. The δ
13C

of the samples was either measured by University of California,

Davis Stable Isotope Laboratory or NOSAMS or, if not measured,

was assumed to be 0 ± 3‰ (Törnqvist, Rosenheim, Hu, & Fernan-

dez, 2015). The conventional radiocarbon ages were calibrated in

Calib 7.0.2 (https://calib.org/calib/; Reimer & Reimer, 2001) using

time‐varying estimates of the local reservoir age, ΔR, for the near-

shore and open‐ocean environments of the FKRT (Toth et al., 2017a,

2017b). The full radiocarbon dataset is available in Toth et al. (2018).

Two additional ages included in our study were determined by U‐

series analysis using multicollector inductively coupled plasma mass

spectrometry at Xi'an Jiaotong University in China. The U‐series data

were screened according to the procedures outlined in Toth et al.

(2017b), where the complete U‐series data can be found.

Accretion rates can be artificially inflated when sequential dates

within a core are similar enough that the entire layer could have

been deposited simultaneously (Toth et al., 2012). To avoid this

potential complication, we determined whether the differences

between any pair of sequential dates that had conventional 14C ages

or calibrated U‐series ages within 500 years of one another were

significant using the standard error of the difference (SEdiff) to calcu-

late 95% CIs of the two ages. In the 46 instances in which the 95%

CI of two sequential dates in a core overlapped (i.e., were not signifi-

cantly different), we omitted the age with a 1σ uncertainty

>50 years or the age that allowed for the most even spread of ages

within the core. Ultimately, we retained 145 radiocarbon and 2 U‐

series ages ranging from 8,637 years before present (BP; with “pre-

sent” being 1950) to present (Fig. S3; Toth et al., 2018).

2.4 | Quantifying reef thickness

We quantified the thickness of the Holocene reef framework using

the core records that reached the Pleistocene bedrock. We only

included records where we were able to confidently identify the

Holocene–Pleistocene boundary on the basis of at least one of the

following three criteria: (a) ages from samples on either side of the

boundary, (b) the presence of a soilstone (“caliche”) crust character-

istic of the Holocene–Pleistocene boundary in south Florida, or (c) a

clear distinction between the Holocene and Pleistocene based on

diagenetic alteration to calcite or a shift from coral framework to

carbonate grainstones or boundstones. In the 37 cores that met
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these criteria, the estimated depth of core penetration to the base

of the Holocene reef framework was used to quantify reef thickness.

Core penetration was measured in the field based on the total length

of the core barrel that had been drilled into the reef. In eight of the

cores, there was a sand layer between the Holocene and Pleistocene

facies, which was not included in the reef thickness estimates

because it could not be definitively assigned to the Holocene epoch

(Table S1). We compared our estimates of maximum Holocene reef

thickness from each subregion on the FKRT with published data on

maximum Holocene reef thickness elsewhere in the western

Atlantic.

2.5 | Evaluating trends in reef accretion

We determined the timing of the initiation of reef accretion based

on ages in the cores that were within 1 m of the Holocene–Pleis-

tocene boundary (Table S1). Cores that did not reach the Pleis-

tocene, did not have a clear Pleistocene boundary, or did not have

an age within 1 m of the Holocene–Pleistocene transition, were not

included in this dataset. To evaluate the impact of antecedent topog-

raphy on the timing of reef initiation, we also calculated the total

depth to the Pleistocene bedrock (relative to MSL) by adding the

water depth where the core was collected to the total Holocene reef

thickness (Table S1).

Rates of vertical reef accretion, in meters per thousand years (m/

ky), were calculated by dividing the thickness of a section of reef by

the time span over which it was deposited, based on median proba-

bilities of the radiometric age calibrations. We calculated the average

rates of reef accretion over the lifespan of the reefs (i.e., for each

core) by dividing the length of the interval between the deepest

coral dated in the core and the shallowest coral dated in the core by

the difference in the ages of those corals (Table S1). Similarly, we

calculated accretion rates for each dated interval in the cores by

dividing the length of the interval by its time span. Temporal variabil-

ity in reef accretion during the Holocene was evaluated by averaging

reef accretion rates from all cores (±SE) within 500‐yr bins from

8,500 BP to present for the entire FKRT and from 7,000 BP to pre-

sent for each subregion (Table S3). We did not distinguish between

sections of reef framework composed of Acropora palmata or mas-

sive coral framework when evaluating reef accretion, as Hubbard

(2009) recently demonstrated that there was no significant differ-

ence in accretion rates between these facies.

The geological collapse of a coral reef occurs when reef accre-

tion slows to the point that it is no longer keeping pace with the

rate of sea‐level rise (i.e., “drowned” or “relict” reefs [Schlager,

1981; Neumann & Macintyre, 1985] and reef “turn offs” [Budde-

meier & Hopley, 1988]). Here, we refer to reefs that have experi-

enced this sort of shutdown in reef accretion as “geologically

senescent” (after Lidz & Shinn, 1991). To evaluate the timing of reef

senescence across the FKRT, we compared the rates of sea‐level rise

from Khan et al.’s (2017) reconstruction of Holocene sea‐level

change in south Florida to the rates of reef accretion of intervals in

our cores. We considered a reef to be senescent when the rate of

reef accretion was more than 1 m/ky (i.e., the average 2σ uncertainty

of the RSL rate reconstruction) below the contemporaneous rate of

RSL rise. We used the age delimiting this transition to quantify the

timing of reef senescence. The approximate ages of the reef surface

(i.e., core‐top ages) were used to estimate the timing of reef senes-

cence in cases where the measured rates of reef accretion in the

core never dropped significantly below the rate of RSL rise. These

ages were always from samples in the first barrel (upper 1.5 m [5 ft])

of the core and were generally within 0.5 m below the reef surface.

Four cores (LK‐MG‐1, LK‐WS‐1, MK‐AR‐2, and MK‐TN‐1; Table S1)

were not included in the analysis of reef senescence because their

accretion rates were always more than 1 m lower than the rate of

RSL rise.

Records from four other cores (UK‐GR‐3, UK‐GR‐5, BP‐AR‐1,

and BP‐LR‐1; Table S1) suggested that those reefs only began to

keep pace with the rate of RSL rise during the late Holocene.

Because these cores have no record of significant reef accretion dur-

ing the middle Holocene when the rest of the FKRT was actively

accreting (three of four initiated during the late Holocene), we sug-

gest that they represent a separate, more recent period of reef

development, and they were excluded from our analysis of the tim-

ing of reef senescence. Core UK‐GR‐3, which had a bottom age of

1,117 BP, accreted on pace with sea level until at least 1978, when

it was collected. Including the other three “late Holocene” cores,

which did record reef senescence, did not have a substantial impact

on our results: we still found a significant difference in the timing of

senescence among subregions (linear mixed‐effects model [LME]:

F4,15 = 4.73, p = 0.01), with significantly earlier termination of reefs

in the Middle Keys relative to the Dry Tortugas (Tukey‐like test:

p = 0.02), and timing of senescence was still a significant predictor

of reef thickness (linear regression [LR]: F1,30 = 5.69, p = 0.03,

r2 = 0.13).

2.6 | Statistical analyses

We compared the thickness of the Holocene reefs, the timing of

reef initiation, the depth to the Pleistocene bedrock, the average

rates of reef accretion, and the timing of reef senescence among

subregions using the linear mixed‐effects models in the R package

“nlme,” with site treated as a random factor. Pairwise comparisons

among subregions were conducted using the “lsmeans” package,

which provides an approximation of the Tukey post‐hoc test. The

residuals of the models met the assumption of normality with

untransformed data on reef thickness, depth to the Pleistocene, and

reef initiation (Shapiro–Wilk tests: W = 0.98, p = 0.68, W = 0.98,

p = 0.73, & W = 0.93, p = 0.07, respectively), log‐transformed data

on overall reef accretion (W = 0.97, p = 0.35), and rank‐transformed

data on the timing of reef senescence (W = 0.97, p = 0.41). We used

linear regression analysis to test the following hypotheses: (a) the

timing of reef initiation was related to the depth of antecedent

topography (depth to the Pleistocene bedrock); (b) the rate of sea‐

level rise or paleodepth were significant predictors of the rate of

reef accretion; and (c) subregional differences in the average rate of
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reef accretion or the timing of senescence were responsible for the

spatial variability in reef thickness. The residuals of the model of tim-

ing of reef senescence vs. thickness met the assumption of normality

using the raw data (Shapiro–Wilk test: W = 0.98, p = 0.92). The

residuals of the model of paleodepth vs. reef accretion met the nor-

mality assumption after log transformation (Shapiro–Wilk test:

W = 0.99, p = 0.55). For the models of average reef accretion vs.

reef thickness, reef initiation vs. depth to Pleistocene, and the rate

of sea‐level rise vs. reef accretion, the residuals of the model were

not normally distributed even after log and square‐root transforma-

tion so the data were rank‐transformed. Subregional differences in

the overall trends in reef accretion were evaluated by comparing

accretion trajectories among subregions using a chi‐squared test and

through pairwise comparisons using a Kolmogorov–Smirnov test. All

statistical analyses were performed in RStudio.

3 | RESULTS

The degree of reef development, as estimated by the thickness of

Holocene reef framework in the cores, varied significantly among

the five main subregions of the FKRT (Figure 1b; Table S1; LME:

F4,15 = 10.07, p < 0.001), because reefs in Dry Tortugas N.P. were

significantly thicker than elsewhere in the region (Shinn et al., 1977;

Tukey‐like test: p < 0.02). Indeed, with the exception of Dry Tortu-

gas N.P., the Holocene reefs of the FKRT are poorly developed com-

pared with reefs elsewhere in the western Atlantic (Figure 1a; e.g.,

Hubbard, 2013). Elevated rates of contemporary coral calcification

(Kuffner et al., 2013) and lower rates of bioerosion (Enochs et al.,

2015; Kuffner et al., 2013) on some reefs in Dry Tortugas N.P. sug-

gest that the reefs in the Dry Tortugas may simply accrete more

rapidly than elsewhere on the FKRT; however, we found no signifi-

cant differences among subregions in the average rates of reef

accretion over the lifespan of the reefs (Fig. S4; LME: F4,15 = 0.21,

p = 0.93) and no relationship between average rates of reef accre-

tion and Holocene reef thickness (LR: F1,35 = 0.11, p = 0.74,

r2 = −0.03). The millennial‐scale trends in reef accretion during the

Holocene (Figure 2) suggest that differences in the duration of reef

growth, rather than the overall rate of reef accretion, may explain

the spatial variability in reef development across the FKRT.

Reef development initiated on the FKRT between ~8,000 and

6,500 BP (Fig. S5; Table S1). Reefs began accreting earliest in Dry

Tortugas N.P. and significantly later in the Middle Keys, Upper Keys,

and Biscayne N.P. (LME: F4,6 = 7.28, p = 0.02; Tukey‐like test:

p = 0.03). Differences in antecedent topography likely explain the

relatively early initiation of reef development in the Dry Tortugas

N.P. (Shinn et al., 1977), as the depth to the Pleistocene bedrock

was significantly deeper in that subregion (Table S1; LME:

F4,16 = 3.24, p = 0.04; Tukey‐like test: Dry Tortugas vs. Middle Keys,

p = 0.04). Indeed, we found that the depth to the Pleistocene bed-

rock was a strong predictor of the timing of reef initiation (Fig. S6;

LR: F1,22 = 13.82 p = 0.001, r2 = 0.36).

Rates of reef accretion were highest across all subregions during

the middle Holocene and peaked during the earliest phase of reef

development at ~7,000 BP (Figure 2a). Average accretion rates

throughout the FKRT were ~3.0 m/ky (±1.4 SE) at that time, which is

similar to the average rates of Holocene reef accretion elsewhere in

the western Atlantic (Aronson et al., 2002, 2004 ; Gischler & Hud-

son, 2004; Hubbard, 2009, 2013). The average rate of reef accretion

declined significantly through the middle Holocene (based on the

95% CIs of accretion rates; Figure 2a), and by the late Holocene

(~4,000 BP), the average rate of reef accretion was negligible at

< 1 m/ky. By ~3,000 BP, 32% of the reefs in our study showed no

net vertical accretion (i.e., the age of the reef surface was older than

~3,000 BP), and only ~22% were growing at a rate within 1 m/ky of

the rate of sea‐level rise (Khan et al., 2017; Table S2). This suggests

that by the late Holocene, the FKRT had become geologically senes-

cent (Kuffner & Toth, 2016; Lidz & Shinn, 1991).

The trends in Holocene reef accretion varied significantly among

subregions (Figure 2b–g; chi‐squared test: χ
2
204 = 280, p < 0.001),

however, as a result of the significantly earlier decline in the rate of

reef accretion in the Middle Keys compared with the Dry Tortugas

N.P., the Upper Keys, and Biscayne N.P. (Kolmogorov–Smirnov tests:

p < 0.005, Bonferroni‐corrected). Comparison of the timing of reef

senescence among subregions confirmed that the decline in reef

accretion was not synchronous across the FKRT (Figure 3; LME:

F4,15 = 7.53, p = 0.002). Instead, reef accretion terminated signifi-

cantly earlier in the Middle Keys compared with Dry Tortugas and

Biscayne N.P. (Tukey‐like test p = 0.02). The timing of reef senes-

cence was a significant predictor of reef thickness (LR: F1,28 = 10.57,

p = 0.003, r2 = 0.25), supporting the conclusion that the duration,

rather than the average rate of reef accretion drove the spatial vari-

ability in reef development on the FRKT. Records from four cores

suggest that a secondary period of relatively rapid reef accretion

may have initiated in a few locations during the late Holocene (Fig-

ure 2e,f; 16L, 19L, and 20L in Figure 3); however, reef accretion has

been negligible across most of the FKRT for the last 3,000 years.

4 | DISCUSSION

The relatively poor development of the Holocene reefs on the FKRT

(Figure 1) suggests that regional environmental variability may have

modulated reef development in Florida over millennial timescales.

Whereas most reefs elsewhere in the western Atlantic grew continu-

ously from the early Holocene to recent decades (Aronson et al.,

2002, 2004; Dullo, 2005; Gischler & Hudson, 2004; Hubbard, 1988,

2013), we show that the geological decline of Florida's reefs began

~6,000 years ago, and, by ~3,000 BP, the majority of the FKRT was

geologically senescent (Figure 2). Below, we evaluate the Holocene

history of Florida's reefs in relation to regional environmental vari-

ability to determine the primary controls on reef development and

the likely causes of the geological shutdown of the FKRT.

4.1 | Sea level and coral‐reef development

Sea level is an important control on reef development over millennial

timescales because the rate of vertical reef accretion is limited by
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the accommodation space provided as sea level rises (Buddemeier &

Hopley, 1988; Dullo, 2005; Hubbard, 1988; Macintyre, 2007; Mon-

taggioni, 2005; Neumann & Macintyre, 1985). Like many reefs

throughout the western Atlantic, reef development initiated on the

FKRT as sea level began to flood shallow‐water shelf environments

~8,000–7,000 years ago (Macintyre, 2007; Neumann & Macintyre,

1985; Stathakopoulos & Riegl, 2015). The spatial variability in the

depth to the Pleistocene bedrock in our records (Table S1) supports

the results of regional seismic studies, which suggested that the

topography of the south Florida platform slopes to the southwest

(Lidz & Shinn, 1991; Lidz et al., 2003). As a result, reef habitats

would have flooded earliest at the southwestern end of the FKRT

(Lidz & Shinn, 1991), explaining the relatively early initiation of reef

development in the Dry Tortugas (Fig. S5). As sea level rose, the

extent of the FKRT gradually expanded to the northeast, and by

~7,000 BP, there was sufficient accommodation space to allow rapid

reef accretion throughout the region (Table S2; Figure 2; Fig. S5;

Khan et al., 2017). The early history of Florida's Holocene reefs sup-

ports the conclusion of previous studies that the interaction

between sea level and antecedent topography was a significant con-

trol on the timing of reef initiation (Hubbard, 1988; Lidz & Shinn,

1991; Lidz et al., 2003; Shinn et al., 1977). Similarly, accommodation

space may have influenced the absolute rates of reef accretion of

individual reefs, as we found a significant positive relationship

between the rates of reef accretion and paleodepth on the FKRT

(LR: F1,143 = 30.44, p < 0.001, r2 = 0.17; Fig. S7). There is less evi-

dence, however, that sea level was a dominant driver of the demise

of the FKRT ~3,000 years ago.
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In the western Pacific, where sea level generally peaked during

the middle Holocene and gradually fell during the late Holocene

(Montaggioni, 2005), most reefs have been growing at or near sea

level for millennia, and reef accretion has been strongly limited by

accommodation space (Perry & Smithers, 2011). As a result, most

Pacific reefs that initiated during the middle Holocene can no longer

accrete vertically and have instead formed extensive, laterally accret-

ing reef‐flat habitats (Hubbard, 1988; Montaggioni, 2005). In con-

trast, sea level in the western Atlantic has been gradually rising to its

present position during the Holocene (Khan et al., 2017; Figure 4b),

and the extensive reef‐flat habitats that are so ubiquitous in the

western Pacific are not common (Dullo, 2005; Hubbard, 1988).

Instead, most western Atlantic reefs continued to grow with rising

sea level throughout the late Holocene (Dullo, 2005; Gischler &

Hudson, 2004; Hubbard, 1988, 2013), suggesting that regional reef

development was not significantly limited by accommodation space.

Because the sea‐level history of south Florida is very similar to that

of the broader western Atlantic (Khan et al., 2017; Macintyre, 2007),

lack of accommodation space was likely not the ultimate cause of

reef senescence on the FKRT. Indeed, Florida's reefs were dis-

tributed across a broad range of paleodepths when they stopped

keeping pace with sea level (Fig. S1; Table S2): fewer than half of

the reefs were growing within ~0.5–1 m of sea level and the pale-

odepth of ~30% of the reefs was at least 2 m. Since ~3,000 years

ago, sea level in south Florida has risen an additional ~2 m (Fig-

ure 4b; Khan et al., 2017) and the average water depth of the reef

surfaces where the cores were collected is 4.8 m (±0.4 SE) at present

(Fig. S1). Even if accretion on some parts of the FKRT had been lim-

ited by accommodation space at some point in its history, Florida's

reefs should have resumed vertical accretion on pace with sea level

as additional accommodation space was created.

The relationship between the rate of sea‐level rise and the rate

of reef accretion in our cores was statistically significant (Fig. S8; LR:

F1,144 = 12.62, p < 0.001), but it explained only 7% of the variance

in the rates of reef accretion (r2 = 0.07). The gradual decline in the

rate of sea‐level rise through the Holocene (Figure 4b; Khan et al.,

2017) may have played some role in the decrease in the rates of

reef accretion on the FKRT from the middle Holocene to present;

however, if sea level was the primary control of reef accretion in

Florida, the reefs should have continued to accrete toward sea level

through the middle to late Holocene, like reefs elsewhere in the

western Atlantic (Dullo, 2005; Gischler & Hudson, 2004; Hubbard,

2013), albeit at a slower rate. The fact that a third of Florida's reefs

had no net accretion after 3,000 BP, and accretion rates of most the

remaining reefs were significantly slower than the contemporaneous

rates of sea‐level rise, suggests that sea level was not the ultimate

cause of reef senescence on the FKRT.

4.2 | The influence of inimical bank waters

Rising sea level may have contributed to the deterioration of condi-

tions on some of Florida's reefs by establishing a connection

between the FKRT and the shallow‐water environments of Florida

Bay when sea level reached ~4 m below MSL (Lidz & Shinn, 1991;

Lidz et al., 2003, 2007). Although Lidz and Shinn (1991) previously

concluded that Florida Bay did not begin to influence the FKRT until

~2,000 BP, the most recent sea‐level reconstruction for south Flor-

ida (Khan et al., 2017) suggests that sea level could have reached

−4 m MSL by ~6,000 BP (6,187–3,511 BP based on the 95% CI;

Figure 4b). The shallow, restricted waters of Florida Bay experience

dramatic changes in temperature, salinity, turbidity, and nutrients

(Ginsburg & Shinn, 1994), conditions generally considered to be

unfavorable, or “inimical,” to reef development (Ginsburg & Shinn,

1994; Hallock & Schlager, 1986; Neumann & Macintyre, 1985;

Precht & Miller, 2007; Schlager, 1981). Ginsburg and Shinn (1994)

demonstrated that comparatively well‐developed reefs on the FKRT

are preferentially located adjacent to the islands of the Florida Keys,

where they are putatively protected from the influence of inimical

waters. In the Middle Keys, where tidal passes to Florida Bay are

especially large (Figure 1b), only a few isolated reefs are present

(Ginsburg & Shinn, 1994; Lidz et al., 2003). The shallow, nearshore

environments between the FKRT and the islands of the Middle and

Upper Keys could have been another source of inimical waters dur-

ing the early phases of reef development, as they still are today

(Colella, Ruzicka, Kidney, Morrison, & Brinkhuis, 2012). These
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F IGURE 3 Timing of reef senescence among subregions of the

Florida Keys Reef Tract (FKRT). Average age of reef senescence is

indicated by solid horizontal lines and vertical shading represents the

95% confidence intervals. Sites are numbered from southwest to

northeast along the FKRT as follows: 1‐Loggerhead Bank, 2‐Fort

Jefferson, 3‐Southeast Reef, 4‐Pulaski North Reef, 5‐East Key Reef,

6‐Pulaski Light Reef, 7‐Sand Key Reef, 8‐Western Sambo Reef, 9‐

Looe Key Reef, 10‐Marker G Reef, 11‐Sombrero Reef, 12‐Tennessee

Reef, 13‐Alligator Reef, 14‐Crocker Reef, 15‐Key Largo Reef, 16‐

Grecian Rocks, 17‐Carysfort Reef, 18‐Pacific Reef, 19‐Alina's Reef,

20‐Long Reef, and 21‐Fowey Rocks. The average timing of

senescence for each site is indicated by the vertical position of the

numbers, and vertical lines indicate the full range of estimates for

that site when N > 1. Outlier reefs are indicated by an “O” subscript

and records from reefs that initiated during late Holocene are

indicated with an “L” subscript
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environments would have begun to flood during the early Holocene,

when sea level reached −10 m MSL (Lidz & Shinn, 1991; Lidz et al.,

2003). It has been hypothesized that the periodic transport of inimi-

cal waters onto the reefs may have suppressed millennial‐scale reef

development on the FKRT (Lidz et al., 2003). The coincidence of reef

senescence, the flooding of these shallow, nearshore environments,

and the connection of Florida Bay to the reefs of the Middle Keys

around 6,000 BP (Figure 4b), suggests that the negative influence of

inimical waters did contribute to the poor reef development (Fig-

ure 1b) and relatively early termination of reef accretion in this sub-

region of the FKRT (Figure 3). Elsewhere on the FKRT, the decline in

reef development occurred significantly later (Figures 3 & 4), indicat-

ing that inimical waters were not the ultimate cause of reef shut-

down throughout the FKRT.

4.3 | Climate and the geological senescence of

Florida's reefs

Shifts in the regional climate of south Florida provide another poten-

tial explanation for the geological senescence of the FKRT during

the late Holocene (Precht & Miller, 2007). Temperature is a central

control on coral growth (Dullo, 2005), and, as a result, reef develop-

ment is limited in areas where minimum temperatures frequently fall

below ~18°C (Kleypas et al., 1999). In the subtropical environments

of south Florida, minimum monthly seawater temperatures typically

hover just above this threshold on modern reefs (Kuffner, 2018);

however, occasional cold‐water events have caused widespread mor-

tality of important reef‐building corals such as Acropora spp. and

Orbicella spp. in south Florida (Lirman et al., 2011; Porter, Battey, &

Smith, 1982; Precht & Aronson, 2004).

On a global scale, temperature was elevated during the early to

middle Holocene (Marcott, Shakun, Clark, & Mix, 2013; Figure 4c), a

period known as the Holocene thermal maximum (HTM; Haug,

Hughen, Sigman, Peterson, & Röhl, 2001; Marsicek, Shuman, Bar-

tlein, Shafer, & Brewer, 2018), relative to recent centuries. The trend

of gradual cooling that has occurred since ~5,000 BP (Marcott et al.,

2013; Figure 4c) was primarily driven by declining sea‐surface tem-

peratures observed in marine records from the Northern Atlantic

(Marcott et al., 2013; Marsicek et al., 2018). There are no continuous

records of Holocene sea temperatures on the FKRT; however, coral‐

based climate reconstructions from Belize (Gischler & Storz, 2009)

support the suggestion of cooling in the western Atlantic after

~5,000 BP. Because environmental variability in the nearshore envi-

ronments of south Florida is tightly linked with broader‐scale

changes in Atlantic climate (Flannery, Richey, Poore, & DeLong,

2016; Thirumalai et al., 2018), it is likely that the FKRT also experi-

enced significant cooling at that time. A contemporaneous decline in

the mean position of the intertropical convergence zone (ITCZ) over

the Caribbean, which tracks regional temperature (Haug et al., 2001),

provides further evidence for broad‐scale changes in western
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Atlantic climate during this period. With the exception of the recent

southerly excursion of the ITCZ during the 16th century cool period

known as the Little Ice Age (Thirumalai et al., 2018), the most signifi-

cant equatorial migration of the ITCZ during the Holocene occurred

at ~3,000 BP (Haug et al., 2001), coincident with the senescence of

reefs throughout the FKRT.

We suggest that the relatively warm temperatures during the

HTM (Figure 4c) provided an optimal climate for reef development

in the subtropical environments of south Florida (c.f. Precht & Aron-

son, 2004). Indeed, the HTM was the only period when rates of

Holocene reef accretion on the FKRT were on par with reefs in

more tropical environments elsewhere in the western Atlantic (c.f.

Gischler & Hudson, 2004; Hubbard, 2009, 2013). Reefs grew rapidly

throughout the FKRT during the HTM (Figure 4a) and acroporid

reefs, which are especially sensitive to temperature variability,

expanded northward along the coast of southeast Florida (Precht &

Aronson, 2004; Stathakopoulos & Riegl, 2015). As temperatures

cooled after the HTM, reef accretion declined throughout the FKRT

(Figure 4a & 4c), and the acroporid populations contracted to the

south (Precht & Aronson, 2004; Stathakopoulos & Riegl, 2015). Cli-

matic cooling was also implicated in a contemporaneous collapse of

reefs in the analogous environmental setting of the northern Baha-

mas at ~3,000 BP (recalibrated from Macintyre, 2007). Whereas the

degree of cooling after the HTM would likely have been too minimal

to have significantly impacted reefs in more tropical regions of the

western Atlantic, reefs in subtropical environments such as Florida

and the Bahamas exist close to their lower thermal threshold (Kley-

pas et al., 1999; Precht & Miller, 2007). We hypothesize that the

shift to a cooler climate by the late Holocene likely pushed Florida's

reefs past a critical tipping point, wherein the frequency of cold‐wa-

ter coral mortality was sufficient to suppress reef accretion through-

out the FKRT.

The impacts of regional climatic cooling may not have been syn-

chronous across the FKRT, however. Indeed, the spatial variability in

coral mortality during Florida's most recent cold‐water event in 2010

mirrors the spatial trends in the timing of reef senescence (Figure 3),

with the most extreme impacts near outflows from Florida Bay in

the Middle Keys and shallow‐water platforms in the Upper Keys

(Colella et al., 2012; Lirman et al., 2011). The impact of regional

cooling after the HTM was likely amplified in these shallow‐water

environments, which may explain the relatively early decline of reefs

in the Middle Keys (Figure 2c; Figure 3), where the impacts of inimi-

cal waters are most extreme. Although early geological studies gen-

erally linked reef senescence with high turbidity and/or nutrients

associated with the flooding of shallow carbonate platforms (Gins-

burg & Shinn, 1994; Hallock & Schlager, 1986; Neumann & Macin-

tyre, 1985; Schlager, 1981), recent studies have challenged this

conclusion (Hubbard, 2013). In fact, although high turbidity may

have been inimical to reef development in the past, it can benefit

modern reefs by providing refugia from high‐temperature stress

(Cacciapaglia & van Woesik, 2015). The correlation of the timing of

reef senescence with proximity to Florida Bay suggests that the

thermal variability of shallow‐water platforms may be more

important than turbidity in modulating reef development over millen-

nial timescales (c.f. Macintyre, 2007; Precht & Miller, 2007).

We conclude that climatic cooling was likely the ultimate cause

of the geological senescence of the FKRT, between ~6,000 and

3,000 BP, highlighting the central role of climate in the long‐term

development of coral reefs. In addition to the putative role of cli-

matic cooling in the senescence of reefs in Florida (Precht & Aron-

son, 2004) and the northern Bahamas (Macintyre, 2007), colder sea

temperatures were also hypothesized to have helped trigger the ini-

tiation of a prolonged hiatus in reef accretion in Pacific Panamá

(Toth et al., 2012; Toth, Aronson, et al., 2015) and mass extinctions

of reef assemblages during the Paleozoic (Stanley, 1988). The fact

that cooling and not warming was the most likely cause of the geo-

logical senescence of Florida's reefs in the past does not mean that

warming associated with anthropogenic climate change will not con-

tinue to be the major driver of reef declines now and in the future

(Hughes et al., 2017). Instead, the history of reef development on

the FKRT highlights the sensitivity of reefs to any perturbations that

push them outside of their optimal climatic envelope, particularly in

locations such as south Florida that already exist near the environ-

mental limits for reef development (Kleypas et al., 1999; Precht &

Miller, 2007).

4.4 | The timeline of coral‐reef shutdown

For most reefs around the world, declines in reef accretion have

been synchronous with contemporary, ecological declines in coral

populations (Kennedy et al., 2013; Perry et al., 2013, 2014, 2015,

2018); however, our study suggests that the beginning of the end

for Florida's reefs occurred thousands of years before anthropogenic

climate change and other human disturbances led to the modern

coral‐reef crisis. The geological decline of the FKRT began more than

6,000 years ago, when inimical waters from Florida Bay began to

suppress reef accretion in the Middle Keys. Although reef develop-

ment elsewhere on the FKRT continued for several millennia, by

3,000 BP, the relatively cooler climate of south Florida had driven

the geologic senescence of reefs throughout the FKRT.

The historical observations of reefs with relatively high coral

cover throughout the Florida Keys until the mid‐1970s (Jackson

et al., 2014; Porter & Meier, 1992; Shinn & Kuffner, 2017) indicate

that although the reefs of the FKRT were no longer building reef

framework, some ecosystem functions were maintained until coral

bleaching and disease caused the decline of Florida's coral popula-

tions in recent decades (Ruzicka et al., 2013; Toth et al., 2014).

Indeed, the carbonate budgets estimated for many of Florida's reefs

during the pre‐industrial period (Enochs et al., 2015) suggest that the

FKRT apparently only recently reached an ecological threshold, in

which reef erosion became a dominant process (Enochs et al., 2015;

Yates et al., 2017). The cover of framework‐building corals is the

most significant determinant of when this tipping point is reached,

and net erosional states generally occur when coral cover falls below

~10% (Kennedy et al., 2013; Perry et al., 2013, 2015). Coral cover is

often the last ecological metric to respond to environmental
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perturbations, and it has been shown to be insensitive to other

symptoms of ecosystem degradation such as declines in fish biomass

and changes in macroalgal abundance (McClanahan et al., 2011; Toth

et al., 2014). We suggest that the veneer of living coral and other

benthic biota that remained on the relict reefs of the FKRT was suf-

ficient to keep Florida's reefs balanced at the tipping point between

reef growth and erosion for several millennia (Kuffner & Toth, 2016).

The recent decline in coral populations allowed that final ecological

threshold to be crossed, triggering the onset of the structural degra-

dation of Florida's reefs (Yates et al., 2017).

Our study demonstrates that reef accretion may be one of the

most sensitive reef processes to environmental perturbations, and it

may also be one of the most difficult to restore. The persistence of

reefs, and the myriad of ecosystem services they provide, relies on

maintenance of the three‐dimensional structure built over millennia

(Kuffner & Toth, 2016). In a business‐as‐usual scenario, anthro-

pogenic climate change is on track to push most western Atlantic

reefs past a geological and ecological tipping point wherein reef ero-

sion will dominate within the next several decades (Kennedy et al.,

2013). Aggressive management actions such as restoration of the

reef‐building corals Acropora palmata and Orbicella spp. (Kennedy

et al., 2013; Kuffner & Toth, 2016), and the potential to breed resis-

tant coral populations (van Oppen et al., 2017), may buy reefs some

extra time; however, we must move past the hope that traditional

solutions alone, such as protecting herbivorous fish populations, will

have any meaningful impact on the long‐term trajectories of reef

development (Hughes et al., 2017; Kennedy et al., 2013; Kuffner &

Toth, 2016; Toth et al., 2014). Whereas millennial‐scale climatic

cooling drove the geologic senescence of the FKRT, in just decades,

modern climate change and other anthropogenic disturbances have

diminished the remaining ecological functionality of Florida's reefs

and have threatened the persistence of coral reefs on a global scale.

The accelerating pace of coral‐reef degradation suggests that only

when these threats are lifted will we have the hope of a future in

which both the ecological and geological functionality of the world's

coral‐reef ecosystems can be restored.
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