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Abstract

A thermodynamically consistent three species (austenite, plus-martensite & minus-martensite) model for shape memory
alloys (SMA) is proposed. The uniaxial model proposed has been formulated with capabilities of simulating the charac-
teristic response under general thermo-mechanical loading conditions. It is shown that a minimal set of model variables,
essentially, the volume fractions of the three species, describing the one dimensional state of the polycrystal SMA, is
enough to capture its characteristic features including the pseudoelastic and the shape memory effects. Primarily, two
back stresses are defined within a dissipative setting - one to take care of polycrystalline nature of SMA and the other for
the moving interfaces of the species within the sub grains. The connection between the physical response of the material
and the choice of the material parameters is illustrated using different conditions of the material and of the loading.
Simulation results exemplify the potential of the proposed model in predicting the characteristic behavior under loading
paths such as isothermal, iso-stress and cyclic thermomechanical loading, that are typical in the applications.

1. Introduction

Due to the increased use of shape memory alloys (SMAs) under the combined thermal and mechanical
loading, it is necessary to be able to predict their response under such conditions. SMAs show two characteristic
responses to the applied thermomechanical loads called the pseudoelastic effect (PE) and the shape memory effect
(SME). These are observed in several types of metallic materials and are being increasingly explored for various
applications in the realm of aerospace, automotive and biomedical applications (Chopra, 2002). Other related
phenomena seen in these materials include, two- way shape memory effect, cycling ageing and functional fatigue
(Bernardini and Pence, 2002). In SMAs, the material undergoes a reversible phase transformation between the
high symmetry parent phase, called the austenitic phase (A) and the low symmetry product phase, called the
martensitic phase (M). The transformation results in large strains, typically up to 6%, and is observed over a
reasonably small stress (and/or temperature) range (maintaining almost a constant transformation temperature
and/or stress level). Typically, pseudoelasticity is observed to be a temperature dependent response and the
observed strain recovery, in general, decreases with decrease in temperature. There is a significant difference in
the loading and unloading responses leading to hysteresis. Since there is a recovery of strain, but still dissipation is
involved, this behaviour is also referred to as pseudoelasticity. The large hysteresis is one of the key characteristics
which make the SMA, a good choice for vibration damping (Smith, 2004). The other characteristic behaviour
is the shape memory effect. This is seen over a minimum of two-steps involving both thermal and mechanical
loading. Typically, the first step is a cooling process from the austenite phase to the martensite phase followed
by a mechanical loading. Upon loading, a permanent set is seen in the martensite phase. The permanent set
is recovered by heating it back to the austenite phase. This memory of the initial (parent) state is known as
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the one way shape memory effect. It is to be noted that, after the recovery of the set, cooling (without stress)
will not yield the deformed shape. In cases where such a recovery is seen, the response is termed as two-way
shape memory effect (Lexcellent et al., 2000). SME involves two different transformations, viz., from austenite
to twinned martensite while cooling, and the ’detwinning’ of the twinned martensite due to mechanical loading.
The mechanical loading transforms one of the twins, leading ultimately to a state with a single ’variant’ of
martensite (for more information refer to Otsuka and Wayman (1998)).

An important area of active research is in the development of models capable of predicting the complex,
hysteretic response of these materials under combined and arbitrary thermomechanical loading. Especially, in
the usage of SMA in devices, this prediction helps in a better understanding leading to more efficient design. SMA
devices undergo thermomechanical actuation cycles, intentional or otherwise, which involve partial or incomplete
transformations. Most existing models capture the essential pseudoelastic and/or shape memory response, but
often fail when it comes to modeling response under an arbitrary thermo-mechanical loading path (Seelecke and
Muller, 2004).

In general, the models for SMA behavior have the following two salient aspects.

• the description of phase transformation in terms of evolution of martensitic fraction(s) as a function of
driving forces viz., stress (σ) and temperature (T )- the evolution or phase kinetics, and,

• the constitutive behavior in terms of stress, temperature and strain (ε) using the phase fraction (ξ) as an
internal state variable - the constitutive law.

Most of the models that describe the macroscopic SMA behavior can be classified as:

1. Free-energy or thermodynamics based models (Rajagopal and Srinivasa, 1999; Chenchiah and Sivakumar,
1999; Ivshin and Pence, 1994; Bernardini and Pence, 2002; Boyd and Lagoudas, 1996; Chang et al., 2006)

2. Phenomenological models - plasticity or phase-diagram based (Bekker and Brinson, 1998; Lubliner and
Auricchio, 1996; Lexcellent et al., 2000; Kumar et al., 2007), and,

3. Hysteresis models like the Preisach or the Duhem-Madelung models (Ortin, 1992).

Phenomenological models lack a physical basis and therefore have arbitrarily matched constants and pa-
rameters, which leads to cautious confidence among the users (Bekker and Brinson, 1998; Brinson, 1993). The
parameters are generally described in an ad hoc manner and cannot always be systematically related to the
material characteristics. This severely limits the necessary flexibility when working with these models. Also,
depending on the requirements, more constants are arbitrarily added, making these models cumbersome (for
example Buravalla and Khandelwal (2008)). On the other hand, plasticity based models use the principles of
plasticity to model the dissipative phenomena associated with hysteretic responses. But, models of this cate-
gory, thus far proposed in literature, work in an isothermal setting and therefore, suffer severely under complex
thermomechanical loading (Lubliner and Auricchio, 1996).

In a thermodynamic framework, it becomes convenient to handle both thermo-mechanical loading and hys-
teretic response and can lead to simple generalized plasticity type models. There are several models which have
been developed in this fashion. However, the choice of variables and the appropriate modeling has a lot of bearing
in correctly modeling the material characteristics. Some of the existing models lead to certain inadequacies and
inconsistencies (Boyd and Lagoudas, 1996; Shub and Lagoudas, 1999). Shaw and coworkers (Chang et al., 2006)
have proposed a model involving kinetics of the phase-front which is unsuitable for a lumped parameter modeling
approach. The model requires solving an initial boundary value problem for even the simplest of the cases of
SMA response. While, such a formulation may be useful in a setting where only avalanching softening occurs,
in a stabilized polycrystalline SMA, such a formulation adds unnecessary rigor from a design tool perspective.
The model proposed by Lagoudas and coworkers (Shub and Lagoudas, 1999; Boyd and Lagoudas, 1996), are
thermodynamics based models. However, in handling combined psuedoelastic and shape memory effect that
usually occurs under a general thermo-mechanical loading, the evolution of the material parameters are not
consistent with the thermodynamic laws and therefore, may lead to problems related to response under general
thermo-mechanical loading. The models developed by Pence and coworkers (Ivshin and Pence, 1994; Bernardini
and Pence, 2002), reduce the kinetics to a single variable evolution that puts too much constraint on modeling
the general thermomechanical response.
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There exists a wide conceptional modelling gap between the two extreme properties of SMA (SME and PE).
Combined thermomechanical loading path can be treated as a good test case for an efficient model. A model
which handles the thermomechanical loading path deftly and predicts the SMA response convincingly is not yet
a reality in the research community. This work presents a thermodynamically consistent, dissipation based three
species model for SMA. The three species introduced in this model are: austenite, plus-martensite and minus-
martensite. The plus and minus martensite introduced in this model should not be directly compared with the
twinned and detwinned martensite. Their definitions are discussed in Section 2. The proposed thermodynamic
framework, attempts a simple one dimensional lumped parameter model for a stabilized polycrystalline wire
form of SMA. In essence, the framework tries to capture the response with a model consisting of a minimal set
of variables and, at the same time, simulates complex thermo-mechanical behavior consistent with physically
admissible transformation kinetics. This helps in providing a valuable insight while conducting characteristic
tests on the wire, avoiding redundant tests.

In the first part of Section 2, the thermodynamic formulation and the model, right from the definition of state
to the driving force relations, are discussed. The driving forces are functions of the state variables and provide
the kinetics of the evolution of phases. The driving force equations are obtained as a direct consequence of the
mechanical dissipation inequality arising out of the second law of thermodynamics. The evolution equations,
the flow rule, the hardening rules and the consistency conditions are presented in the later part of Section 2. In
Section 3, the role of the parameters involved in this model are explained with the help of phase diagrams. Three
different phase diagrams are constructed for three different cases of illustration: no dissipation - no hardening
case, dissipation with no hardening and dissipation with hardening. Computational aspects of this model are
discussed in Section 4 before presenting the the simplifications and assumptions required for simulations in
Section 5. Simulation results are presented in Section 6 and it is shown that the prediction is quite satisfactory
even for a simplistic assumption. Specific cases are discussed to bring out the versatility and the efficacy in the
model.

2. Thermodynamical framework of the model

The overall objective of developing a thermodynamic framework is to be able to simulate the quasistatic
behavior of SMA. The constitutive models developed within this framework should be capable of, within a
hierarchical framework, simulating all the characteristic quasistatic behavior of the shape memory alloys such as
shape memory effect, pseudoelastic effect, strain-rate dependence, cyclic ageing and functional fatigue. In the
hierarchy of inclusion of effects in the framework, the first attempt is on the quasistatic modeling of pseudoelastic
and shape memory effects. Since the devices work well within the complete transformation conditions, it is
important to consider partial cycles of mechanical loading and unloading, as well as, heating and cooling. Upon
developing the model, appropriate numerical schemes are necessary to simulate the behavior.

The pseudoelastic effect as described in the previous section is an isothermal transformation from austenite to
detwinned martensite. On the other hand, the shape memory effect involves ’detwinning’ of twinned martensite,
the heating of which transforms it into the parent phase (austenite). Therefore, there is a transformation which
involves three distinct states. In other words, with three variables to express the state/phase of the material,
the description can be deemed complete. Therefore, this model has been defined on a three species partitioning
of the phases in the material.

The three species defined are austenite (A), plus-martensite (M+) and minus-martensite (M−). Plus-
martensite is the projection of the variants that exist in a completely detwinned state under tension, and
minus-martensite is the projection of the variants that exist in the completely detwinned state under com-
pression. The state of the material is assumed to be completely defined by the stress (σ), temperature (θ), the
austenite volume fraction (α) and the two martensite volume fractions, (ξ+ and ξ−). The two martensite species
M+ and M− considered in this work are not directly equivalent to the twinned and the detwinned martensites
well established in the literature Brinson (1993).

Certain combinations of (M+) and (M−) could represent the twinned and the detwinned martensite states
as shown in Fig. 1 Roubicek (2004).
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Figure 1: Representing the twinned and detwinned states of SMA interms of austenite (A), plus-martensite (M+) and minus-
martensite(M−)

In this work, Gibbs free energy is used to define the free energy at each state. Since the thermodynamic
state of the material is defined completely by stress, temperature and the species volume fractions, the Gibbs
free energy is also completely known at any state as a function of the state variables. The dissipation that
occurs in the material should satisfy the mechanical dissipation inequality, which guarantees that the second
law of thermodynamics is satisfied. From the Gibbs energy equation of state, we get the evolution kinetics of
the species involved during a transformation. The model is complete once we know the evolution kinetics of the
species. The model is developed in a rate-independent setting.

Given that at any given time, the state of the material within a representative volume, the volume fractions
of the three species, A, M+ and M− are connected through the rule of mixtures as,

α + ξ+ + ξ− = 1, (1)

the rate of change of volume fractions can be derived as,

α̇ + ξ̇+ + ξ̇− = 0. (2)

The total strain (ε) can be additively decomposed into the elastic strain, (εe), and the transformation strain,
(εt), since we are dealing with reasonably small deformations in this formulation. Thus,

ε̇ = ε̇e + ε̇t (3)

The transformation strain, εt is produced during transformations between the austenite and both the marten-
site phases. It is assumed that the plus-martensite produces positive transformation strains, while the minus-
martensite produces negative transformation strains. The total transformation strain rate, ε̇t, is assumed to be
additively composed of the M+ transformation strain rate, ε̇+t, and the M− transformation strain rate, ε̇−t,
such that,

ε̇t = ε̇+t + ε̇−t (4)
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The transformation strain rates, ε̇+t and ε̇−t, are assumed to evolve with respect to the respective volume
fraction rates as,

ε̇+t = H+ξ̇+ (5)
ε̇−t = H−ξ̇− (6)

where H+ and H− are, respectively, maximum uniaxial transformation strain produced under tensile and com-
pressive loading. These parameters, though assumed to be constants, can be nonlinear functions of the state
variables, ξ+ and ξ− constrained by the condition that at the limits of the volume fraction variables, the max-
imum transformation strains are realized. The Gibbs free energy density of the mixture of the three species is
assumed to be completely defined by the specification of the volume fractions of the three species and the external
drivers: the stress, σ and the temperature, θ. In this, a strong assumption is made in that the the interface
energies can be fully prescribed in terms of the volume fractions. This assumption, however, is acceptable since
the we are dealing with a macroscopic behavior that in a sense smears the bulk and the interfacial behavior
Guthikonda et al. (2008). The innate assumption is that the interfaces are densely populated at all values of the
volume fractions. This model breaks down only at values of the volume fractions that are close to the limits.
Thus, we assume that, the Gibbs free energy is defined by,

G := G(σ, θ, α, ξ+, ξ−) (7)

As mentioned in the above, the total Gibbs free energy density, G, is composed of contributions from the bulk,
Gb and the free energy stored in the interfaces (or surfaces), Gs, so that,

G = Gb + Gs (8)

The bulk Gibbs free energy of all the grains, Gb within the representative volume is the volume average of the
austenite Gibbs free energy, Gα, the plus-martensite Gibbs free energy, Gξ+, and minus-martensite Gibbs free
energy, Gξ−. Therefore, the bulk Gibbs free energy, Gb is given by,

Gb = αGα + ξ+Gξ+
+ ξ−Gξ−

(9)

In this framework, the interface energy Gs, is decomposed further, for the sake of linking with the physical
mechanism of transformation, into the grain orientation energy, Go and the subgrain interface energy, Gi. This
helps in separating the inter granular mechanisms and the subgrain related mechanisms of transformation between
the three species. Thus,

Gs = Go + Gi (10)

Go is the energy associated with the initial disposition of the grains in terms of the orientations of the
austenitic grains in the polycrystalline material. The corresponding orientations of plus- and minus-martensites
primarily contribute to the transformation strain. Therefore, Go is treated as a function of transformation strain
(εt) only. This leads to

Go := Go(εt). (11)

The interaction energy at the interfaces of the plus-martensite and the minus-martensite are assumed to be
negligible compared to the austenite-martensite interaction energy. Thus, the Gibbs free energy due to interaction
(Gi) of austenite and martensite is taken to be a function of α only. When α = 0, this interaction energy is
zero, because the only phase present is the martensite phase (either plus or minus or, a combination of plus and
minus). Similarly when α = 1, the interaction energy is zero, since only austenite is present. Therefore,

Gi := Gi(α) (12)

Putting all the above together, the constitutive form of the total specific Gibbs free energy of polycrystalline
SMA can now be written in terms of the external variables σ and θ and the internal variables α, ξ+ and ξ− as,

G = G(σ, θ, α, ξ+, ξ−) = αGα + ξ+Gξ+
+ ξ−Gξ−

+ Go(εt) + Gi(α) (13)
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Specific Gibbs free energy of the individual phases, the austenite or the martensite phases, can be taken as
functions of stress, σ and temperature, θ, such that

Gα = Gα(σ) + Gα(θ) (14)

Gξ+,−
= Gξ+,−

(σ) + Gξ+,−
(θ) (15)

In order to satisfy the second law of thermodynamics, the mechanical dissipation is defined in terms of internal
energy, u, so that the dissipation inequality, Δ can be written as in Rajagopal and Srinivasa (1999),

Δ := σε̇ − ρu̇ − ρη̇θ ≥ 0 (16)

where ρ is the mass density. Note here that if equation (16) is satisfied, then the second law of thermodynamics
is guaranteed to be satisfied. Introducing the relation between the Gibbs free energy, G and internal energy, u,
to be u = G + ηθ + σε, and it’s functional form as described above, taking time derivative of u, and from the
definition of entropy (η), the dissipation inequality in (16) is reduced to

−
(

εe + ρ
∂G

∂σ

)
σ̇ −

(
ρεt + ρ

∂G

∂θ

)
θ̇ +

[
σH+ − ρ

∂G

∂ξ+

]
ξ̇+ +

[
σH− − ρ

∂G

∂ξ−

]
ξ̇− +

[
−ρ

∂G

∂α

]
α̇ ≥ 0 (17)

Thus, using the admissibility condition of the internal states, the following constitutive relations between the
arguments and their conjugates are arrived at.

εe = −ρ
∂G

∂σ
(18)

ρη = −∂G

∂θ
. (19)

The dissipation inequality further reduces to[
σH+ − ρ

∂G

∂ξ+

]
ξ̇+ +

[
σH− − ρ

∂G

∂ξ−

]
ξ̇− +

[
−ρ

∂G

∂α

]
α̇ ≥ 0. (20)

Upon inserting the derivatives of Gibbs free energy with respect to α, ξ+ and ξ−, the final form of the inequality
becomes,

[
σH+ − ρG+ − ρ

∂Go

∂ξ+

]
ξ̇+ +

[
σH− − ρG− − ρ

∂Go

∂ξ−

]
ξ̇− +

[
−ρGα − ρ

∂Gi

∂α

]
α̇ ≥ 0 (21)

or, Δ = f+ξ̇+ + f−ξ̇− + fαα̇ ≥ 0 (22)

where the driving forces f+, f− and fα corresponding to M+, M− and α species volumes respectively, are
given by,

f+ = σH+ − ρG+ − ρ
∂Go

∂ξ+
(23)

f− = σH− − ρG− − ρ
∂Go

∂ξ−
(24)

fα = −ρGα − ρ
∂Gi

∂α
(25)

Summarizing the above mentioned relations,

Δ = f+ξ̇+ + f−ξ̇− + fαα̇ ≥ 0 dissipation inequality
α + ξ+ + ξ− = 1 species constraint
α̇ + ξ̇+ + ξ̇− = 0 species evolution constraint
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While solving the dissipation inequality in eq. (22), the species and species evolution constraints have to be
taken into consideration as indicated in the above box. The evolution kinetics of the various species involved in
a particular transformation can be derived from eq. (22). The possible transformations are A ↔ M+, A ↔ M−

and M− ↔ M+.
Considering a specific example of transformation, where the austenite is involved in the transformation,

• When α̇ �= 0, α̇ = −ξ̇+ − ξ̇−, eq. (22) becomes,

(f+ − fα)ξ̇+ + (f− − fα)ξ̇− ≥ 0 (26)

Assuming a form for the mechanical dissipation for each of the volume fraction rates, ξ̇+ and ξ̇−, we have,

k1

∣∣∣ξ̇+
∣∣∣ + k2

∣∣∣ξ̇−∣∣∣ ≥ 0 (27)

Since ξ̇+ and ξ̇− are independent in this case, each of the terms in the above dissipation inequality should
satisfy the inequality individually. i.e.,

(f+ − fα)ξ̇+ ≥ 0 and (f− − fα)ξ̇− ≥ 0 (28)

and using the form of dissipation given in eq. (27), we can write,

|f+ − fα| = k1 for ξ̇+ �= 0 and
|f− − fα| = k2 for ξ̇− �= 0.

if both constraints are satisfied, both ξ̇+ and ξ̇− are non-zero, where transformations occur at the expense
of α. In general, k1 and k2 can be functions of the current state.

• For the special case when α̇ = 0, the constraint in eq. (2) becomes,

α̇ = −ξ̇+ − ξ̇− =⇒ ξ̇− = −ξ̇+ (29)

Note that, this case has meaning only if α̇ = 0. Therefore, for this case, eq. (22) becomes,

(f+ − f−)ξ̇+ ≥ 0 (30)

so that, ξ̇+ �= 0, when |f+ − f−| = k3, assuming a form of mechanical dissipation similar to the one used
in eq. (27). Again, here, k3 can be a function of the current state of the material.

In general, all the conditions can be grouped with their corresponding evolution conditions as,
α̇ �= 0 , if∣∣f+ − fα

∣∣ = k1

and/or∣∣f− − fα
∣∣ = k2 (31)

ξ̇+ �= 0 , if∣∣f+ − fα
∣∣ = k1

and/or∣∣f+ − f−∣∣ = k3 (32)
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ξ̇− �= 0 , if

∣∣f− − fα
∣∣ = k2

and/or∣∣f+ − f−∣∣ = k3 (33)

Define the driving force Dα+ as Dα+ = f+ − fα. Upon substitution from the equations (23), (24), and (25),
we get,

Dα+ = σH+ + ρΔG+α − ρ
∂Go

∂ξ+
+ ρ

∂Gi

∂α
(34)

In a similar way the other driving forces can be written as,

Dα− = σH− + ρΔG−α − ρ
∂Go

∂ξ−
+ ρ

∂Gi

∂α
(35)

D−+ = σ(H+ − H−) + ρΔG+− − ρ
∂Go

∂ξ+
+ ρ

∂Go

∂ξ−
(36)

where

ΔG+α = Gα − Gξ+

ΔG−α = Gα − Gξ−

ΔG+− = Gξ− − Gξ+

As a first approximation, the maximum uniaxial transformation strain obtained in SMA under tensile and
compressive loading can be assumed to be equal in magnitude, and therefore,

H+ = −H− = H, say (37)

The Gibbs free energy of plus-martensite and minus-martensite can be taken as equal because, the plus and
minus martensite are species of the same phase (refer Section 5 for further specializations). Therefore,

Gξ+
= Gξ−

= Gξ, say (38)

Then, the driving force equations can be rewritten in terms of H and ΔGξα (= Gα − Gξ), as,

Dα+ = σH + ρΔGξα − ρH
∂Go

∂εt
+ ρ

∂Gi

∂α
(39)

Dα− = −σH + ρΔGξα + ρH
∂Go

∂εt
+ ρ

∂Gi

∂α
(40)

D−+ = 2H

(
σ − ρ

∂Go

∂εt

)
(41)

In order to bring these expressions to a simple form, the above driving forces are normalized with respect to
H so that they reduce to stress like terms and hence become,

D̄α+
(
ξ+, α

)
= σ + σξα − βεt

+ βα (42)

D̄α− (
ξ−, α

)
= −σ + σξα + βεt

+ βα (43)

D̄−+
(
ξ+, ξ−

)
= 2

(
σ − βεt

)
(44)
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where, σξα = ρ
H ΔGξα, βεt

= ρ∂Go

∂εt , and βα = ρ
H

∂Gi

∂α .

Note that σξα is a function of the external force variables σ and θ. This term σξα arises due to two effects.
One due to the difference in compliance between the austenite and martensite phases (considered as σC) and
the other due to the latent heat of transformation between the austenite and the martensite phases (named as
σL). Thus, the effect of σξα can be decoupled into two terms, each a function of a single external force variable,
σ or θ. Therefore,

σξα = σC + σL (45)

where σC = − ρ
H ΔGξα(σ) a,nd σL = − ρ

H ΔGξα(θ). The latent heat related term σL can be determined through
experiments and is a function of only the temperature, θ. The back stresses (βεt

, βα) are functions of internal
variables ξ+, ξ− and α. In the elastic regions, the back stresses remain constant (or, in other words, the rate
of change of these of these backstress is zero). With transformation, the back stresses evolve since they are
dependent on the phase fractions. Thus, in the functional form, we have

σC = σC(σ) (46)
σL = σL(θ) (47)

βεt

= βεt

(εt) (48)
βα = βα(α) (49)

and the complete transformation conditions can be summarized as

α̇ �= 0, if
∣∣D̄α+

∣∣ = k̄1 and / or
∣∣D̄α−∣∣ = k̄2

ξ̇+ �= 0, if
∣∣D̄α+

∣∣ = k̄1 and / or
∣∣D̄−+

∣∣ = k̄3

ξ̇− �= 0, if
∣∣D̄α−∣∣ = k̄2 and / or

∣∣D̄−+
∣∣ = k̄3

where k̄1, k̄2 and k̄3 are dissipations for transformations, α ↔ ξ+, α ↔ ξ− and ξ− ↔ ξ+ respectively.
For any thermomechanical loading, one has to check all the three transformation conditions. From this, the

conclusion can be made on the possibilities of evolution of each of the species. This is discussed in section 4.
The three dissipation potentials corresponding to the three driving forces, D̄α+, D̄α−, and D̄−+ can be written
in a simple convex quadratic form as (as an example),

Φα+ =
1
2

(
D̄α+

)2 (50)

Φα− =
1
2

(
D̄α−)2 (51)

Φ−+ =
1
2

(
D̄−+

)2 (52)

The evolution of the two state variables, ξ+ and ξ− for the rate independent case, can be expressed as

ξ̇+ = λ̇+ ∂Φα+

∂ξ+
(53)

ξ̇− = λ̇− ∂Φα−

∂ξ−
(54)

Note that there are two transformation strain rate parameters, λ̇+ and λ̇−, arising here indicating that the ’flow’
or transformation rule is connected as a vector field within the volume fraction admissibility constraints.

2.1. Evolution equations for the species
To start with, the simultaneous evolution of the species, α, ξ+ and ξ− under a thermo-mechanical loading is

discussed here. In order to find out the occurrence of the transformations: α ↔ ξ+ and α ↔ ξ−, three different
conditions have to be checked.
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Following the principles of classical plasticity Hill (1950), the transformation strain can be determined from
the systematic application of the transformation criteria, the loading criteria, the flow rules, the hardening rules
and the consistency conditions.

Firstly, the following two transformation criteria have to be satisfied for the corresponding transformation to
occur.

F1 =
∣∣D̄α+

∣∣ − k̄1 ⇒ F1

(
σ, θ, ξ+, ξ−, α

)
=

∣∣∣σ + σξα − βεt

+ βα
∣∣∣ − k̄1 = 0 (55)

F2 =
∣∣D̄α−∣∣ − k̄2 ⇒ F2

(
σ, θ, ξ+, ξ−, α

)
=

∣∣∣−σ + σξα + βεt

+ βα
∣∣∣ − k̄2 = 0 (56)

Secondly, the volume fractions of each of the species should be between zero and unity.Thirdly, the loading
criteria have to be satisfied.

All these can be summarized as,

Elastic region : F1 < 0 and F2 < 0
Transformation zone : F1 = 0 and F2 = 0
Forward transformation : F1 = 0 and ∂D̄α+

∂σ σ̇ + ∂D̄α+

∂θ θ̇ > 0
: F2 = 0 and ∂D̄α−

∂σ σ̇ + ∂D̄α−
∂θ θ̇ > 0

and
Reverse transformation : F1 = 0 and ∂D̄α+

∂σ σ̇ + ∂D̄α+

∂θ θ̇ < 0
: F2 = 0 and ∂D̄α−

∂σ σ̇ + ∂D̄α−
∂θ θ̇ < 0

Flow rule for the two species was already defined in eqs. (53) & (54). Using, α̇ = −ξ̇+ − ξ̇−, the flow rule for
α can be written as,

α̇ = −ξ̇+ − ξ̇− ⇒ α̇ = −λ̇+ ∂Φα+

∂ξ+
− λ̇− ∂Φα−

∂ξ−
(57)

The evolution of the back stresses are defined through the hardening rules as,

β̇εt

= h1(εt)ε̇t = h1H(ξ̇+ − ξ̇−) (58)
β̇α = h2(α)α̇ (59)

where h1(ξ+, ξ−) and h2(α) are the hardening parameters due to polycrystalline and subgrain interaction ef-
fects. In order to solve for the transformation parameters, λ̇+ and λ̇−, the consistency condition for the two
transformation functions, F1 and F2 are invoked. These conditions can be written as,

Ḟ1 =
∂F1

∂σ
σ̇ +

∂F1

∂θ
θ̇ +

∂F1

∂ξ+
˙ξ+ +

∂F1

∂ξ−
˙ξ− +

∂F1

∂α
α̇ = 0 (60)

Ḟ2 =
∂F2

∂σ
σ̇ +

∂F2

∂θ
θ̇ +

∂F2

∂ξ+
˙ξ+ +

∂F2

∂ξ−
˙ξ− +

∂F2

∂α
α̇ = 0 (61)

Inserting the expression for the stress increment σ̇ = E(ε̇ − ε̇t), the transformation strain increment ε̇t =
H(ξ̇+ − ξ̇−) and transformation flow rule into the above consistency conditions, the plastic multipliers can be
solved using,

Ax = b (62)

where

A =

⎡
⎣ −EH ∂F1

∂σ + ∂F1
∂ξ+ − ∂F1

∂α EH ∂F1
∂σ + ∂F1

∂ξ+ − ∂F1
∂α

−EH ∂F2
∂σ + ∂F2

∂ξ+ − ∂F2
∂α EH ∂F2

∂σ + ∂F2
∂ξ+ − ∂F2

∂α

⎤
⎦
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x =
[

λ̇+D̄α+

λ̇−D̄α−

]

b =

⎡
⎣ −Eε̇∂F1

∂σ − ∂F1
∂θ θ̇

−Eε̇∂F2
∂σ − ∂F2

∂θ θ̇

⎤
⎦

In the above, E is the effective elastic modulus of the the species mixture.
Solution of the Eq. (62) will yield the transformation multipliers, λ̇+ and λ̇−. Thus, the the evolution of the

two species ξ+ and ξ− can be evaluated.
The two-species evolution case (one evolving at the expense of the other) is a case where only one transfor-

mation multiplier is involved.
In the condition that both F1 and F2 conditions are not satisfied, one should check for the evolution of only

ξ+ and ξ− which also involves a single transformation multiplier. The simultaneous involvement of three is a
more general case compared to the two species case. Therefore, the two species evolution cases are not discussed
in detail here.

3. Role of parameters - Phase Diagrams

Phase diagram is a diagram that represents the existence of different phases at different conditions of
stress/pressure and temperature. This is a good source for materials engineers to obtain the information about
the existence of different phases under the given conditions. Early models for shape memory alloys were based
on phase diagrams (see Brinson (1993); Shub and Lagoudas (1999)). It can be shown both experimentally as
well as based on the proposed model that the phase diagram is dynamic in nature because it depends upon the
current values of the volume fractions and not on their initial values and this can be related to the well known
thermodynamics concept of path dependence. The proposed three species model, also produces entirely different
transformation stress - transformation temperature diagrams which are known as phase diagrams, for different
states of the material. This is discussed in detail in this section. The phase diagram which is presented in this
section is purely based on the complete transformations.

To understand the role of different parameters involved in the proposed model, three different cases of
dissipation and hardening are discussed in detail. To make the analysis simple, the modulus for austenite and
martensite are assumed to be equal (Em = Ea). The transformation functions for the forward transformations
are obtained as,

F1 =
∣∣D̄α+

∣∣ − k̄1 - Austenite to plus-martensite (forward)
F2 =

∣∣D̄α−∣∣ − k̄2 - Austenite to minus-martensite (forward)
F3 =

∣∣D̄−+
∣∣ − k̄3 - Minus to plus-martensite (forward)

3.1. No dissipation with Zero Hardening
If the material is assumed to be dissipationless then, (k̄1 = k̄2 = k̄3 = 0). Zero hardening indicates (βεt

=
βα = 0). In such a condition, the transformation takes place reversibly and without hysteresis when the
transformation criteria are satisfied (transformation functions reach zero). Therefore for forward transformation,

F1 =
∣∣∣σ − σL − βεt

+ βα
∣∣∣ − k̄1 = 0 ⇒ σ − σL − βεt

+ βα − k̄1 = 0 ⇒ σ = σL

F2 =
∣∣∣−σ − σL + βεt

+ βα
∣∣∣ − k̄2 = 0 ⇒ −σ − σL + βεt

+ βα − k̄2 = 0 ⇒ σ = −σL

F3 =
∣∣∣σ − βεt

∣∣∣ − k̄3 = 0 ⇒ σ − βεt − k̄3 = 0 ⇒ σ = 0

When the applied stress and temperature exceeds the value of σL, austenite to plus-martensite starts and
ends at the same value and similarly for austenite to minus-martensite transformation occurs at −σL. Minus-
martensite to plus-martensite transformation occurs at σ = 0 line as shown in Fig.2. Similarly for reverse
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transformation,
F1 = 0 ⇒ −σ + σL + βεt − βα − k̄1 = 0 ⇒ σ = σL

F2 = 0 ⇒ σ + σL − βεt − βα − k̄2 = 0 ⇒ σ = −σL

F3 = 0 ⇒ −σ + βεt − k̄3 = 0 ⇒ σ = 0

the transformation starts and ends at the same stress level as shown in Fig. 2. The latent heat term, σL can be
written in terms of stress and temperature as,

σL = m(θ − θo) (63)

which is a straight line with constant slope ’m’ and intersects the temperature axis at θo as shown in Fig.2.
Values of all the material parameters assumed in this example are given in Section 6.

Figure 2: Zero dissipation (k̄1 = k̄2 = k̄3 = 0) with out hardening (βεt
= βα = 0): Phase Diagram

3.2. Dissipation with Zero Hardening

If the dissipations are take into account (k̄1, k̄2, k̄3 > 0) with no hardening (βεt

= βα = 0), from the
transformation criteria, we obtain the following:
Forward transformation:

F1 = 0 ⇒ σ − σL − k̄1 = 0 ⇒ σ = σL + k̄1

F2 = 0 ⇒ −σ − σL − k̄2 = 0 ⇒ σ = −σL − k̄2

F3 = 0 ⇒ σ − k̄3 = 0 ⇒ σ = k̄3

Reverse transformation
F1 = 0 ⇒ −σ + σL − k̄1 = 0 ⇒ σ = σL − k̄1

F2 = 0 ⇒ σ + σL − k̄2 = 0 ⇒ σ = −σL + k̄2

F3 = 0 ⇒ σ + k̄3 = 0 ⇒ σ = −k̄3

Due to the presence of dissipation terms, the transformation line gets shifted from the previous case by ±k̄.
It gives rise to six transformation lines as shown in Fig. 3.
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Figure 3: Non-zero dissipation (k̄1, k̄2, k̄3 > 0) without hardening (βεt
= βα = 0): Phase Diagram. The shaded regions show the

existence of pure phase (darker shades) or mixtures (lighter shades). The hashed region is the region of existence of all the three
species.

3.3. Dissipation with Linear Hardening

Assuming linear hardening with constant plastic modulus (h1 and h2), the hardening rule can be written as

β̇εt

= h1ε̇
t = h1H(ξ̇+ − ξ̇−) (64)

β̇α = h2α̇. (65)

Three transformation criteria are analyzed separately in this case as follows.
F1 - Austenite - Plus-martensite Transformation
Forward Transformation (α −→ ξ+)

Due to constant hardening parameters, when α = 1, the back stress due to interaction attains a value βα = h2

and βεt

= 0 in the initial state itself. At the expense of α, the plus-martensite accumulates and the back stresses
due to orientation βεt

reaches a value of Hh1, when ξ+ = 1 and βα goes to zero.

F1 = σ − σL − βεt

+ βα − k̄1 = 0 ⇒ σ = σL − βα + k̄1 (starts)
F1 = σ − σL − βεt

+ βα − k̄1 = 0 ⇒ σ = σL + βεt

+ k̄1 (ends)

Reverse Transformation (ξ+ −→ α)
During reverse transformation, βεt

remains at its maximum and βα remains zero until transformation starts.
The transformation ends at when βα reaches a maximum of h2 and βεt

goes to zero.

F1 = −σ + σL + βεt − βα − k̄1 = 0 ⇒ σ = σL + βεt − k̄1 (starts)
F1 = −σ + σL + βεt − βα − k̄1 = 0 ⇒ σ = σL − βα − k̄1 (ends)

F2 - Austenite - Minus-martensite Transformation
Forward Transformation (α −→ ξ−)
At the expense of α, the minus-martensite accumulates and the back stresses due to orientation βεt

reaches a
value of −Hh1, when ξ− = 1 and βα goes to zero, similar to the previous case.
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Figure 4: Non-zero dissipation (k̄1, k̄2, k̄3 > 0) with linear hardening (βεt
, βα > 0): Phase Diagram. The shaded regions show the

existence of pure phase (darker shades) or mixtures (lighter shades). The hashed region is the region of existence of all the three
species.

F2 = −σ − σL + βεt

+ βα − k̄2 = 0 ⇒ σ = −σL + βα − k̄2 (starts)
F2 = −σ − σL + βεt

+ βα − k̄2 = 0 ⇒ σ = −σL + βεt − k̄1 (ends)

Reverse Transformation (ξ− −→ α)
During reverse transformation, βεt

remains at its maximum and βα remains zero until transformation starts.
The transformation ends at when βα reaches a maximum of h2 and βεt

goes to zero.

F2 = σ + σL − βεt − βα − k̄2 = 0 ⇒ σ = −σL + βεt − k̄2 (starts)
F2 = σ + σL + βεt − βα − k̄2 = 0 ⇒ σ = −σL + βα + k̄2 (ends)

F3 - Minus - Plus-martensite Transformation
The transformation starts with zero back stress (βεt

) and at the end of the transformation it reaches a maximum
value accordingly.
Forward Transformation (ξ− −→ ξ+)
When ξ+ = ξ− = 0.5, the back stress due to orientation becomes zero. Tensile loading induces ξ+ at the expense
of ξ− and βεt

reaches a maximum of Hh1.

F3 = σ − βεt − k̄3 = 0 ⇒ σ = k̄3 (starts)
F3 = σ − βεt − k̄3 = 0 ⇒ σ = βεt

+ k̄3 (ends)

Reverse Transformation (ξ+ −→ ξ−)
Compressive loading induces ξ− at the expense of ξ+ and βεt

reaches a maximum of −Hh1.

F3 = −σ + βεt − k̄3 = 0 ⇒ σ = −k̄3 (starts)
F3 = −σ + βεt − k̄3 = 0 ⇒ σ = βεt − k̄3 (ends)

It may be noted, this transformation function is independent of θ. Therefore, the last four lines become
horizontal in the phase diagram and other eight lines inclined with a slope of ±m as shown in Fig. 4.



Nallathambi et al. / A 3-species model for shape memory alloys 163

4. Computational Aspects

Some of the important computational steps required during the of the evolution of the state of the material
system are described in this section. There are three distinct tasks that have to be carried out and they are
explained in this section:
(1) Listing of all the transformation conditions for the three species.
(2) Listing of the loading criteria for each of the transformation.
(3) Listing the constraint conditions / availability checks on the species for transformation.
All these conditions have to be put together in order to determine the transformation or the evolution of a
particular species.

The three yield/transformation functions derived in section 2 can be expanded to its full form and written
as a system of six transformation criteria as follows:

F1 = σ − σL − βεt

+ βα − k̄1 = 0 - Transformation criteria for A to M+

F2 = −σ − σL + βεt

+ βα − k̄2 = 0 - Transformation criteria for A to M−

F3 = σ − βεt − k̄3 = 0 - Transformation criteria for M− to M+

F4 = −σ + σL + βεt − βα − k̄1 = 0 - Transformation criteria for M+ to A

F5 = σ + σL − βεt − βα − k̄2 = 0 - Transformation criteria for M− to A

F6 = −σ + βεt − k̄3 = 0 - Transformation criteria for M+ to M−

Even though functions F1 and F4, F2 and F5 and F3 and F6 are complementary to each other, they have to
be maintained separately to reduce the computational difficulties. For every total strain increment, the above
mentioned six criteria have to be checked for finding the possible transformations. Once the transformation
criteria are tested, the loading criteria should be appropriately checked to determine whether the transformation
is mathematically possible or not. These are listed below.

Condition 1: F1 > 0 and Δ1 > 0, the transformation A to M+ is possible.
Condition 2: F4 > 0 and Δ1 < 0, the transformation M+ to A is possible.
Condition 3: F2 > 0 and Δ2 > 0, the transformation A to M− is possible.
Condition 4: F5 > 0 and Δ2 < 0, the transformation M− to A is possible.
Condition 5: F3 > 0 and Δ3 > 0, the transformation M− to M+ is possible.
Condition 6: F6 > 0 and Δ3 < 0, the transformation M+ to M− is possible.

where

Δ1 = ∂D̄α+

∂σ σ̇ + ∂D̄α+

∂θ θ̇; Δ2 = ∂D̄α−
∂σ σ̇ + ∂D̄α−

∂θ θ̇; Δ3 = ∂D̄−+

∂σ σ̇

α is taken to be the dependent variable in this computation. Therefore, after satisfying the plasticity con-
straints, next we have to check whether α̇ is equal to zero or not. If α̇ �= 0, F3 and F6 criteria are shelved,
because these transformations are only possible when α̇ = 0. Similarly when α̇ = 0 condition is satisfied one
should shelve the F1, F4, F2 and F5 transformation conditions.

In the third step, species constraint (i.e. whether within the admissible space) should be posed on all the
probable transformations. This constraint gives the answer to the question whether the species is present for the
reverse evolution during the transformation. It can be stated as a check on the species which is going to decrease
during the transformation as to whether available or not at the beginning of the transformation. These can be
stated as the following conditions.

If α > 0 F1 and F2 are allowed to proceed
If ξ+ > 0 F4 and F6 are allowed to proceed
If ξ− > 0 F3 and F5 are allowed to proceed

Similarly, the transformation termination condition has to be incorporated, because the maximum possible
species fraction is unity. If two of the above criteria satisfy simultaneously, it indicates the existence of all the
three species.
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5. Specializations

For the sake of simplicity in simulations, a few of simplifications have been made in addition to those already
mentioned in the earlier sections. These simplifications, notwithstanding, the outcome of the simulations are
quite consistent with the experimental observations. In this section, the simplifications made on these parameters
for the ease of simulations will be elucidated in detail.

At the first level, the elastic moduli of the austenite and the martensite phases are assumed to be equal
(Em = Ea). In general, there are two kinds of actuators used in the practice using the shape memory alloys.
One is a linear actuator and the other nonlinear. The linear actuator mainly uses only the difference in the
moduli for actuation given that the stiffness change influences increase of force or stroke of the actuator while,
the nonlinear actuator utilizes the pseudoelastic regime of stress-strain behavior as well, for actuation. This part
of the actuator gives rise to more stroke than it’s counterpart. Linear actuator, in general, utilizes very little of
the transformation capability but has higher life and reliability. It’s design does not need sophisticated modeling
compared to the nonlinear actuator.

In the case when the difference in compliance exists and is to be taken into consideration, then, with the
linear elastic assumption, the form of the term, σC , can be derived to be,

σC =
1

2H
ΔSσ2. (66)

where ΔS is the difference between the compliance of the austenite phase and that of the martensite phase.
Because of the simplifications discussed above, the term σC that arises due to the difference in compliance

of austenite and martensite becomes zero in this study. Moreover, the influence of this term is negligible in the
complete transformation case that is normally studied for the nonlinear form of the actuator.

The response under tension and compression are assumed to be similar, in the sense that the maximum
transformation strains (H+ = −H− = H) are the same under compression and tension. This, however, is not
true going by the experimental studies Shub and Lagoudas (1999). But, this simplification is good enough in
certain applications such as the actuators in the form of wires and thin rods / strips where tension application
dominates.

The term in the transformation condition corresponding to the latent heat is taken as,

σL = m(θ − θ◦) (67)

where ’m’ is the material parameter which is the slope of the stress-temperature curve and θ◦ is the reference
temperature. The stress-temperature curve can be obtained by invoking the Clausius-Clapeyron condition.

The back stress βεt

is a function of ξ+ and ξ−. Therefore, the evolution equation for βεt

can be written as,

β̇εt

= β̇εt

(εt) = hεt

ε̇t (68)

Here, hεt

is assumed to be a constant. This leads to a simple linear hardening condition.
The back stress βα is a function of α and therefore,

β̇α = hαα̇ (69)

where hα is taken as a constant. Note that there are two hardening parameters and their interaction need
not turn out to be linear.

6. Simulation results and discussions

The simulations are carried out for a set of typical cases of thermo-mechanical loading, each to exhibit a
particular feature captured by the model. The key features to be simulated are, the shape memory effect, the
pseudoelastic effect and the response under an arbitrary thermomechanical loading cycle. The values of the
material constants and parameters taken for the simulation are listed in the Table 1.

For the assumed hardening and dissipation constants, the following simulations are performed:
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Table 1: Assumed material properties

Austenite modulus Ea 20 GPa
Martensite modulus Em 20 GPa
Reference Temperature θo 280 K
Stress-temperature slope m 7.49972x105 Pa/K
Max.transformation strain H 0.05
Hardening parameter 1 h1 1000 MPa
Hardening parameter 2 h2 10 MPa
Dissipation constants k̄1, k̄2, k̄3 50 MPa

1. Isothermal mechanical loading at different constant temperatures,
2. Thermal loading under different constant stress levels, and
3. A cyclic thermo-mechanical loading

Isothermal mechanical loading is generally encountered in the pseudoelastic phenomenon when a stress-induced
austenite to martensite transformation occurs. When shape memory wire is deformed in its martensite state,
residual strain is induced. This process is also a case of isothermal mechanical loading. The model should be
able to capture essential features of the material under these typical conditions.

Thermal loading under a constant stress is an idealization of the actuator mode under a constant bias such as,
for example, lifting a weight. The stroke is effected by means of the martensite (M+) to austenite transformation.
It is important to determine the efficacy of the model to predict the stroke for different thermal loading conditions
so that it can be applied efficiently in the design of a control system with an SMA actuator.

Unlike the above case, SMA actuators in real life applications have to be operated with a biasing component
because of the predominant one-way mechanical stroking action (meaning that the stress-induced martensite-
martensite transformation is not spontaneously reversible). Therefore, SMA actuators always come with a bias
spring mechanism that enforces the initial configuration after the actuation is complete to be ready for the next
actuation cycle. Such a situation calls for modeling the behavior of the SMA wire or spring under a cyclic
thermomechanical loading. It is important to find out if the actuator is capable of springing back to the initial
condition to work repeatably. Any residual deformation will affect the design greatly. Therefore, in the following
simulations, these three typical loading cases have been considered and the model evaluated for performance.

6.1. Isothermal mechanical loading
Mechanical loading at two different constant temperatures are considered in this case. One is below Mf

and the other one is above Af . For the former case, the developed model simulates the detwinning effect with
initial plus and minus martensite fractions of 0.5 each, which is consistent with the observed response at this
temperature. Similarly for the high temperature case, the pseudoelastic behavior is simulated successfully. The
constant temperature lines are plotted in the phase diagram as shown in Fig. 5a. During tensile loading, with
α = 1 at constant temperature yields plus-martensite after crossing a particular stress level. At this stage, the
back stresses start evolving and a hardening response is seen and complete unloading brings back to α = 1 state
as shown in the stress-total strain curve in Fig. 5b. The response for the compressive loading would be as similar
to the tensile loading illustrated above, because of the symmetry assumed in the simplification exercise.

6.2. Constant stress thermal loading
Given a constant stress level, fully austenite phase exists at some temperature above Af . Cooling from that

temperature at that constant stress level will initiate the transformation of austenite into different fractions of
plus and minus martensite fractions depending on the magnitude of the applied stress. Cooling at zero stress
forms equal amounts of plus and minus martensite as shown in Fig. 6. If the tensile stress is increased, more plus-
martensite will be formed as compared to minus-martensite. Above a certain critical stress, cooling will always
induce plus-martensite. Similarly, for different stress levels, heating from a temperature below Mf transforms
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(a) (b)

Figure 5: Isothermal loading. (a)Phase diagram for tensile loading, (b) Stress - Total strain plot. The shaded regions indicate
existence of either a pure phase (darker shade or white) or mixed phases (lighter shade). The part that corresponds to the coexistence
of all the three species is hashed here.

the present martensite (in any ratio of plus and minus martensite) into austenite as shown in Fig. 6. Heating
and cooling below the critical stress level always involves all the three species during the transformation. Above
a critical stress, either plus-martensite or minus-martensite is the only possible product along with the austenite
depending on whether the applied stress is tensile or compressive.

(a) (b)

Figure 6: Thermal loading at constant temperature. (a) Phase diagram for tensile loading, (b) Temperature vs. Plus-martensite
plot

6.3. Cyclic thermomechanical loading
This loading example is to explore the capabilities of this model while dealing with the arbitrary thermome-

chanical loading paths. In particular, this loading path is typically seen in actuator type of applications where
there is a designed cycle that the material undergoes during its usage. In this example, the shape memory alloy
is loaded in such a way that it is taken on a closed path across the different phase boundaries. As in the earlier
example, we start from a temperature corresponding to a stress-free fully austenite phase. The material cooled,
stress-free to 310 K (point S on the curve). From this point, it is loaded upto 180 MPa (point 1). It can be seen
that the loading path crosses the phase boundary between S and 1, and the transformation starts here. This can
be seen in Fig 7b. This is the state from which the cyclic loading starts. The cycle starts at 1, and takes the path
1-2-3-4-5 as shown in Fig. 7a. Note that in the figure, the stresses are given in Pa. The process from 1 to 2, is a
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heating under a constant load until 320 K, and then a heating with increasing stress. During this transformation,
the As phase boundary is crossed, at the point A. It can be clearly seen that the stress-strain response from 1
to A is elastic (Fig 7b). From A to 2, there is a continuous transformation, from martensite to austenite, which
decreases the strain. On reaching 2, the stress is increased along with an increase in temperature upto 3. This
path is purely an elastic process and does not involve any transformation. From 3, the material is cooled, and
unloaded up to 4. Here, transformation starts at B, from austenite to martensite, which is associated with an
increase in strain from B to 4. Unloading and cooling continues from 4 to 5 (which is the same state as 1) and
here, the transformation happens at a slower rate. It can be seen that over a cyclic thermomechanical loading,
the net strain change is zero, which would enable the use of this material in actuators (see Fig. 7b). This may
not be the case if the hardening that is used in model does not allow the natural hysteretic memory.

7. A summary of salient features of the model

The approach followed uses the thermodynamic framework under a phenomenological setting for a polycrys-
talline SMA. The phenomenology is based on the generalization of a classical rate independent multiple yield
surface plasticity theory. The following are the important features introduced into the model:

• A micro-mechanically motivated unified 1-D model that considers general thermo-mechanical quasi-static
loading

• The ability to model partial thermo-mechanical loading/unloading cycles.

• Flexibility to introduce different transformation hardening rules, tension-compression asymmetry, etc.

• Augment other effects such as orientation effects, strain-rate dependence, fatigue, etc.

• Uses a minimal set of necessary model parameters, while being capable of simulating the complex thermo-
mechanical behavior,

• Serves as a good tool for design and analysis of SMA devices, and,

• Gives pointers to avoiding redundant tests

In a one dimensional context, considering different transformation paths between the three different species viz.,
M+, M− and A, six transformation conditions are derived. The proposed framework allows for more flexibility
in the specification of hardening rules. A hardening rule that considers a inner hysteresis consistent with the
experimental observations is necessary. Sufficient flexibility exists, in terms of the choice of the hardening rules,
latent heat functions, dissipation functions, etc. that helps fit experimental results more meaningfully and
accurately. This, however, adds an additional task of devising methods to translate the experimental results
into the appropriate rules and functions. Another important feature of the model is in addressing the energy
associated with initial grain orientations. Additional information on orientation evolution, asymmetry of tension-
compression transformation, etc. can be inserted into the model effortlessly. Temporary phase-diagrams can be
constructed to illustrate the different transformation scenarios under different initial and evolving conditions of
the state.

While several similarities between the proposed model and those in Lubliner and Auricchio (1996); Lagoudas
et al. (1996) exist, there are characteristic differences. For instance, Lubliner and Aurrichio Lubliner and Au-
ricchio (1996) use a phase-diagram to arrive at transformation surfaces to define the start and finish of any
given transformation. In contrast Kumar et al. (2007), use the transformation surface notion to define the onset,
while the finish of transformation is given by the underlying hardening law. Similarly, an analogy to derive
the transformation surface from the dissipation function and a model for SMA involving two species has been
proposed in Bo et al. (1999).

8. Concluding remarks

A three species thermomechanical model has been developed which is more amenable to the shape memory
alloy design applications. The model has been formulated with capabilities that include the modeling response
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(a)

(b)

(c)

Figure 7: Cyclic loading.(a) Phase diagram , (b) Stress-strain curve for the full path, (c) Stress-strain response for the cyclic path
alone. The salient points on the phase diagram have been pointed out in the response curve also.
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under general thermo-mechanical loading conditions. A thermodynamically consistent formulation is adopted
and this state space evolution based model serves as a good tool for different design criteria. One of the main
features of this approach is its flexibility to accommodate additional variables for introducing additional effects
such as plastic deformations, tension-compression asymmetry, initial texture effects, and degradation effects,
that take place in the material, thus suitable for a hierarchical setting. This approach is quite designer friendly
since the designer gets to pick the complexity of the model to analyze an SMA component. The modeling is
micro-mechanically motivated considering the phase transformation criteria for different phase volume fractions.

It is shown, in this paper, that a minimal set of model variables used in the framework is enough to capture
the salient features and provides a complete description of the one dimensional thermo-mechanical response of
the SMA material. By means of illustrating the role of different model parameters, it has been shown that the
basis for choice of parameter values is clearly connected to the physical response of the material. The results of
the simulation for a typical loading condition (a cycle of loading for an actuation process) are shown and the
various steps in the simulation are explained. A simple hardening behavior in the form of a linear hardening has
been adopted for the purpose of illustration.

It is to be noted that this model has been formulated with the flexibility to change the hardening rule to
suit the observed response. A more complex hardening behavior can be readily incorporated into the model
for a better fit. Hysteresis can be modeled in the three species case by suitably choosing the evolution of the
backstress quantities in the model.

There are, however, several other issues to be addressed, modeled and simulated such as the the two way shape
memory effect observed on a trained wire or on an intentionally processed material, the R-transformations, the
functional fatigue / degradation, training effects and the coupled conduction/convection, rate effects exhibited
by the material. Also, it is necessary to establish a systematic procedure to the evaluate the values of the
parameters and constants in the model from the experimental results. Addressing these issues forms a part of
the ongoing efforts by the authors.
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