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A 32 kb 10T Sub-Threshold SRAM Array With
Bit-Interleaving and Differential Read Scheme

in 90 nm CMOS
Ik Joon Chang, Jae-Joon Kim, Sang Phill Park, Student Member, IEEE, and Kaushik Roy, Fellow, IEEE

Abstract—Ultra-low voltage operation of memory cells has
become a topic of much interest due to its applications in very low
energy computing and communications. However, due to param-
eter variations in scaled technologies, stable operation of SRAMs
is critical for the success of low-voltage SRAMs. It has been shown
that conventional 6T SRAMs fail to achieve reliable subthreshold
operation. Hence, researchers have considered different config-
uration SRAMs for subthreshold operations having single-ended
8T or 10T bit-cells for improved stability. While these bit-cells
improve SRAM stability in subthreshold region significantly, the
single-ended sensing methods suffer from reduced bit-line swing
due to bit-line leakage noise. In addition, efficient bit-interleaving
in column may not be possible and hence, the multiple-bit soft
errors can be a real issue. In this paper, we propose a differential
10T bit-cell that effectively separates read and write operations,
thereby achieving high cell stability. The proposed bit-cell also
provides efficient bit-interleaving structure to achieve soft-error
tolerance with conventional Error Correcting Codes (ECC). For
read access, we employ dynamic DCVSL scheme to compensate
bitline leakage noise, thereby improving bitline swing. To verify
the proposed techniques, a 32 kb array of the proposed 10T bit-cell
is fabricated in 90 nm CMOS technology. The hardware mea-
surement results demonstrate that this bit-cell array successfully
operates down to 160 mV. For leakage power comparison, we also
fabricated 49 kb arrays of the 6T and the proposed 10T bit-cells.
Measurement results show that the leakage power of the proposed
bit-cell is close to that of the 6T (between 0.96x and 1.22x of 6T).

Index Terms—Low voltage SRAM design, robust subthreshold
operation of SRAM, voltage scaling in SRAM.

I. INTRODUCTION

P
ORTABLE applications such as implantable medical

devices and wireless sensor networks require ultra-low

power dissipation. Many researchers have explored digital

subthreshold logic [1], [2] as a possible option to deliver this

requirement. The low voltage operation (below 400 mV) of

such designs has been successfully demonstrated in real silicon

measurements [2]. However, operating memory circuits at such

a low voltage is more challenging since SRAM yield degrades
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considerably at these low voltages. In the subthreshold region,

conventional 6T SRAM experiences poor read stability or

weak writability [3]. Since the read stability and the writability

have conflicting design requirements, it is extremely diffi-

cult to operate the 6T SRAM in the subthreshold region. To

overcome this problem, researchers have considered different

configuration for SRAM cells. For example, [10] employed

Schmitt-trigger based SRAM cell, enhancing read stability

and writability simultaneously. To further increase read SNM,

single-end 8T [4] or 10T [3], [5] SRAMs have been explored.

In these schemes, data nodes are fully decoupled from read

access. It ensures read SNM to be almost the same as hold

SNM, improving read stability significantly. In addition, sev-

eral design techniques such as supply power gating [3] and

long-channel access transistors [5] also have been proposed

for writability improvement. The subthreshold operation of

the designs with these techniques has been verified through

hardware measurement data as well [3], [5]. However, the

single-end 8T or 10T SRAMs cannot efficiently deal with

multiple bit soft-errors, which can have large impact on SRAM

operation in the subthreshold region. As supply power

scales down, soft-error rate (SER) increases [7]. Moreover, in

the subthreshold region, critical charge [8] is also reduced

due to low gate capacitance and hence, SER can be much larger

than that in the superthreshold region. In conventional SRAMs,

adjacent bits are implemented as different logic words. In this

bit-interleaved structure, conventional Error Correction Code

(ECC) can address multiple bit soft-errors easily [9]. On the

other hand, due to pseudo-read problem [5], we may not obtain

efficient bit-interleaving structure in the 8T and 10T sub-

threshold SRAMs [3], [4]. In addition, the single-end 8T and

10T SRAMs suffer from small bitline swing in subthreshold

operation. To improve the bitline swing, a peripheral circuit

called buffer-foot has been proposed [4]. This technique can

mitigate the subthreshold leakage noise current from bitline.

Nonetheless, other leakage components (e.g., junction leakage)

still degrade the bitline swing significantly, incurring functional

failures during read access. A virtual ground scheme has been

proposed to utilize the small bitline swing more efficiently

[5]. However, the raised virtual ground also reduces the sense

margin of the following inverter buffer and hence, this scheme

may not improve the sense margin effectively.

In this work, we propose a fully differential 10T subthreshold

SRAM [6]. The contributions of this work can be summarized

as follows:

• Our bit-cell provides isolation of read and write operations

leading to improved noise margin.

0018-9200/$25.00 © 2009 IEEE
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Fig. 1. (a) Our proposed 10T SRAM cell (b) SNM comparison of conventional 6T and our 10T cells.

• A column-by-column write control enables implemen-

tation of bit-interleaving structure efficiently. Therefore,

soft-error tolerance can be achieved with conventional

ECC.

• Dynamic Differential Cascade Voltage Switch Logic

(DCVSL) scheme is employed for read access. In this

scheme, bitline leakage noise is compensated by the drive

current of a keeper, providing large bitline swing.

• During hold mode, subthreshold component of bitline

leakage current is significantly reduced due to stacked

bitline leakage path.

To verify the proposed technique, we fabricated the proposed

bit-cell in 32 kb SRAM array in 90 nm CMOS. The measure-

ment results show that our SRAM successfully operates below

300 mV .

II. PROPOSED 10T SUBTHRESHOLD SRAM

A. The Proposed 10T SRAM and Operating Principle

Fig. 1(a) shows our proposed 10T SRAM cell [6]. The oper-

ating principle of our 10T SRAM can be summarized as follows

using the timing diagram in Fig. 2. In read mode, WL is enabled

and VGND is forced to 0 V while remains disabled. The

disabled makes data nodes (‘Q’ and ‘QB’) decoupled

from bitline during the read access. Due to this isolation, the

read SNM of our 10T cell is almost same as the hold SNM of

conventional 6T cell. Since hold SNM is much larger than read

SNM in the 6T cell, read stability is remarkably improved in our

10T cell (Fig. 1(b)). Depending on the cell data value, one of the

bitlines starts discharging after WL is enabled. In our 10T cell,

the read value is developed as an inverted signal of cell data and

hence, we exchange the position of BL and BLB, as shown in

Fig. 1(a).

During write mode, both WL and are enabled to

transfer the write data to cell node from bitlines. As discussed

in the introduction, weak writability is another major challenge

for subthreshold SRAMs. Since our 10T cell has series access

transistors, writability is a critical issue. In some previous

subthreshold SRAMs [3], [4], is collapsed to enhance

writability, as shown in Fig. 3(a). However, it also degrades hold

stability of the SRAM cells in other row sharing the line.

To operate this technique successfully, each row should have

individual line (Fig. 3(b)), resulting in large area penalty

(more than 50% in thin-cell layout assuming poly pitch cannot

Fig. 2. This timing diagram explains the operating principle of our 10T SRAM.

Fig. 3. (a) In the previous works [3], [4], supply power is collapsed for the
write. It threatens the hold stability of other rows sharing the supply power
line. (b) For the successful operation of the supply power collapsing, individual
supply power line is required. But, this scheme incurs large area penalty.

be altered [11]). In this work, we boost and by

100 mV (at 300 mV ) to compensate weak writability.

Since the gate input boosting overwhelms sizing effect in the

subthreshold region, we can obtain strong writability without

incurring large area penalty in spite of having series access

transistors. Fig. 4 shows that such boosting provides good

writability even in the worst-case process corner (Slow NMOS

and Fast PMOS).

In order to reduce the area overhead of a VGND driver,

VGND node can be shared by several SRAM cells. In this

work, four columns have a common VGND node, as shown in

Fig. 5. Hence, we made the pull-down transistor of the VGND

driver four times larger than the evaluation transistors of an

SRAM cell (NL and NR in Fig. 1(a)). Note that the pull-down

strength of the VGND driver can be weakened due to process

variations, degrading read current significantly. To mitigate

this effect, we employed dynamic-threshold MOS (DTMOS)

technique for the VGND driver (Fig. 5). In this scheme, the
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Fig. 4. (a) Voltage transfer characteristic curves of write mode at � � ��� ��. (b) Monte Carlo simulation results for the write margin (write SNM). For
entire simulations, � and � are boosted by 100 mV.

Fig. 5. SRAM Array architecture and a VGND driver.

Fig. 6. Since NMOS shows extreme Vt-roll off [13] in 90 nm CMOS, pull-down of NMOS is much stronger than pull-up of PMOS in short-channel length region
(a) Minimum width NMOS drive current in 90 nm CMOS (b) Drive current ratio between minimum width NMOS and PMOS.

pull-down device is forward-biased during read, enhancing

the drive current. In superthreshold operation, the DTMOS

technique may incur faulty operations due to forward biasing

current of PN junction. Since our SRAM is designed for

subthreshold operation (below 300 mV), the forward biasing

current is not critical.

B. Gate Length Modulation

In sub-100 nm technologies, threshold voltage varies

significantly in small geometry transistors. Since transistor

current is extremely sensitive to variation in the subthreshold

region and the small size transistors are employed in an SRAM

cell, variation may have larger impact on the stability of

subthreshold SRAM compared to superthreshold SRAM. For

example, NMOS transistors experience large roll-off [13] in

Fig. 7. Read (Hold) SNM simulation results �� � ������ � � �	 
�.
The gate length modulation from 80 nm to 120 nm improves overall read (hold)
SNM significantly.
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Fig. 8. For the cell sharing � �� with the written cell, Monte Carlo simulation shows that the hold stability is almost comparable to that of the conventional
6T cell.

short-channel length region of the technology which we use for

this paper, as shown in Fig. 6(a). In this situation, pull-down

transistor becomes much stronger than pull-up transistor at

short-channel lengths (Fig. 6(b)). In addition, the short-channel

roll-off makes transistor current more sensitive to other

parameter variations such as line-edge roughness [14]. These

effects degrade read and hold stability of SRAM considerably.

To mitigate this problem, we need to modulate transistor

gate length. Since the variation of drive current ratio between

NMOS and PMOS starts to stabilize around 120 nm gate

length (Fig. 6(b)), we employ 120 nm length for the pull-up

PMOS’s and pull-down NMOS’s in the proposed SRAM cell.

The effectiveness of this gate length modulation can be verified

through Monte Carlo (MC) simulation. The Fig. 7 shows 4000

Monte-Carlo (MC) simulation results for the read (hold) SNM

of two different gate length 10T SRAM cells at fast NMOS and

slow PMOS corner, which is the worst-case process corner for

read and hold stability. Compared to the cell with the minimum

channel length transistors, the cell with 120 nm channel length

transistors provides 114.6% improvement in the mean value of

read (hold) SNM.

III. EFFICIENT BIT-INTERLEAVING FOR

SOFT-ERROR IMMUNITY

According to [7], SER increases by 18% for every 10%

reduction and hence, SER in 0.3 V can be 8.6X higher

than that in 1.2 V . Low gate capacitance of weak inver-

sion makes the problem worse due to the reduction of critical

charge (Qc) [8]. Hence, it is clear that soft-error is more critical

in subthreshold SRAMs compared to its superthreshold counter-

part. A soft-error may flip adjacent multiple bits simultaneously

[9]. In conventional SRAMs, multiple bit soft-errors can be cor-

rected by bit-interleaving and ECC [9]. In the bit-interleaving

structure, multiple bit errors are regarded as single bit errors of

several logic words. Since conventional ECC techniques can de-

tect and correct single bit errors, bit-interleaving enables us to

handle multiple bit soft-errors efficiently.

Bit-interleaving structure may not be efficiently applicable in

the previous subthreshold SRAMs [3]–[5]. For these SRAMs,

other cells sharing a word line suffer from pseudo-read problem

[5] while writing into a cell, degrading their hold stability signifi-

cantly. To avoid this problem, the entire cells sharing a word line

Fig. 9. The worst-case data pattern of the single-end 8T SRAM [4].

Fig. 10. Bitline swing simulation results of Fig. 9 (� � ��� ��, typ-
ical process corner) We measured the bitline swing at steady-state after RWL
turns on.

are written at the same time in [3], [4]. In such a scenario, adja-

cent bits need to be implemented as the same logic word, making

the SRAMs exposed to multiple bit soft-errors. [5] employs a

write after read scheme for bit-interleaving. However, in this

scheme, extra read operation is required for a write. It should also

be noted that due to full-swing read, the read operation consumes

comparable power to the write in one column. If we consider

the read power of unselected columns, this scheme increases

total write power dissipation. In addition, overall write delay

increases since additional read operation is needed before write.

On the other hand, writing a cell hardly affects the hold sta-

bility of other cells in the proposed 10T SRAM [6]. As shown
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Fig. 11. (a) Column architecture of our SRAM (b) The figure of (a) is unfolded equivalently. In our SRAM, dynamic DCVSL read scheme is used for the read
sensing. The data input pattern shows the worst-case leakage scenario of our SRAM.

in Fig. 5, is shared by the cells in a column. When the

of a column is raised for writing a cell, of other

columns are still maintained at 0 V. Hence, the rise of WL does

not influence hold stability of unwritten cells sharing the WL.

MC simulation results in Fig. 8 indicate that the hold stability

of unwritten cells sharing does not degrade during write

as well. As shown in this figure, mean hold SNM of these cells

has 2.4% improvement compared to that of conventional 6T

cell. Moreover, the minimum hold SNM, which is more critical

in SRAM design, is improved by 59%. It is because the drive

current flowing through NMOS transistors (NL and NR) from

VGND node compensates weak pull-up current at fast NMOS

and slow PMOS corner, which is the worst-case process corner

for hold stability. Since the hold stability of adjacent cells is not

affected during a write, bit-interleaving can be implemented ef-

ficiently in our design, thereby achieving soft-error immunity

with conventional ECC.

IV. DIFFERENTIAL READ SCHEME

A. Sense Margin Problem in Single-Ended Read Schemes

In [3]–[5], single-ended read scheme has been used. Since

such a scheme relies on the trip voltage of an inverter or an ab-

solute reference voltage, their sense margin is at most 0.5 .

Considering undefined region of inverter or offset voltage of

sense amplifier, effective sense margin can be much smaller.

Moreover, due to slow speed and small ratio in sub-

threshold operation, bitline leakage noise reduces bitline swing

considerably, further deteriorating the sense margin.

To mitigate the bitline leakage noise, several approaches

have been explored in [3]–[5]. For example, buffer-foot scheme

is employed in [4] to increase bitline swing. Fig. 9 shows the

worst-case data pattern for the bitline swing in this scheme.

Since ‘QB’ of the accessed cell is ‘0’, RBL should not be

discharged. However, subthreshold leakage noise and

junction leakage noise discharge RBL significantly.

Although other subthreshold leakage current compen-

sates for the discharging, the ‘ ’ decreases exponentially

due to stacked leakage paths of this data input pattern. We

simulated this scenario in a 90 nm CMOS technology. The

graph of Fig. 10 shows the simulation results of the bitline

swing, which are measured at steady-state after RWL turns on.

In low temperature region, junction leakage noise is

much larger than the ‘ ’ and hence, bitline swing degrades

considerably (below 0.5 at 32 cells per bitline). At the

worse-case process corner, the bitline swing is expected to be

further deteriorated. These make it difficult to distinguish logic

high and low from the developed bitline swing and hence, we

believe that a differential read scheme is more appropriate for

subthreshold operation.
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Fig. 12. (a) Transient simulation results for Fig. 11(b). We compare the results with the simulation results of other design, which do not have the keeper M1 and
M2. (b) Comparison of the bitline swing simulation results between our 10T SRAM and the single-end 8T [4]. For two designs, we used the worst-case leakage
scenario (Figs. 10, 11) and the worst-case process corner (Fast NMOS and Slow PMOS).

Fig. 13. Final bitline swing simulation results of our 10T SRAM. For these
simulations, we include a sense amplifier in the design.

B. Dynamic DCVSL Read Scheme

The proposed SRAM has a fully differential read scheme,

which improves the bitline noise immunity during read. The

column structure of Fig. 11(a) explains our read mechanism.

When read begins, the word lines (WL and ) of the ac-

cessed SRAM cells are raised and precharge signal

is disabled. Depending on the data value of the access cell, one

of the precharged bitlines (BL or BLB) starts discharging. The

unfolded circuit diagram of Fig. 11(b), which is equivalent to

the column of Fig. 11(a), shows the worst-case data pattern for

bitline leakage noise. During read, the leakage current through

unselected cells (storing complementary value in the accessed

cell) impedes a successful read operation. To obtain the leakage

tolerance, we employ dynamic DCVSL technique. In this tech-

nique, the discharge of BLB turns on keeper M2 and hence, bit-

line leakage current in BL is compensated by the drive current

of M2.

Transient simulation results of Fig. 12(a) verify the effective-

ness of the dynamic DCVSL read scheme. Without any keeper,

BL node is considerably discharged at Fast NMOS and Slow

PMOS (FS) process corner. However, in the dynamic DCVSL

scheme, the keeper drive current prevents discharging, pro-

viding large differential bitline swing . We compare

the bitline swing to that of the single-end 8T SRAM [4]. For

the 8T SRAM, we set up 32 cells per each bitline. In spite of

larger number of cells per bitline (256 cells/bitline), DCVSL

read provides much bigger bitline swing than the single-ended

read of 8T SRAM, as shown in Fig. 12(b).

Fig. 14. Die micrograph and layout.

Fig. 15. The write driver in the test-chip. Four columns share one write driver.
Since the position of BL and BLB is exchanged, the write data is inverted for
the correct writing.

Fig. 16. Thin-cell layout of our 10T bit-cell. Compared to the 8T bit-cell, the
area penalty is 61%.

In order to further improve the bitline leakage tolerance, we

add sense amplifier using cross-coupled inverters. In the sub-

threshold region, intra-die variation results in large delay varia-

tion and increases the worst-case offset voltage of the sense am-

plifier. Hence, extremely long delay buffer is required for strobe

timing [12], incurring large area and performance penalty. In

this work, we employ the footer transistor M0 instead of the

strobe-delay method (Fig. 11(a)). Drive current flowing through
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Fig. 17. (a) Measured maximum operating frequency. The word line drivers are boosted by 33% of � . Below 180 mV, more aggressive boosting is required.
(b) Measured waveforms (� � ��� ��, 80 mV word line boosting).

M0 is almost negligible before there is significant discharging

from a bitline, preventing malfunction induced by the offset

voltage of the sense amplifier. Fig. 13 shows the simulation re-

sults of the bitline swing when the sense amplifier is included.

In spite of extreme temperature variations ,

0.68 bitline swing develops for 512 cells per bitline at the

worst-case process corner (Fast NMOS and Slow PMOS).

V. TEST-CHIP IMPLEMENTATION AND MEASUREMENT RESULT

A. Test-Chip Implementation

To verify the proposed SRAM, we fabricated test-chips in

90 nm, 8-metal CMOS technology. Fig. 14 shows the die micro-

graph and layout of the test-chip. For performance and power

measurement, a 32 kb SRAM array is implemented using our

cell as shown in Fig. 14. The SRAM array has 256 rows and 192

columns, which are divided into 24 sub-blocks (8 columns per

a sub-block). Each sub-block has two VGND and write drivers.

Leakage current through the write driver reduces bitline swing,

and hence stacked transistors are used to reduce this leakage as

shown in Fig. 15. Since a boosted signal is used for and

, degradation of writability resulting from IR-drop of the

stacked NMOS structure in the write driver is almost negligible.

As discussed in Section II-A, the position of BL and BLB is ex-

changed in our SRAM and hence, the write data is also inverted

for correct writing as shown in this figure. To generate input

and clock signals, we used a Tetronix pattern generator. Since

this equipment has 2 V output swing, we down-converted the

voltage for the input and clock signals using level-down con-

verters. To obtain boosting effect in the word line drivers, we

separated power supply pad for row and column decoders from

that of other parts. For leakage comparison, 49 kb SRAM arrays

are implemented for both conventional 6T cell and our 10T cell.

Only cell arrays and VGND driver are implemented in these ar-

rays. We employ direct probe pad for supply power of these ar-

rays to exclude leakage current through ESD diode in the I/O

pad.

The layout of our SRAM is shown in Fig. 16. In the schematic

of Fig. 1(a), the node ‘ ’ and ‘ ’ cannot be shared by

other adjacent cells. Hence, we need at least 3 poly pitches for

the thin-cell layout [11] of our SRAM cell. Due to this character-

istic of thin-cell layout, our 10T SRAM adds 61% area overhead

relative to 8T SRAM of [4]. However, the overall area penalty

Fig. 18. Measured read and write power dissipation.

is less since we can include more cells on the bitline (explained

in Section IV-B).

B. Performance and Power Measurement

In the power and performance measurement, we assumed that

of word line drivers is boosted by 33% of the SRAM array

. The environment temperature is set to 27 during mea-

surement. Fig. 17(a) shows the maximum operation frequency,

which is measured with the 33% boosting of word line drivers.

At 300 mV , our SRAM functions correctly at 581.4 kHz

clock frequency. The frequency decreases exponentially due to

the subthreshold MOS device characteristic as the scales

down. The minimum for successful read operation was

160 mV. The measured waveforms at this voltage are shown

in Fig. 17(b). As discussed earlier, 2 V input and clock signal

is leveled down inside the test-chip. To verify the read opera-

tion, we wrote complementary data between adjacent cells and

read them sequentially. The output signal toggles per 2 clock

cycles, which successfully demonstrates 500 Hz read operation

at 160 mV . For the write operation, the minimum

was 180 mV. However, we can further scale down the to

160 mV with more aggressive word line boosting (50% boosting

for ).

We measured total read and write power dissipation for the

maximum operation frequency, which is shown in Fig. 18. At

300 mV , our design dissipates 1.81 and 1.07

power for read and write, respectively. Interestingly, the read

power dissipation is larger than the write power, which is due

to full-swing read method. Moreover, VGND nodes are also

switched for the read, incurring more power dissipation.
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Fig. 19. (a) Leakage measurement results of our 10T SRAM (b) Leakage measurement result comparison of our 10T and the 6T.

Fig. 20. In our 10T bit-cell, the bitline leakage paths have stacked devices,
reducing subthreshold leakage from the bitlines to cell node.

C. Leakage Measurement

Leakage measurement results of the 49 kb arrays are sum-

marized in Fig. 19. For these measurements, we swept the

from 200 mV to 300 mV at different temperatures—6 , 25 ,

50 and 100 . At 6 and 300 mV , the total leakage

current of the 10T SRAM is 1.21 . As the temperature is

raised, this leakage current increases exponentially as shown in

Fig. 19(a). The graph of Fig. 19(b) shows the leakage compar-

ison results between conventional 6T and our 10T SRAM. Due

to extra cell transistors and VGND drivers, our SRAM has more

junction and gate leakage compared to the 6T. Nonetheless, the

total leakage current of our SRAM is close to that of the 6T

(between 0.96x and 1.22x). This is due to the reduction of the

bitline leakage. In our SRAM, the VGND node is forced to

during the hold mode. In this situation, the leakage paths from

the bitlines to the cell node have the stacked devices as shown

in Fig. 20, reducing the subthreshold component of the bitline

leakage drastically. This effort is more effective in high tem-

perature region, as shown in Fig. 19(b). In the low temperature

region, junction and gate leakages have profound impact on the

total leakage current and hence, our SRAM still has the larger

leakage current than the 6T cell. However, subthreshold leakage

becomes dominant compared to other leakages at higher temper-

ature. Hence, we observe that the total leakage current is almost

comparable to that of the 6T beyond 50 .

VI. CONCLUSION

We propose a new differential 10T SRAM cell for the re-
liable subthreshold operation. Our main focus is enabling bit
interleaving along the word line as well as designing reliable
data read path. Previous subthreshold SRAM cells [3]–[5] used

single-ended read paths. The methods, however, suffer from re-
duced bitline swing due to bitline noise. In addition, the pre-
vious schemes need improvements in the bit-interleaving struc-
ture, which is critical to cope with multiple bit soft-errors. Our
proposed 10T SRAM cell allows the bit interleaving with the
column-wise write access control while having differential read
path. To improve the read margin even further, we employ dy-
namic DCVSL read scheme. It allows large bitline swing despite
of extreme process and temperature variations. Measurements
of 32 kb 90 nm CMOS test-chip demonstrate successful opera-
tion of our 10T cell below 300 mV . The design operates
at 31.25 kHz with 180 mV supply and 33% boosted WL and

. With more aggressive word line boosting of 80 mV,
can be scaled down to 160 mV. At this voltage, the op-

erating frequency is 500 Hz and the read power dissipation is
0.123 . We also implemented 49 kb arrays of 6T and the 10T
cell for leakage comparison. The measurement results show that
the leakage power consumption of our 10T SRAM is compa-
rable to that of the 6T cell. It is due to the fact that our 10T cell
has stacked bitline leakage paths and hence, the subthreshold
component of bitline leakage current decreases significantly.
Since the leakage power is substantial portion of total power in
subthreshold logic, leakage reduction provides substantial total
power saving.
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