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Abstract—This paper proposes a programmable geometry 
engine (GE) reducing the expensive internal buffers and 
register files of the conventional programmable GEs and 
sharing datapaths of a special function unit. The proposed GE 
is appropriate for the embedded 3D graphics environment 
where the reduction of hardware cost is a critical issue. The 
degraded performance caused by the hardware reduction is 
compensated by a variable write-back timing architecture 
with a dynamic hazard controller and a data forwarding 
method. The GE is implemented by a 0.13um CMOS 
technology and has the performance up to 33.2Mvertices/sec, 
which is 1.66 times improvement of the previous work. Its 
equivalent gate count is 206k and operation frequency is 
166MHz. 

I. INTRODUCTION  
Today’s graphics hardware requires higher performance 

of the operating ability as well as more flexibility to support 
variety of the advanced 3D algorithm to achieve the more 
realistic rendering image. A conventional hard-wired 
geometry engine (GE) could get a higher performance by the 
increasing semiconductor technology, but the rapidly 
developing 3D rendering algorithm requires the hard-wired 
architecture change. Therefore, we need a programmable 
architecture to catch up with the up-to-date techniques, and 
we also need a higher performance GE processor while 
supporting the programmability without performance 
degradation. 

The programmable GE architecture was first designed by 
Lindholm [1]. He suggested the programmable architecture 
for the flexibility of 3D geometry operations. It does 
basically light and transform operations by an assembly like 
language. The latest 3D graphics hardware commodities, 
produced by ATI or NVIDIA [2], provide powerful 
performance of their programmable GE up to 
600Mvertices/sec by the various high techniques with the 
GDDR3 memory, six parallel GEs, and so on.  

However, these graphics hardware are designed for the 
high-end desktop PC. The core of NVIDIA GeforceFX6800 
ultra [2], one of the fastest PC-platform graphics chip, is 

manufactured by 222 million transistors, and has about 
174Watts of power consumption. We need much less 
hardware cost and power consumption for various 
multimedia systems on chip (SoC) environments such as 
Digital TV, personal digital assistant (PDA), and the other 
home appliances. There are several studies for the embedded 
3D graphics core of mobile environment. Kameyama [3] 
developed a 3D graphics LSI core for mobile system (Z3D). 
Z3D also integrates the programmable GE, which has the 
performance up to 185k vertices/sec. This core is suitable for 
the current mobile platform which has the display resolution 
below the QVGA (320x240). Imai [4] had shown a 3D 
graphics engine for the non-PC products. The engine has 
also a programmable geometry processor with 
4.7Mvertices/sec of performance and 109.5mW of power 
consumption. This engine is focused on reducing the power 
consumption; the core uses a multiple clock domains in GE 
and latch based registers. Sohn [5] described a 3D graphics 
GE using fixed-point datapath for low power graphics 
system. The engine uses a fixed-point datapath for GE 
instead of the floating-point datapath with a precision 
degradation not shown in the low display resolution. 

 The non-PC platform, such as home application’s SoC 
environment, grows rapidly at the point of the size of display 
resolution as well as the quality of 3D rendering image. The 
previous works had shown good results at the present time, 
but the incoming multimedia SoC environment requires 
higher performance to support a higher screen resolution 
(QVGA or more) and the flexibility to adopt the advanced 
3D algorithm. 

 In this paper, we developed a 3D graphics GE for the 
multimedia SoC environment with the performance up to 
33.2Mvertices/sec at 166 MHz and 71mW of power 
consumption. 

The remainder of the paper is arranged as follows. 
Section II shows the architecture of programmable GE. 
Section III shows the implementation of this work and 
Section IV discusses the results while the last Section 
concludes this paper. 
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II. PROGRAMMABLE GEOMETRY ENGINE 

A.  The conventional programmable Geometry Engine 
The programmable GE is a first user-programmable 

stream architecture that exploits a vertex parallelism and 
streaming nature [1]. GE takes one vertex data as inputs and 
produce one transformed vertex data as outputs. No vertices 
affect the other adjacent vertices in the same frame.  

Fig. 1 shows the GE architecture. The vertex attributes 
are converted to floating-point format before arriving at the 
vertex attributes buffer (VAB), which has room for the 
sixteen input attributes. In a round-robin fashion, the VAB 
drains into a number of input buffers that are used to feed 
the floating-point core. Vertex data is read from the input 
buffers and transformed to the output buffers. Only one 
vertex attribute may be read per program instruction. To 
hold constants such as matrices, light positions, and plane 
coefficients that are used in typical vertex programs, there is 
a memory bank of more than 128 quad-floats. Each temporal 
register files is 16 quad-floats in size and allows three reads 
and one write per instruction. Any vector read may be 
sourced as multiple operations and individually 
swizzled/negated each time. Since the latency of floating-
point core is generally four [1], a vertex engine can handle 
parallel processing up to four vertices. This means four 
register files are required for vertex multi-threading, but a 
programmer understands as if only one register file exists. 
Finally, the transformed vertices are feed to the hardwired 
primitive engine for polygon culling and clipping. 

B. The proposed Geometry Engine 
However, the conventional high-end PC architecture 

provides excellent performance, the hardware cost and 
power consumption is not capable of integrating SoC 
environment. We must modify the conventional architecture 
to get sufficient performance with reduced hardware cost 
and less power consumption for the home plat-form and the 
other applications. The major commercial graphics hardware 

vendors reveal that their floating-point datapath has four-
latency for the longest instruction. Although the short 
latency is better, the hardware cost is burden to integrate 
SoC system. In our design, we have the maximum latency to 
be seven for the special functions by sharing the datapath. 
Therefore, we need seven number of register files and 
input/output buffers for multi-threading. However, the 
number of register files and their control method makes the 
hardware complex. We try to reduce the number of register 
files while the performance does not degrading. To solve 
this problem, our architecture uses the single-threaded 
operations with different write-back latency method. 
Therefore, we only need one register file and do not need a 
number of input/output buffers. 

The execution pipeline stage is divided into seven sub 
stages. Each sub stage can write-back to the vertex output 
buffer (VOB) or register file with its latency cycle time. This 
means the instructions, which have different latency, can 
write back at different cycle time. By the variable write-back 
method leads us to speed up the single-threaded geometry 
operations. Fig. 2 shows the proposed GE architecture. The 
engine composed of four way SIMD datapath, special 
function unit (SFU), register file, VAB, VOB and internal 
memory for instruction and constant variables. Since our GE 
is designed to share the hardware resources and to use the 
different write-back timing method, there can be a data 
dependency and a confliction of the write-back operation. 
To solve this problem, we use two techniques: hazard 
control method and forwarding. The hazard controller 
detects all the cases of data dependency and adjusts the issue 
timing of the instruction fetch. And the forwarding reduces 
the dependency by passing a result directly to the functional 
unit that requires it. 

III. IMPLEMENTATION 
The hardware implementation of GE is divided into two 

main blocks: the floating-point core and hazard control unit. 
The floating-point core processes the instruction set, and the 
hazard control unit adjusts an issue timing of the instruction 
caused by data dependency and lack of hardware resources. 
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Figure 1.  The conventional programmable GE architecture of the high-
end desktop PC. It is focused on maximizing the performance. 
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Figure 2.  The proposed architecture; a variable write-back timing 
geometry pipeline with data forwarding and hazard controller. 
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A. Overview of the Geometry Engine 
The overall diagram of the GE is shown in Fig. 3. Vertex 

attributes, the inputs from the host, are transferred into VAB, 
which is composed of eight quad-float (128bit) entries with 
double buffering method to hide a transferring latency. The 
VOB is also implemented with double buffering method.  

B. The floating-point core 
The floating-point core is a vector processor operating 

on quad-float data. Vertex data is read from the VAB and 
transformed into the VOB. The latency of the vector and 
special function units are grouped into five: G0, G1, G2, G4 
and G7.  

The SIMD vector unit is responsible for the MOV, MUL, 
ADD, MAD, DP3, DP4, DST, MIN, MAX, SLT, and SGE 
operations. The special function unit is responsible for the 
RCP, RSQ, LOG, EXP and LIT operations. The SIMD 
datapath needs four cycle latency in the longest instruction 
(G4). We design a floating-point multiplier with one cycle 
and a two input adder with two cycles. Four input floating-
point adder has three cycle latency. Therefore the longest 
latency group, G4, pass through the multiplier and the four-
input adder. The group G7 is operated by the SFU unit, 
which has the latency of seven.  The transcendental 
functions (logarithm, exponent and etc.) and division need 
several cycle times of iteration to support high precision. 
However, we want to design these functions fast while 
having a certain extent of precision. To achieve a fast 
latency with reasonable hardware cost, the SFU unit shares 
the datapath; floating-float multipliers, 4-input adder and 
other functional blocks, and uses a table lookup method by a 
2KB of ROM. The logarithm and exponent has 10-bit 
precision of their mantissa and the reciprocal and square root 
functions have 22-bit precision of mantissa field. These 
amounts of precision support to a standard API of the vertex 
shader version 1.1 [7]  

TABLE I.  THE PREFERRED FORMAT OF THE VAB AND VOB 

 

C. The hazard control unit 
Dependencies can be occurred due to the two reasons: 

first, the data dependency of the pipeline architecture with a 
single-threaded operation. Second, the limited hardware 
resources in the variable latency write-back architecture. 
Since the 3D graphics geometry operations have less data 
dependency than the operations of the general processor 
because of the vertex parallelism, we could manipulate the 
dependencies easily with two strategies: data forwarding and 
adjusting the instruction issue timing. 

There are three types of dependencies: RAW, WAW 
hazards, and write-back conflicts. The RAW and WAW 
hazards are prevented by two ways: first, the data 
forwarding between write-back stage and the first execution 
stage for short interval of the consecutive instructions, 
second, the adjusting an instruction fetch timing for the other 
cases. The write-back conflicts are caused by the limited 
datapath, which has only one write port of the register file. It 
is solved by the issue timing control. The hazard controller 
has the write-back timing information of the current 
execution slots. When the incoming instruction would be 
conflicted with an in-pipeline instruction, the hazard 
controller pushes a NOP instruction to the pipeline. 

The hazard control unit is shown in Fig. 4. It contains the 
internal registers for the information of the in-pipeline 
instructions, which is the history of issued instructions. The 
registers are composed of three fields; the first field is a 4-bit 
tag for the lift-time counter which is decremented each cycle. 
The tag is used for determining the write-back timing. The 
second field is the destination address of the register file. It 

 

Figure 3.  The proposed GE architecture. 4-way SIMD vector unit has 
variable latency instruction for fast write-back. SFU unit has fixed 7-
latency for reducing the hardware cost. There is only one register file 
instead of the number of maximum latency (for multi-threading, we 

require 7). A number of Input buffers and Output buffers are substituted 
for double buffered VAB and VOB. It reduces the buffer size two 

seventh or less. 

 

Figure 4.  The description of the hazard control unit 
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is used for testing RAW hazard comparing the incoming 
source addresses with and the in-pipeline destination 
addresses. The last field is the write mask information. Since 
the data field of 3D system is usually composed of quad-
float vector (128-bit), each floating-point field of a vector 
can take independent value other fields. Therefore, the 
hazard controller discriminates not only the addresses but 
also the mask information. The additional information 
makes the detection of the hazards sophisticated. 

IV. DISCUSSTIONS 
This work is a part of the embedded 3D graphics SoC 

system. Table II shows the equivalent gate count of our GE 
core, lookup table, and SRAM memory. Table II also reports 
their power consumption during the runtime of the full 3D 
applications (with the light model (c) of Fig. 5). A 206k 
logic gates and 2.5kB SRAM are integrated. The total GE 
consumes about 71mW at 166 MHz of operating frequency. 

The performance of our GE is presented in Fig. 5. The 
average clock cycles per instruction (CPI) reveals the 
efficiency of the architecture. The high-end GE cores take an 
effort to be one of CPI (or less than one by using multiple 
cores). Fig. 5 also shows the CPI results of our GE at the 
various light models. Although our GE is developed by 
sharing the datapath in the SFU and reducing the expensive 
internal buffers and register files, the CPI can be achieved to 
be 1.0 at the light model (a) and (b) as shown in Fig. 5. Even 
though the complex light model, which has longer program 
code, has larger CPI due to the number of hazards in the 

instructions, the CPI is also not large. It means our GE 
architecture is very efficient. We compare our hardware with 
the previous results [3-6]. Fig. 6 shows the comparison. 
Even though the logic gate count is smaller than that of the 
engine described in [5], the maximum vertex processing 
speed of our GE is increased up to 1.66 times without any 
precision degradation by using the 32-bit floating-point 
datapaths in the full pipelines.  

V. CONCLUSIONS 
In this paper, we presented a 3D graphics geometry 

hardware, and implemented it into a real application for 
multimedia embedded systems. In spite of the hardware 
reduction, the hardware provides high performance by the 
variable write-back timing method with the well-designed 
dynamic hazard controller. The proposed programmable GE 
processes up to 33.2Mvertices per second, and it has a 
71mW of power consumption at 166 MHz of operating 
frequency. The proposed GE has 1.66 times performance 
improvement of the previous system [5] even supporting the 
single precision floating-point. The incoming 3D graphics 
SoC environment, which has larger display resolution 
(QVGA or higher), can be supported by our GE. 
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Figure 5.  The performance of the GE. The various light models are used 
for testing the vertex processing speed. The average clock cycles per 

instruction (CPI) of our GE at the light models are shown in the bottom 
box. 

 

Figure 6.  The performance comparison between our GE and the privious 
works. 

TABLE II.  THE GATE COUNTS AND POWER CONSUMPTIONS 
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