
A 33.2Mvertices/sec Programmable Geometry Engine
for Multimedia Embedded Systems

Chang-Hyo Yu, Donghyun Kim and Lee-Sup Kim
Dept. of EECS, KAIST

Daejeon, Republic of Korea
{mosmov,dhkim}@mvlsi.kaist.ac.kr, lskim@ee.kaist.ac.kr

Abstract—This paper proposes a programmable geometry
engine (GE) reducing the expensive internal buffers and
register files of the conventional programmable GEs and
sharing datapaths of a special function unit. The proposed GE
is appropriate for the embedded 3D graphics environment
where the reduction of hardware cost is a critical issue. The
degraded performance caused by the hardware reduction is
compensated by a variable write-back timing architecture
with a dynamic hazard controller and a data forwarding
method. The GE is implemented by a 0.13um CMOS
technology and has the performance up to 33.2Mvertices/sec,
which is 1.66 times improvement of the previous work. Its
equivalent gate count is 206k and operation frequency is
166MHz.

I. INTRODUCTION
Today’s graphics hardware requires higher performance

of the operating ability as well as more flexibility to support
variety of the advanced 3D algorithm to achieve the more
realistic rendering image. A conventional hard-wired
geometry engine (GE) could get a higher performance by the
increasing semiconductor technology, but the rapidly
developing 3D rendering algorithm requires the hard-wired
architecture change. Therefore, we need a programmable
architecture to catch up with the up-to-date techniques, and
we also need a higher performance GE processor while
supporting the programmability without performance
degradation.

The programmable GE architecture was first designed by
Lindholm [1]. He suggested the programmable architecture
for the flexibility of 3D geometry operations. It does
basically light and transform operations by an assembly like
language. The latest 3D graphics hardware commodities,
produced by ATI or NVIDIA [2], provide powerful
performance of their programmable GE up to
600Mvertices/sec by the various high techniques with the
GDDR3 memory, six parallel GEs, and so on.

However, these graphics hardware are designed for the
high-end desktop PC. The core of NVIDIA GeforceFX6800
ultra [2], one of the fastest PC-platform graphics chip, is

manufactured by 222 million transistors, and has about
174Watts of power consumption. We need much less
hardware cost and power consumption for various
multimedia systems on chip (SoC) environments such as
Digital TV, personal digital assistant (PDA), and the other
home appliances. There are several studies for the embedded
3D graphics core of mobile environment. Kameyama [3]
developed a 3D graphics LSI core for mobile system (Z3D).
Z3D also integrates the programmable GE, which has the
performance up to 185k vertices/sec. This core is suitable for
the current mobile platform which has the display resolution
below the QVGA (320x240). Imai [4] had shown a 3D
graphics engine for the non-PC products. The engine has
also a programmable geometry processor with
4.7Mvertices/sec of performance and 109.5mW of power
consumption. This engine is focused on reducing the power
consumption; the core uses a multiple clock domains in GE
and latch based registers. Sohn [5] described a 3D graphics
GE using fixed-point datapath for low power graphics
system. The engine uses a fixed-point datapath for GE
instead of the floating-point datapath with a precision
degradation not shown in the low display resolution.

 The non-PC platform, such as home application’s SoC
environment, grows rapidly at the point of the size of display
resolution as well as the quality of 3D rendering image. The
previous works had shown good results at the present time,
but the incoming multimedia SoC environment requires
higher performance to support a higher screen resolution
(QVGA or more) and the flexibility to adopt the advanced
3D algorithm.

 In this paper, we developed a 3D graphics GE for the
multimedia SoC environment with the performance up to
33.2Mvertices/sec at 166 MHz and 71mW of power
consumption.

The remainder of the paper is arranged as follows.
Section II shows the architecture of programmable GE.
Section III shows the implementation of this work and
Section IV discusses the results while the last Section
concludes this paper.

This research was sponsored by SAMSUNG electronics and the
Consortium of Semiconductor Advanced Research through the SYSTEM
IC 2010 project, Korea

45740-7803-8834-8/05/$20.00 ©2005 IEEE.

II. PROGRAMMABLE GEOMETRY ENGINE

A. The conventional programmable Geometry Engine
The programmable GE is a first user-programmable

stream architecture that exploits a vertex parallelism and
streaming nature [1]. GE takes one vertex data as inputs and
produce one transformed vertex data as outputs. No vertices
affect the other adjacent vertices in the same frame.

Fig. 1 shows the GE architecture. The vertex attributes
are converted to floating-point format before arriving at the
vertex attributes buffer (VAB), which has room for the
sixteen input attributes. In a round-robin fashion, the VAB
drains into a number of input buffers that are used to feed
the floating-point core. Vertex data is read from the input
buffers and transformed to the output buffers. Only one
vertex attribute may be read per program instruction. To
hold constants such as matrices, light positions, and plane
coefficients that are used in typical vertex programs, there is
a memory bank of more than 128 quad-floats. Each temporal
register files is 16 quad-floats in size and allows three reads
and one write per instruction. Any vector read may be
sourced as multiple operations and individually
swizzled/negated each time. Since the latency of floating-
point core is generally four [1], a vertex engine can handle
parallel processing up to four vertices. This means four
register files are required for vertex multi-threading, but a
programmer understands as if only one register file exists.
Finally, the transformed vertices are feed to the hardwired
primitive engine for polygon culling and clipping.

B. The proposed Geometry Engine
However, the conventional high-end PC architecture

provides excellent performance, the hardware cost and
power consumption is not capable of integrating SoC
environment. We must modify the conventional architecture
to get sufficient performance with reduced hardware cost
and less power consumption for the home plat-form and the
other applications. The major commercial graphics hardware

vendors reveal that their floating-point datapath has four-
latency for the longest instruction. Although the short
latency is better, the hardware cost is burden to integrate
SoC system. In our design, we have the maximum latency to
be seven for the special functions by sharing the datapath.
Therefore, we need seven number of register files and
input/output buffers for multi-threading. However, the
number of register files and their control method makes the
hardware complex. We try to reduce the number of register
files while the performance does not degrading. To solve
this problem, our architecture uses the single-threaded
operations with different write-back latency method.
Therefore, we only need one register file and do not need a
number of input/output buffers.

The execution pipeline stage is divided into seven sub
stages. Each sub stage can write-back to the vertex output
buffer (VOB) or register file with its latency cycle time. This
means the instructions, which have different latency, can
write back at different cycle time. By the variable write-back
method leads us to speed up the single-threaded geometry
operations. Fig. 2 shows the proposed GE architecture. The
engine composed of four way SIMD datapath, special
function unit (SFU), register file, VAB, VOB and internal
memory for instruction and constant variables. Since our GE
is designed to share the hardware resources and to use the
different write-back timing method, there can be a data
dependency and a confliction of the write-back operation.
To solve this problem, we use two techniques: hazard
control method and forwarding. The hazard controller
detects all the cases of data dependency and adjusts the issue
timing of the instruction fetch. And the forwarding reduces
the dependency by passing a result directly to the functional
unit that requires it.

III. IMPLEMENTATION
The hardware implementation of GE is divided into two

main blocks: the floating-point core and hazard control unit.
The floating-point core processes the instruction set, and the
hazard control unit adjusts an issue timing of the instruction
caused by data dependency and lack of hardware resources.

B
U

S

Figure 1. The conventional programmable GE architecture of the high-
end desktop PC. It is focused on maximizing the performance.

Fo
rw

ar
di

ng
 P

at
h

Figure 2. The proposed architecture; a variable write-back timing
geometry pipeline with data forwarding and hazard controller.

4575

A. Overview of the Geometry Engine
The overall diagram of the GE is shown in Fig. 3. Vertex

attributes, the inputs from the host, are transferred into VAB,
which is composed of eight quad-float (128bit) entries with
double buffering method to hide a transferring latency. The
VOB is also implemented with double buffering method.

B. The floating-point core
The floating-point core is a vector processor operating

on quad-float data. Vertex data is read from the VAB and
transformed into the VOB. The latency of the vector and
special function units are grouped into five: G0, G1, G2, G4
and G7.

The SIMD vector unit is responsible for the MOV, MUL,
ADD, MAD, DP3, DP4, DST, MIN, MAX, SLT, and SGE
operations. The special function unit is responsible for the
RCP, RSQ, LOG, EXP and LIT operations. The SIMD
datapath needs four cycle latency in the longest instruction
(G4). We design a floating-point multiplier with one cycle
and a two input adder with two cycles. Four input floating-
point adder has three cycle latency. Therefore the longest
latency group, G4, pass through the multiplier and the four-
input adder. The group G7 is operated by the SFU unit,
which has the latency of seven. The transcendental
functions (logarithm, exponent and etc.) and division need
several cycle times of iteration to support high precision.
However, we want to design these functions fast while
having a certain extent of precision. To achieve a fast
latency with reasonable hardware cost, the SFU unit shares
the datapath; floating-float multipliers, 4-input adder and
other functional blocks, and uses a table lookup method by a
2KB of ROM. The logarithm and exponent has 10-bit
precision of their mantissa and the reciprocal and square root
functions have 22-bit precision of mantissa field. These
amounts of precision support to a standard API of the vertex
shader version 1.1 [7]

TABLE I. THE PREFERRED FORMAT OF THE VAB AND VOB

C. The hazard control unit
Dependencies can be occurred due to the two reasons:

first, the data dependency of the pipeline architecture with a
single-threaded operation. Second, the limited hardware
resources in the variable latency write-back architecture.
Since the 3D graphics geometry operations have less data
dependency than the operations of the general processor
because of the vertex parallelism, we could manipulate the
dependencies easily with two strategies: data forwarding and
adjusting the instruction issue timing.

There are three types of dependencies: RAW, WAW
hazards, and write-back conflicts. The RAW and WAW
hazards are prevented by two ways: first, the data
forwarding between write-back stage and the first execution
stage for short interval of the consecutive instructions,
second, the adjusting an instruction fetch timing for the other
cases. The write-back conflicts are caused by the limited
datapath, which has only one write port of the register file. It
is solved by the issue timing control. The hazard controller
has the write-back timing information of the current
execution slots. When the incoming instruction would be
conflicted with an in-pipeline instruction, the hazard
controller pushes a NOP instruction to the pipeline.

The hazard control unit is shown in Fig. 4. It contains the
internal registers for the information of the in-pipeline
instructions, which is the history of issued instructions. The
registers are composed of three fields; the first field is a 4-bit
tag for the lift-time counter which is decremented each cycle.
The tag is used for determining the write-back timing. The
second field is the destination address of the register file. It

Figure 3. The proposed GE architecture. 4-way SIMD vector unit has
variable latency instruction for fast write-back. SFU unit has fixed 7-
latency for reducing the hardware cost. There is only one register file
instead of the number of maximum latency (for multi-threading, we

require 7). A number of Input buffers and Output buffers are substituted
for double buffered VAB and VOB. It reduces the buffer size two

seventh or less.

Figure 4. The description of the hazard control unit

4576

is used for testing RAW hazard comparing the incoming
source addresses with and the in-pipeline destination
addresses. The last field is the write mask information. Since
the data field of 3D system is usually composed of quad-
float vector (128-bit), each floating-point field of a vector
can take independent value other fields. Therefore, the
hazard controller discriminates not only the addresses but
also the mask information. The additional information
makes the detection of the hazards sophisticated.

IV. DISCUSSTIONS
This work is a part of the embedded 3D graphics SoC

system. Table II shows the equivalent gate count of our GE
core, lookup table, and SRAM memory. Table II also reports
their power consumption during the runtime of the full 3D
applications (with the light model (c) of Fig. 5). A 206k
logic gates and 2.5kB SRAM are integrated. The total GE
consumes about 71mW at 166 MHz of operating frequency.

The performance of our GE is presented in Fig. 5. The
average clock cycles per instruction (CPI) reveals the
efficiency of the architecture. The high-end GE cores take an
effort to be one of CPI (or less than one by using multiple
cores). Fig. 5 also shows the CPI results of our GE at the
various light models. Although our GE is developed by
sharing the datapath in the SFU and reducing the expensive
internal buffers and register files, the CPI can be achieved to
be 1.0 at the light model (a) and (b) as shown in Fig. 5. Even
though the complex light model, which has longer program
code, has larger CPI due to the number of hazards in the

instructions, the CPI is also not large. It means our GE
architecture is very efficient. We compare our hardware with
the previous results [3-6]. Fig. 6 shows the comparison.
Even though the logic gate count is smaller than that of the
engine described in [5], the maximum vertex processing
speed of our GE is increased up to 1.66 times without any
precision degradation by using the 32-bit floating-point
datapaths in the full pipelines.

V. CONCLUSIONS
In this paper, we presented a 3D graphics geometry

hardware, and implemented it into a real application for
multimedia embedded systems. In spite of the hardware
reduction, the hardware provides high performance by the
variable write-back timing method with the well-designed
dynamic hazard controller. The proposed programmable GE
processes up to 33.2Mvertices per second, and it has a
71mW of power consumption at 166 MHz of operating
frequency. The proposed GE has 1.66 times performance
improvement of the previous system [5] even supporting the
single precision floating-point. The incoming 3D graphics
SoC environment, which has larger display resolution
(QVGA or higher), can be supported by our GE.

REFERENCES
[1] Erik Lindholm, Mark J. Kilgard, and Henry Moreton, “A User-

Programmable Vertex Engine”, SIGGRAPH 2001, pp.149-158
[2] NVIDIA, http://www.nvidia.com/page/geforce_6800.html
[3] Masatoshi Kameyama, et al., “3D Graphics LSI Core for Mobile

Phone Z3D,” Proceeding of Graphics Hardware 2003, pp.60-67, Jul
2003

[4] Masatishi Imai, et al., “A 109.5mW 1.2V 600M texels/s 3-D
Graphics Engine,” ISSCC Dig. Tech. Papers, pp.332-333, Feb 2004

[5] Ju-Ho Shon, et al, “A Programmable Vertex Shader with Fixed-Point
SIMD Datapath for Low Power Wireless Applications,” Proceeding
of Graphics Hardware 2004, pp107-114, Aug 2004

[6] Ramchan Woo, et al., “A 210mW Graphics LSI Implementing Full
3D Pipeline with 264Mtexels/s Texturing for Mobile Multimedia
Applications,” ISSCC Dig. Tech. Papers, pp.44-45, Feb 2003

[7] Microsoft, DirectX vertex shader stanard, http://msdn.microsoft.com
/archive/default.asp?url=/archive/en-us/dx81c/directxcpp/Graphics
/Reference/Shader/Vertex/Instructions/Instructions.asp

No-light

Mvertices/sec

5

10

15

20

25

33.2M

Ambient and
Diffuse light

Specular
light added

Spotlight
effect added

Anisotropic
lighting effect

20.8M

7.55M
3.95M 3.02M

30

35
 Phong single light model
(viewer is assumed to be at (0,0,∞))

Transform only

(a) (b) (c) (d) (e)

Phong single light model
(viewer is at an arbitrary position)

Bi-directional reflectance distribution
function (BRDF) light model

(a)

(b)

(d)

(e)

(c)

:

:

:

:

Light Models

1.0(a)
(b)

(d)
(e)

(c)
1.0

1.44
1.37
1.51

CPI results of the light models

Figure 5. The performance of the GE. The various light models are used
for testing the vertex processing speed. The average clock cycles per

instruction (CPI) of our GE at the light models are shown in the bottom
box.

Figure 6. The performance comparison between our GE and the privious
works.

TABLE II. THE GATE COUNTS AND POWER CONSUMPTIONS

4577

