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Abstract: A new 3D manganese(II) coordination polymer, formulated as [Mn3(HL)6] (1) (where
H2L = 6-hydroxypicolinic acid), has been hydrothermally synthesized and characterized by single-
crystal X-ray crystallographic analysis along with other spectroscopic and magnetic techniques.
Structural analysis shows that the compound crystallizes in the monoclinic C2/c space group and
is a non-porous 3D coordination polymer formed by three different Mn(II) centres connected by
6-hydroxypicolinic acid ligands in their keto form. Each Mn(II) centre shows a distorted octahedral
coordination environment. Neighbouring Mn(II) centres are connected by two different syn-anti bridg-
ing carboxylate groups to form regular coordination chains. There are two different [Mn2(RCOO)2]
units along the chain, formed by two crystallographically independent Mn centres (Mn1 and Mn2).
These chains are further connected by HL− ligands to form a 3D coordination network. Interestingly,
both the hydroxy and the carboxylate groups of the ligands are deprotonated and coordinated to
the metal centres, whereas the pyridyl group is protonated and uncoordinated, although it partic-
ipates in strong hydrogen bonding interactions with oxygen atoms of the HL− ligand, as shown
by the Hirshfeld surface analysis. Both the absorption and emission spectra of the compound have
also been measured. Variable temperature magnetic studies reveal the presence of a spin-canted
antiferromagnetic behaviour with a high coercivity of 40 mT at 2 K and an ordering temperature of
14 K.

Keywords: 3D coordination polymer; manganese(II); 6-hydroxypicolinic acid; keto-enol tautomerism;
syn-anti carboxylate; spin-canting; magnetic properties

1. Introduction

The design of metal-organic coordination polymers has gained much attention for their
tuneable structural features and enormous functionalities [1–5]. The search for different
molecule-based magnets that show spontaneous magnetization below a critical temper-
ature has also been an attractive field of research [6–11]. Thus, many types of magnetic
coordination polymers with different topologies and dimensionalities have been developed,
and their magnetic properties have been studied [12–15]. In most cases, mixed N,O-donor
ligands are used to create a magnetic exchange pathway between the paramagnetic metal
centres in those polymeric materials [16–19]. Albeit, it is still very difficult to control and
predict the geometry and magnetic behaviour of the polymers due to the diverse coordi-
nation modes of many ligands and the sensitivity of the magnetic interactions to slight
structural modifications [20–22]. Among the different strategies used to design magnetic
materials, the most successful ones are: (i) the use of isolated magnetic building blocks to
design extended structures [23,24], (ii) the use of radical-based bridging ligands [25–27],
and (iii) the synthesis of magnetic molecules inside the cavity of metal-organic frameworks
and covalent organic frameworks [28,29]. Moreover, the presence of three paramagnetic
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metal centres in the basic building block of homometallic complexes and coordination
polymers may induce interesting magnetic properties due to an imbalance of the overall
magnetic moments [30–32].

Picolinic acids bearing hydroxy groups are very versatile ligands as their coordina-
tion behaviour is dependent on their keto-enolic tautomerism [33,34]. In the keto form,
they coordinate with the carboxylate and keto groups, while the protonated pyridyl N
atom remains uncoordinated [35]. In the enolic form, they can use their three different
coordination sites (hydroxy, carboxylate, and pyridyl). In 6-hydroxypicolinic acid, the
proximity of the hydroxy group and the basic pyridyl N atom facilitates the migration of
the hydroxy proton to the pyridyl N atom, resulting in the deprotonation of the OH group
and protonation of the pyridyl N atom (keto form). However, the coordination modes of
the ligand and, therefore, the resulting nuclearities and dimensionalities are difficult to
control [36]. A search in the CCDC database shows that there is a total of 29 reported
structures with the ligand 6-hydroxypicolinic acid. In 16 of these structures, the ligand
is totally deprotonated (L2−). In nine structures, the ligand is present as the enol (O-H)
tautomer, whereas only in four structures, it presents its keto (N-H) form (Table S1). In the
literature, there are some examples of metal complexes with 6-OHpicH with both transition
metals and lanthanoids, and most of them are monomer or discrete metal clusters [37–39].
In fact, among the 29 structures, there are three with lanthanoids (DyIII, ErIII, and YbIII),
two with alkaline metals (Cs+ and Na+), and 24 with transition (MnIII, CoII, NiII, CuII,
RuII, ReII, ReIII, ReIV, and ReV) and post-transition (ZnII and CdII) metal ions. Surprisingly,
there is no example of any compound with this ligand and manganese(II) (Table S1). From
the structural point of view, 23 of these 29 compounds are discrete complexes (there are
11 monomers, 9 dimers, and 3 trimers), and only 6 are polymers (one 1D, three 2D, and two
3D). The two only reported 3D examples are obtained with Na+ and Cs+. Compound 1 is,
therefore, the first 3D polymer with a transition metal and the first one with manganese(II)
and 6-hydroxypicolinic acid. Furthermore, compound 1 is one of the very few compounds
with this ligand in its keto tautomer (only 4 out of 29 to date).

Here we report the first coordination polymer obtained with the ligand 6-hydroxypicolinic
acid (H2L) and MnII: [Mn3(HL)6] (1). This compound is a 3D coordination polymer
formed by MnII centres connected by the keto form of the deprotonated 6-hydroxypyridine
carboxylate ligand (Scheme 1). As the pyridyl N atom is protonated, only the deprotonated
carboxylate and hydroxy groups are coordinated with the MnII atoms. There are two
different MnII centres (Mn1 and Mn2) that form two different dimeric units: one contains
one Mn1 and one Mn2 atom (Mn1-Mn2), whereas the other contains two Mn2 atoms
(Mn2-Mn2). In both dimeric units, the Mn atoms are connected by syn-anti carboxylate
groups giving rise to [Mn2(RCOO)2] dimers, which are interconnected by carboxylate
bridges to generate alternating zigzag chains of the type [Mn(RCOO)2]n. These chains
are further connected by four HL− ligands through their keto groups to generate a 3D
coordination polymer. We also present the magnetic properties that show that compound 1
is a spin-canted antiferromagnet with an ordering temperature of ca. 14 K and a coercive
field of 49 mT at 2 K. The Hirshfeld surface analysis has also been performed to understand
the intramolecular interactions mainly originated by the protonated pyridyl groups.
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Scheme 1. Synthetic scheme of compound 1.

2. Materials and Methods

Mn(NO3)2·6H2O and 6-hydroxypicolinic acid were purchased from Sigma Aldrich
chemical company and were used as received. All other chemicals were purchased from
commercial sources and used without further purification. Elemental analysis (C, H, N)
was carried out using a Perkin-Elmer 240C elemental analyser. IR spectra were recorded
via the ATR method using a SHIMADZU IRA 1S WL instrument within the range of
500-4000 cm−1. Absorption spectra were recorded on SHIMADZU UV 1800 instrument
in solution. Emission spectra were recorded by using SHIMADZU RF 1000 instrument
in solution. Powder X-ray diffraction patterns were recorded by using Cu-Kα radiation
(Bruker D8; 40 kV, 40 mA).

Synthesis of [Mn3(HL)6] (1). 0.2 mmol (80.8 mg) of Mn(NO3)3·6H2O and 0.2 mmol
(27.2 mg) of 6-hydroxypicolinic acid were dissolved in 5 mL of DMF via ultrasonication.
The solution was poured into a 15 mL sealed glass vial and heated at 120 ◦C for 72 h to yield
rhombic-shaped colourless crystals suitable for single-crystal X-ray diffraction. The reaction
mixture was allowed to cool naturally to room temperature, and crystals were isolated
by filtration. Yield: 30%. Anal. Calcd. For C36H24Mn3N6O18: C = 43.48%, H = 2.41%
and N = 8.45%. Found: C = 43.50%, H = 2.40% and N = 8.45%. IR (cm−1): 3400 (N-H),
1660 (C=O, keto), 1652 (νasym -COO), 1634 (C-N), 1614 (N-H), 1590 (C=O, carboxylate),
1550 (C=O, keto), 1469, 1410, 1378 (νsym -COO), 1337 (νsym -COO), 1259, 1105, and 1000.
The X-ray powder diffractogram is identical to the simulated one, confirming the phase
purity of compound 1 (Figure S1).

Single crystal data collection and structure refinement: Suitable single crystal of 1
was mounted on Bruker APEX II diffractometer having graphite monochromator and
Cu-Kα (λ = 1.54 Å) radiation. Unit cell parameters were calculated by using the APEX2
program [40]. Data reduction was done by the SAINT program [40] and absorption cor-
rection was performed by using the SADABS program [40]. The structure was solved by
using Patterson method through SHELXS-2018/3 [41] using WINGX software package [42]
and refined by using SHELXL-2018/3 [43]. Difference Fourier synthesis and least-square
refinement have pointed out the positions of the non-hydrogen atoms. The non-hydrogen
atoms were refined with independent anisotropic displacement parameters. All the hy-
drogen atoms were placed in their calculated positions and their displacement parameters
were fixed to be 1.2 times larger than the attached non-hydrogen atom. The hydrogen
atoms attached to the pyridyl groups are located from the Fourier map and refined freely.
Figures were drawn by PLATON [44] and ORTEP [45]. Data collection, structure refinement
parameters and crystallographic data of 1 are given in Table 1.
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Table 1. Crystallographic data collection and refinement parameters.

Formula C36H24Mn3N6O18

Formula weight 993.43
Crystal system Monoclinic

Space group C2/c (No. 15)
a (Å) 12.3872 (13)
b (Å) 15.4999 (13)
c (Å) 20.7172 (17)
α (◦) 90
β (◦) 105.713 (4)
γ (◦) 90

V (Å3) 3829.1 (6)
Z 4

ρcalc (g/cm3) 1.723
µ (Mo Kα) (mm) 1.065

F(000) 2004
Crystal size (mm3) 0.10 × 0.12 × 0.16
Temperature, T (K) 127

θmin-max (deg) 2.6, 27.2
Total data 21,514

Unique data 4249
Rint 0.079

Observed data [I > 2.0 σ(I)] 3104
Nref 4249
Npar 294

R 0.0479
wR2 0.1177

S 1.06

w = [(Fo
2) + (0.0287 P)2 + 13.3720 P] where P = (Fo

2 + 2Fc
2)/3.

Variable temperature magnetic measurements: Variable temperature susceptibility
measurements were carried out in the temperature range 2–300 K with an applied magnetic
field of 0.1 T on a polycrystalline sample with a mass of 13.598 mg using a Quantum
Design MPMS-XL-5 SQUID magnetometer. The isothermal magnetization was measured
at 2 K with magnetic fields in the −5 to 5 T range on the same sample. AC susceptibility
measurements were performed in the temperature range of 2–18 K on the same sample
with an alternating field of 0.4 mT oscillating at 10 and 110 Hz. The susceptibility data were
corrected for the sample holder previously measured using the same conditions and for the
diamagnetic contribution of the samples as deduced by using Pascal’s constant tables [46].

Hirshfeld surface analysis: Hirshfeld surface analysis can depict and quantify the
intermolecular interactions present within a crystal system. It is described from the electron
distribution around a molecular entity which gives the clear visualization of the intermolec-
ular interactions present in the crystal. 2D fingerprint plots are calculated from the HS
analysis to identify and calculate the relative contributions to the total Hirshfeld surface
of different intermolecular interactions. Every point on the HS is calculate by di (distance
from the nearest nucleus internal to the surface) and de (distance from the nearest nucleus
external to the surface).

dnorm =

(
di − rvdW

i

)
rvdW

i
+

(
de − rvdW

e

)
rvdW

e

where rvdW
i and rvdW

e are the van der Waals radii of the appropriate atoms internal and
external to the HS. Hirshfeld surfaces and their corresponding 2D fingerprint plots were
calculated over the constituent ionic and molecular geometries using CRYSTALEXPLORER
17.5 software package [47,48]. The properties such as normalized contact distance dnorm,
shape index, curvedness, and fragment patch were mapped over the Hirshfeld surface
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and plotted with the appropriate colour scale. The 2D fingerprint plots were presented as
de vs. di.

3. Results and Discussion
3.1. Synthesis

The solvothermal reaction between Mn(NO3)2 and 6-hydroxypicolinc acid (H2L) in
a 1:1 mole ratio in DMF leads to the formation of a 3D coordination polymer with the
molecular formula [Mn3(HL)6] (1) having a metal:ligand ratio of 1:2. Within the structure,
the ligand is in its keto form, and the pyridyl group remains protonated (Scheme 1). IR
spectroscopic analysis also supports the presence of the protonated pyridyl group within the
structure (Figure S2). The presence of broad peaks in the 3300–3600 cm−1 and 1614 cm−1

regions indicates the presence of a protonated pyridyl group within the structure [49].
This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.2. Structure of [Mn3(HL)6] (1)

Single-crystal X-ray analysis reveals that compound 1 is a 3D non-porous coordination
polymer showing the (3,6)-c rtl topology [50] that crystallizes in the monoclinic space
group C2/c. The asymmetric unit contains two independent Mn atoms: Mn1 (with half
occupancy) and Mn2 (with full occupancy), and three HL− ligands with a protonated
pyridyl group and deprotonated hydroxy and carboxylate groups. The ligand-to-metal
ratio is, therefore, 2:1, resulting in the formula [Mn3(HL)6] for compound 1. Both Mn
centres show distorted octahedral geometry (Figure 1). The coordination environments
of both Mn atoms are identical: the equatorial positions around are occupied by three
carboxylate oxygen atoms (O1, O1*, and O8* for Mn1 and O4, O5, and O7 for Mn2) and
one hydroxy oxygen atom (O9* for Mn1 and O6 for Mn2) from four different HL− ligands.
The axial positions are occupied by one carboxylate (O8 for Mn1 and O5* for Mn2) and one
hydroxy oxygen atom (O9 for Mn1 and O6* for Mn2) from two different HL− ligands. So,
both Mn atoms are surrounded by six different HL− ligands. All the Mn-O bond distances
fall in the range of 2.126(3)–2.224(3) Å, and all cisoid and transoid angles fall in the range of
79.25(10)–102.60(10)◦ and 165.00(10)–176.70(10)◦, respectively (Table S2).
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Figure 1. ORTEP diagram of the asymmetric unit with labelling scheme of compound 1. Ellipsoids
are drawn at 50% probability (except the H atoms).

Within the structure, all three HL− ligands of the asymmetric unit act as non-chelating
µ3-bridging ligands (Figure S3). Each ligand coordinates to two different Mn atoms using
two carboxylate oxygen atoms in a syn-anti mode and coordinates to a third Mn atom
through the deprotonated hydroxy group, giving rise to a 3D structure (see below). The



Magnetochemistry 2023, 9, 55 6 of 12

syn-anti carboxylate bridges connect two Mn centres to generate a chain with alternating
Mn1-Mn2 (A-type) and Mn2-Mn2 (B-type) [Mn2(RCOO)2] units (Figure 2). These chains
run parallel to the [101] direction. Along the chain, there are two A-type (Mn1-Mn2) and
one B-type (Mn2-Mn2) units following the sequence -A-A-B- (Figure 2). These chains are
further connected by four HL− ligands through their keto groups in two other directions to
form a 3D network (Figure 3). Interestingly, the pyridyl groups are protonated and do not
coordinate with the metal centres, although they participate in N-H···Ohydroxy hydrogen
bonding interactions within the structure and form two different R2

2(6) hydrogen-bonded
supramolecular rings (Figure S4). All the hydrogen bond dimensions are given in Table S3.
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Figure 3. (a) Projection of the structure of compound 1 down the [101] direction (perpendicular to
the chains). (b) View of one isolated chain along the same direction. Colour code: C = gray, O = red,
N = blue, Mn1 = green, and Mn2 = orange.

3.3. Hirshfeld Surface Analysis

Hirshfeld surface (HS) analysis has been carried out to understand the intermolecular
interactions present in compound 1. The asymmetric unit has been used to calculate the
Hirshfeld surface (such as dnorm, shape index, curvedness, and fragment patch) (Figure 4)
and the subsequent Finger print plots (Figure 5 and Figure S5) to provide the qualitative
and quantitative contribution of the noncovalent contacts present within the crystal system.
The red, blue, and white colours used in dnorm indicate the interatomic distances closer,
longer, or equal to van der Waals separations, respectively. On the other hand, valuable
parameters of curvature, namely shape index and curvedness, have been included to offer
further chemical insight into molecular shaping. A high curvedness is highlighted as
dark blue edges in the shape index (Figure 4b) with ‘bumps and hollows’ depicted in
blue and red, respectively, to indicate the flatness of the surface. The curvedness usually
indicates large regions of green (relatively flat) separated by dark blue edges (large positive
curvature) [48]. Figure 4 depicts the dnorm mapped surface showing light red spots near the
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N-H where the deep spots are close to the O atoms, indicating the presence of O-H/H-O
interactions. The 2D Finger Print plot (Figure 5) supports the N-H···O interactions between
the protonated pyridyl groups and the oxygen atoms as the predominant interaction
(17.10%). In addition, O···H/H···O hydrogen bonding interactions show a sharp spike at
(di = 1.10 and de = 0.75 Å) and at (di = 0.75 Å and de = 1.10 Å). An additional contribution to
the HS comes from the O-O (7.6%), C-C (4.1%), and N-H/H-N (1.9%) interactions.
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3.4. Absorption and Emission Spectra of [Mn3(HL)6] (1)

The solid-state absorption spectra of the colourless compound 1 show a peak at 319 nm
with a shoulder at 328 nm and another small peak at 241 nm (Figure S6). The peak at
319 can be attributed to a ligand-to-metal charge transfer transition, whereas the peak at
241 nm can be assigned to the n-π* transition of the C=O bond that appears due to the
keto-enol tautomerism. The emission spectra of compound 1 show one peak at 458 nm,
which may be attributed to an intra-ligand π-π* transition (Figure S7).

3.5. Magnetic Properties

The product of the molar magnetic susceptibility times the temperature (χmT) per
Mn(II) ion for compound 1 shows at room temperature a value of ca. 4.4 cm3 K mol−1,
very close to the expected value for an isolated Mn(II) ion with a ground spin state S = 5/2
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and a g value close to 2. When the sample is cooled, χmT slowly decreases, reaching a
minimum value of ca. 2.9 cm3 K mol−1 at around 42 K, indicating the presence of a weak
antiferromagnetic coupling (Figure 6). Below this temperature, χmT shows a sharp increase
and reaches a value of ca. 273 cm3 K mol−1 at 10 K. This abrupt increase indicates the
presence of a long-range magnetic ordering and suggests the presence of a spin-canting
since the Mn–Mn coupling is antiferromagnetic. Below 10 K, χmT sharply decreases due to
saturation effects in χm to reach a value of ca. 90 cm3 K mol−1 at 2 K. The thermal variation
of χm shows a sharp divergence with a maximum slope at around 14 K, corresponding to
the approximate temperature of the canted antiferromagnetic long-range order (Figure S8).
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Figure 6. Thermal variation of χmT for compound 1. Inset shows the high-temperature region.

Further confirmation of the canted ordering in 1 is provided by the isothermal mag-
netization at low temperatures that show an initial saturation value of ca. 2 µB (Figure S9)
well below the expected one for an isolated MnII ion with g ≈ 2 (ca. 5 µB). Additionally, the
isothermal magnetization shows hysteresis cycles of 40 mT at 2 K, 26 mT at 5 K, 7.5 mT at
10 K, and 2 mT at 12 K, indicating that the ordering temperature is above 12 K (Figure 7a).
In fact, the thermal variation of the remnant magnetization obtained after cooling the
sample under a magnetic field of 5 T shows a value of ca. 1.05 µB that vanishes above 14 K,
confirming the presence of a canted antiferromagnetic order below ca. 14 K (Figure 7b).

Magnetochemistry 2023, 9, x FOR PEER REVIEW 8 of 12 
 

 

3.5. Magnetic Properties 
The product of the molar magnetic susceptibility times the temperature (χmT) per 

Mn(II) ion for compound 1 shows at room temperature a value of ca. 4.4 cm3 K mol−1, very 
close to the expected value for an isolated Mn(II) ion with a ground spin state S = 5/2 and 
a g value close to 2. When the sample is cooled, χmT slowly decreases, reaching a mini-
mum value of ca. 2.9 cm3 K mol−1 at around 42 K, indicating the presence of a weak anti-
ferromagnetic coupling (Figure 6). Below this temperature, χmT shows a sharp increase 
and reaches a value of ca. 273 cm3 K mol−1 at 10 K. This abrupt increase indicates the pres-
ence of a long-range magnetic ordering and suggests the presence of a spin-canting since 
the Mn–Mn coupling is antiferromagnetic. Below 10 K, χmT sharply decreases due to sat-
uration effects in χm to reach a value of ca. 90 cm3 K mol−1 at 2 K. The thermal variation of 
χm shows a sharp divergence with a maximum slope at around 14 K, corresponding to the 
approximate temperature of the canted antiferromagnetic long-range order (Figure S8). 

 
Figure 6. Thermal variation of χmT for compound 1. Inset shows the high-temperature region. 

Further confirmation of the canted ordering in 1 is provided by the isothermal mag-
netization at low temperatures that show an initial saturation value of ca. 2 μB (Figure S9) 
well below the expected one for an isolated MnII ion with g ≈ 2 (ca. 5 μB). Additionally, the 
isothermal magnetization shows hysteresis cycles of 40 mT at 2 K, 26 mT at 5 K, 7.5 mT at 
10 K, and 2 mT at 12 K, indicating that the ordering temperature is above 12 K (Figure 7a). 
In fact, the thermal variation of the remnant magnetization obtained after cooling the sam-
ple under a magnetic field of 5 T shows a value of ca. 1.05 μB that vanishes above 14 K, 
confirming the presence of a canted antiferromagnetic order below ca. 14 K (Figure 7b). 

  
Figure 7. (a) Hysteresis cycles at different temperatures for compound 1. (b) Thermal variation of 
the remnant magnetization of compound 1 after cooling the sample under 5 T. 

To further confirm the presence of a long-range ordering, we have performed AC 
measurements of compound 1. These measurements show a frequency-independent peak 
at around 13 K with an out-of-phase signal (χ″m) that becomes non-zero below 14 K 

0

50

100

150

200

250

300

0 50 100 150 200 250 300

χ m
T 

(c
m

3  K
 m

ol
-1

)

T (K)

2

3

4

5

6

0 50 100 150 200 250 300

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

2 K
5 K
10 K
12 K

M
 ( μ

B)

H (T)

a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20

M
 (μ

B)

T (K)

b

Figure 7. (a) Hysteresis cycles at different temperatures for compound 1. (b) Thermal variation of the
remnant magnetization of compound 1 after cooling the sample under 5 T.

To further confirm the presence of a long-range ordering, we have performed AC
measurements of compound 1. These measurements show a frequency-independent peak
at around 13 K with an out-of-phase signal (χ”m) that becomes non-zero below 14 K
(Figure 8). This behaviour confirms the presence of a long-range order with an ordering
temperature of 14 K.

Although not very common, the presence of a canted antiferromagnetic coupling
between manganese ions through double and single syn-anti carboxylate bridges has
already been reported in other manganese(II) [51] and manganese(III) [52,53] compounds
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and has been attributed to the lack of a symmetry centre between the manganese ions,
that favours the Dzyaloshinsky–Moriya (D-M) interaction along the syn-anti carboxylate
bridge [54].
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4. Conclusions

In summary, we have prepared and structurally characterized a new 3D manganese(II)
compound formulated as [Mn3(HL)6] (1), with H2L = 6-hydroxypicolinic acid, that repre-
sents the first coordination polymer with this ligand and Mn(II) ions. The 3D structure of
1 can be described as zigzag Mn chains with double syn-anti carboxylate bridges that are
further connected to four other chains by four HL− ligands through their keto groups to
generate a 3D coordination polymer. The 6-hydroxypicolinic acid-based ligand remains
in its keto form in the structure with the proton located on the pyridyl N atom. Hirshfeld
surface analysis indicates the presence of strong hydrogen bonding interactions between
the protonated pyridyl N atoms and the oxygen atoms of the ligand within compound 1.
The DC and AC magnetic measurements show that compound 1 presents a weak antifer-
romagnetic Mn–Mn coupling through the double syn-anti carboxylate bridges but shows
a long-range canted antiferromagnetic long-range order below 14 K with a coercive field
of 40 mT at 2 K. This ligand demonstrates, thus, its capacity to construct 3D coordination
polymers with interesting magnetic properties.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/magnetochemistry9020055/s1, Table S1: Structural data
of all the reported structures with 6-hydroxypicolininc acid, Table S2: Coordination bond lengths
(Å) and angles (◦) in compound 1, Table S3: Hydrogen bond dimensions for compound 1; Figure S1:
Simulated and experimental X-ray powder diffractograms for compound 1, Figure S2: IR spectra
of compound [Mn(HL)2] (1), Figure S3: µ3-bridging mode of the ligand through carboxylate and
hydroxy groups. Colour code: C = gray, O = red, N = blue, and Mn = purple), Figure S4: Hy-
drogen bonding interactions present in compound 1. Colour code: C = black, O = red, N = blue,
and Mn = green. Pink lines indicate the H-bonds, Figure S5: Two-dimensional fingerprint plots for
(a) O···H, (b) H···O, (c) N···H, (d) H···N, (e) N···O and (f) O···O interactions, Figure S6: Solid-state
absorption spectra of compound 1, Figure S7: Solid-state emission spectra of compound 1, Figure S8:
Thermal variation of χmT for compound 1. Inset shows the low-temperature region, Figure S9:
Isothermal magnetization at different temperatures for compound 1. CCDC number for compound 1
is 2232982. References [36,37,39,49,55–68] have been cited in Supplementary Materials.
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K.G. has performed the Hirshfeld surface analysis. C.J.G.-G. have collected and analyzed the magnetic
data. All the authors have written and revised the manuscript. All authors have read and agreed to
the published version of the manuscript.
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49. Kukovec, B.; Popovića, Z.; Pavlović, G.; Linarić, M.R. Synthesis and structure of cobalt(II) complexes with hydroxyl derivatives of

pyridinecarboxylic acids: Conformation analysis of ligands in the solid state. J. Mol. Struct. 2008, 882, 47–55. [CrossRef]

http://doi.org/10.1039/b407169g
http://doi.org/10.1021/ja051233z
http://www.ncbi.nlm.nih.gov/pubmed/15969594
http://doi.org/10.1021/ic034872o
http://www.ncbi.nlm.nih.gov/pubmed/14658870
http://doi.org/10.1021/ja0203115
http://doi.org/10.1021/jacs.1c00661
http://doi.org/10.1021/cg800025y
http://doi.org/10.1021/acsami.7b08322
http://doi.org/10.1021/jacs.8b11374
http://doi.org/10.1039/D1DT00595B
http://doi.org/10.1246/cl.210501
http://doi.org/10.1002/ejic.200801006
http://doi.org/10.1039/B701840A
http://www.ncbi.nlm.nih.gov/pubmed/17563799
http://doi.org/10.1107/S0108270198007446
http://doi.org/10.3390/magnetochemistry8010002
http://doi.org/10.1002/zaac.200800277
http://doi.org/10.1107/S0108270104012624
http://doi.org/10.1002/zaac.200400121
http://doi.org/10.1021/cg100536m
http://doi.org/10.1107/S0108767307043930
http://doi.org/10.1107/S0021889812029111
http://doi.org/10.1107/S090744490804362X
http://www.ncbi.nlm.nih.gov/pubmed/19171970
http://doi.org/10.1107/S0021889897003117
http://doi.org/10.1021/ed085p532
http://doi.org/10.1039/b704980c
http://doi.org/10.1039/B203191B
http://doi.org/10.1016/j.molstruc.2007.09.011


Magnetochemistry 2023, 9, 55 12 of 12

50. Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied Topological Analysis of Crystal Structures with the Program Package
ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [CrossRef]

51. Wang, X.; Wei, H.; Wang, Z.; Chen, Z.; Gao, S. Formate—The Analogue of Azide: Structural and Magnetic Properties of
M(HCOO)2(4,4‘-Bpy)·nH2O (M = Mn, Co, Ni; n = 0, 5). Inorg. Chem. 2005, 44, 572–583. [CrossRef]

52. Kar, P.; Guha, P.M.; Drew, M.G.B.; Ishida, T.; Ghosh, A. Spin-Canted Antiferromagnetic Phase Transitions in Alternating Phenoxo-
and Carboxylato-Bridged MnIII-Salen Complexes. Eur. J. Inorg. Chem. 2011, 2011, 2075–2085. [CrossRef]

53. Mossin, S.; Weihe, H.; Osholm Sørensen, H.; Lima, N.; Sessoli, R. Rationalisation of Weak Ferromagnetism in Manganese(iii)
Chains: The Relation between Structure and Ordering Phenomena. Dalton Trans. 2004, 4, 632–639. [CrossRef] [PubMed]

54. Kahn, O. Molecular Magnetism; VCH Publishers: New York, NY, USA, 1993.
55. Kang, S.K.; Shim, Y.S. Poly[(m6-6-Oxidopyridinium-2-Carboxylato)Caesium]. Acta Cryst. E 2011, 67, m1237. [CrossRef]
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