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Abstract

Purpose The purpose of this study is to develop and validate a 3D deep learning model that predicts the final clinical diagno-

sis of Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), mild cognitive impairment due to Alzheimer’s disease 

(MCI-AD), and cognitively normal (CN) using fluorine 18 fluorodeoxyglucose PET (18F-FDG PET) and compare model’s 

performance to that of multiple expert nuclear medicine physicians’ readers.

Materials and methods Retrospective 18F-FDG PET scans for AD, MCI-AD, and CN were collected from Alzheimer’s 

disease neuroimaging initiative (556 patients from 2005 to 2020), and CN and DLB cases were from European DLB Con-

sortium (201 patients from 2005 to 2018). The introduced 3D convolutional neural network was trained using 90% of the 

data and externally tested using 10% as well as comparison to human readers on the same independent test set. The model’s 

performance was analyzed with sensitivity, specificity, precision, F1 score, receiver operating characteristic (ROC). The 

regional metabolic changes driving classification were visualized using uniform manifold approximation and projection 

(UMAP) and network attention.

Results The proposed model achieved area under the ROC curve of 96.2% (95% confidence interval: 90.6–100) on predict-

ing the final diagnosis of DLB in the independent test set, 96.4% (92.7–100) in AD, 71.4% (51.6–91.2) in MCI-AD, and 

94.7% (90–99.5) in CN, which in ROC space outperformed human readers performance. The network attention depicted 

the posterior cingulate cortex is important for each neurodegenerative disease, and the UMAP visualization of the extracted 

features by the proposed model demonstrates the reality of development of the given disorders.

Conclusion Using only 18F-FDG PET of the brain, a 3D deep learning model could predict the final diagnosis of the most 

common neurodegenerative disorders which achieved a competitive performance compared to the human readers as well 

as their consensus.

Keywords Artificial intelligence · Deep learning · FDG PET · Alzheimer’s disease · Mild cognitive impairment · Dementia 

with Lewy bodies

Introduction

Neurodegenerative dementias have a huge negative impact 

on the healthcare systems globally, especially with increas-

ing older population. According to the World Health Organi-

zation, there are 50 million persons around the world suffer-

ing from dementia and 10 million new cases are anticipated 

every year [1]. Alzheimer’s disease, which is considered to 
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be the most common neurodegenerative disorder, accounts 

for approximately 60% of all dementia [2]. Dementia with 

Lewy bodies (DLB) is another common neurodegenerative 

disorder, accounting for up to 30% of all cases of demen-

tia [3] and is often misdiagnosed and unrecognized [4]. 

Mild cognitive impairment (MCI) is a prodromal form of 

dementia, defined by cognitive impairment not interfering 

with activities of daily living, leading to AD, DLB, or other 

degenerative dementias [5, 6]. The diagnosis of such dis-

orders is challenging, even for experienced neurologists, 

making the decision of the use of the appropriate treatment 

difficult in some cases. Therefore, physicians use diagnostic 

tests such as neurofunctional imaging in order to provide 

more accurate clinical assessments [7]. 18F-FDG PET scans, 

which measure cerebral glucose metabolism, have been 

reported as a useful biomarker for the discrimination of the 

above-mentioned neurodegenerative disorders [8].

Deep learning (DL) methods have recently gained more 

popularity in medical image analysis and in specific in neu-

rodegenerative diseases [9–11]. This wide recognition is due 

to its capability to learn complex representations in imaging 

data that are not easily detectable by humans [12], dimin-

ishing the need of manual feature extraction (compared to 

traditional machine learning techniques) and detecting the 

effective features automatically [13].

Most DL models applied in neurodegenerative diseases 

mainly focus on binary [13, 14] or classify multiple stages 

of AD from no dementia to moderate AD on 2D scans [9, 

15]. However, the utility of such models is limited to the AD 

population solely, which makes them unable to discriminate 

from non-AD patterns. In addition, it is difficult to validate 

their robustness in the presence of non-AD dementias. The 

proper diagnosis of dementia patients requires going beyond 

binary classification and at least recognizing the differences 

among cognitively normal (CN), MCI and other types of 

dementia, especially the most common ones such as AD and 

DLB considering the 3D nature of such scans.

This study introduces a 3D-CNN model that can predict 

the final clinical diagnosis of CN, MCI due to AD and pat-

terns of some types of dementia which can represent a chal-

lenge in their differentiation for the average reader, like AD 

and DLB. We hypothesized that a well-designed 3D-CNN 

model could take the advantage of the 3D 18F-FDG PET 

scans, detect features or patterns in these kinds of patients, 

and match or even provide better results than the experi-

enced human readers, improving the final diagnostic clas-

sification of individuals. The model interpretation results 

indicate specific brain regions which makes the most dis-

criminations among the included neurodegenerative disor-

ders that confirm the findings from the clinical studies.

Material and method

Data acquisition

The retrospective scans were collected from two differ-

ent sources (Fig. 1). The anonymized scans from patients 

with probable DLB were collected from the European DLB 

(EDLB) Consortium,1 which has its core laboratory at 

Genoa, Italy having the local institutional ethics committee 

approvals including the transfer of fully anonymized imag-

ing brain 18 F-FDG PET scans. The scans were performed 

according to the European Association of Nuclear Medicine 

(EANM) guidelines [16] from February 2005 to September 

2018. Recruited patients were referred to and assessed at 

outpatient clinics including memory, movement disorders, 

geriatric medicine, psychiatric, and neurology clinics as pre-

viously described in [17]. Given the retrospective nature of 

the present study, diagnosis of probable DLB was originally 

Fig. 1  Inclusion and exclu-

sion criteria for the datasets 

used. Since Alzheimer’s 

disease neuroimaging initiative 

(ADNI) includes a larger set of 

Alzheimer’s disease (AD), mild 

cognitive impairment due to 

AD (MCI-AD), and cognitively 

normal (CN), we included those 

that have no artefacts up to 200 

cases per each disorder (except 

dementia with Lewy bodies 

(DLB) which the European 

DLB consortium (EDLB) 

provided)

1 https:// www. ge. infn. it/ wordp ress/? page_ id= 77& lang= en.
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made according to diagnostic criteria for probable DLB as 

defined by [18].

The EDLB also provided several normal cases that we 

added to the CN database. In order to have comparable sam-

ple sizes with DLB, up to 200 scans with AD, MCI, and 

CN were downloaded from the Alzheimer’s disease neuro-

imaging initiative (ADNI)2 [19] across ADNI-1, ADNI-2, 

ADNI-3, and ADNI-GO (Grand Opportunities) studies from 

December 2005 to March 2020. The ADNI was launched in 

2003 as a public–private partnership, led by Principal Inves-

tigator Michael W. Weiner, MD. The primary goal of ADNI 

has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biologi-

cal markers, and clinical and neuropsychological assessment 

can be combined to measure the progression of MCI and 

early AD. Detailed 18 F-FDG PET imaging protocols can be 

found at ADNI.3 Data regarding the patient’s final diagnosis 

were downloaded from the ADNI web portal. For each case, 

the latest scans were included. ADNI also provides informa-

tion regarding the conversions from MCI to AD. Therefore, 

the MCI cases are confined to MCI-AD where the latest 

scans of the MCI cases before conversion to AD during the 

follow-up period were included in this study.

For both datasets, final clinical diagnosis was used as the 

ground truth label. Ninety percent of the final dataset (684 

cases) was used for model training and internal validation. 

The remaining 10% (73 cases) was used as an independent 

test set for the model and comparison of the reader’s clinical 

interpretations.

Data preprocessing

The original DICOM/NIFTI formats were used. The PET 

scans were spatially normalized to match the International 

Consortium of Brain Mapping template [20] and then skull 

stripped using MATLAB R2016a4 and SPM12.5 The proba-

bility maps of gray matter, white matter, cerebrospinal fluid, 

bone, and soft tissue/air were extracted. The skull stripping 

was done by retaining the voxels with high probability of 

being gray matter, white matter, or cerebrospinal fluid while 

discarding those likely being bone and soft tissue/air. The 

normalized and skull stripped scans were then visually 

inspected to assess their normalization quality and ensure 

that the spatial normalization converged to an acceptable 

solution. All the brains were positioned approximately in 

the center of the volume.

The first 10 layers as well as the last 9 layers of each scan 

were excluded as they contain very small objects, result-

ing in having a 3D volume of (95 × 79 × 60). Since scans 

are from various sites, feature-wise normalization was per-

formed using image data preprocessing library in Keras,6 

i.e., intensities of range [0,1]. Particularly, we treated each 

scan as a sequence of 2D images along the axial plane. We 

applied feature-wise normalization for each scan separately 

such that each 3D voxel was normalized by subtracting 

feature-specific mean then dividing by the feature-specific 

standard deviation per each scan.

Model training

The 3D-CNN model is designed with reference to the 

architecture of VGG16 CNN [21] containing 2 convolu-

tional blocks with 4 convolutional layers and a filter of size 

3 × 3 × 3 across all convolution layers (Fig. 2). The model 

development and training were conducted using Keras 

library on a computer with Linux Ubuntu 18.09 operating 

system, one Nvidia Quadro GV100 GPU card with 32 GB of 

memory, and 36 CPU core Xenon with 128 GB of memory.

We performed end-to-end training using mini-batches 

of size 6 and Adadelta optimizer with 0.01 learning rate 

for 50 epochs. Dropout layers with 0.5 rate are used as a 

regularization method, forcing the network to learn more 

robust features. To prevent the model from overfitting, an 

early stopping condition was used by monitoring the valida-

tion loss in order to end the model training when the model 

performance stops improving (i.e. less than 0.0001 change 

in validation loss for 10 epochs).

The model training was performed through 20 rounds of 

k-fold cross validation with k ∈ [2, 10] on the training set 

and then accuracy is reported with confidence intervals (CI). 

The model with the highest validation accuracy is chosen for 

further fine-tuning using the training set with a stochastic 

gradient descent optimizer, 0.0001 learning rate, and 0.9 

momentum for 50 epochs.

Model interpretation and visualization

To visualize the attention of the network towards a spe-

cific class, we performed an occlusion experiment [22] for 

all four classes in the training dataset, where a volume of 

6 × 5 × 5 is removed from the normalized scan with a stride 

of 2 for all 3 directions. The results show the cross-entropy 

response of the network given such occluded data as a func-

tion of the position of the occlusion box. The assumption is 

that when ignoring a relevant region for the correct classi-

fication, the cross-entropy response will be high. The maps 

2 adni.loni.ucla.edu.
3 http:// adni. loni. usc. edu/ metho ds/ docum ents/.
4 https:// www. mathw orks. com/ help/ matlab/ relea se- notes- R2016a. 

html.
5 https:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm12/. 6 https:// keras. io/ api/ prepr ocess ing/ image/.
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are then projected using a mosaic of the slices 5 to 54 (to 

create a 7 × 7 grid) on the axial direction and over layered 

with the average brain. To visualize the metabolism pat-

terns within each clinical diagnosis related to the highlighted 

brain regions in the occlusion heatmaps, the average normal-

ized brain scan per each class is calculated over all available 

cases.

UMAP is a type of dimensionality reduction algorithm 

[23] to project the high-dimensional dataset into a 2-dimen-

sional plane for easy visualization while preserving the 

relative closeness of data points. We used the unsupervised 

UMAP to visualize (1) the original normalized data and (2) 

the extracted features by 3D-CNN model (before the clas-

sification layer).

Clinical interpretations

Four board-certified nuclear medicine physicians, R1, 

R2, R3, and R4, with 16, 13, 8, and 3 years of experience, 

respectively, performed independent interpretations of the 

independent test set (73 cases). The scans were available in 

axial, sagittal, and coronal views illustrated using Papaya.js 

volume viewer7 to the readers via a secure portal using their 

given credentials. Readers could log in whenever they want, 

interact with the viewer, and insert their readings includ-

ing their diagnosis (among the four classes) into the portal. 

Only scans were visible to the readers (unlike natural clinical 

situations), the same as what had been used to train the deep 

learning model. The inter-rater agreement among the four 

readers using Fleiss’s kappa [24] is reported.

Evaluations

For the external validation, receiver operating characteristic 

(ROC) curves of the model on the independent test set (i.e., 

10% hold-out data) were plotted and the area under the ROC 

curve (AUC) was calculated with 95% CI.

For each scan in the independent test set, the majority vot-

ing of readers was taken as the consensus clinical diagnosis. 

In case of no consensus, the labels are scattered among the 

annotated labels, e.g., if an AD case is labeled as AD by 

two readers, MCI-AD by one reader, and CN by one reader, 

we calculate it as 0.5, 0.25, and 0.25 for AD, MCI-AD, and 

CN respectively. The sensitivity and specificity of readers’ 

performance and their consensus were plotted in the same 

ROC space. Sensitivity, specificity, precision, F1 score, and 

the confusion matrix with discussion on the misdiagnosed 

cases were reported for both the model and the consensus of 

human readers. Cohen’s kappa was calculated among con-

sensus diagnosis and model predicted diagnosis.

Fig. 2  The 3D convolutional neural networks architecture of the 

introduced model. The model utilizes 3D 18F-FDG PET scans after 

being normalized via feature-wise normalization. We consider the 

input as a sequence of 2D images obtained along the axial plane from 

18F-FDG PET scans

7 https:// github. com/ rii- mango/ Papaya.
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Model robustness

In order to investigate the model sensitivity and robustness 

to other similar dementia (i.e., something that the model has 

not been trained for), 18F-FDG PET scans for eight fronto-

temporal lobar degeneration (FTLD) cases were downloaded 

from the frontotemporal lobar degeneration neuroimaging 

initiative (FTLDNI) database. FTLDNI was funded through 

the National Institute of Aging, and started in 2010. The 

primary goals of FTLDNI were to identify neuroimaging 

modalities and methods of analysis for tracking frontotem-

poral lobar degeneration (FTLD) and to assess the value of 

imaging versus other biomarkers in diagnostic roles.8

The FTLD scans were pre-processed with the same pro-

cedure mentioned before and using the proposed 3D-CNN 

model; we plot the UMAP as well as the occlusion maps 

besides the output of the model for these eight FTLD cases.

MMSE-based classification

To perform further classification analysis and enhance the 

translational potential of the proposed model, a new model 

with different split strategies for training and testing datasets 

was developed using MMSE scores. MMSE score is used to 

assess changes to patients suffering from dementia such low 

score indicates severe dementia while high score indicates 

early or mild conditions of dementia. Thus, scans associated 

with high MMSE scores can be challenging for diagnosis. 

We performed data stratification according to MMSE to 

force the model to get trained on severe cases and tested on 

mild ones. After sorting the cases in each clinical diagnostic 

class, 80% (439 cases with low MMSE score) were used for 

training and remaining 20% (112 cases having high MMSE 

scores in each category) for testing. We trained the model 

using KFCV for 10 rounds. Several performance metrics 

including accuracy, ROC curve, AUC, classification results, 

and UMAP visualization of dataset using the new model are 

reported.

Results

Demographics

Table 1 summarizes the demographics and mini-mental state 

examination (MMSE) scores of the two datasets used in this 

study: EDLB and ADNI, as well as the train and test set dis-

tributions. The dataset consisted of 757 cases including 200 

AD (from ADNI), 200 MCI-AD (from ADNI), 157 DLB 

(from EDLB), and 200 CN (156 cases from ADNI and 44 

cases from EDLB).

The average age of the patients was 77.6 years for men 

(between 56 to 92 years old) and 76.2 years for women 

(between 56 and 96 years old) in the ADNI dataset. In the 

EDLB set, the average age for men was 72.7 (between 48 to 

91 years old) and 72.9 for women (between 50 and 86 years 

old). The overall percentage of women in the ADNI set was 

35.2% (196 of 556), and in the EDLB set, was 40.2% (81 

of 201).

Initially 200 scans (50 per each class) were sampled using 

stratified random sampling as the independent test set; but 

eventually 73 cases were read by all four readers.

Clinical interpretations

Fleiss’s kappa among four readers was 0.19 when discrimi-

nating between the diagnoses of AD, MCI-AD, DLB, and 

CN solely based on metabolic patterns, which is considered 

as a slight agreement [25]. There were 10 cases in which 

there was no majority voting among readers (two AD, two 

CN, five DLB, and one MCI-AD cases). In 8 of these 10 

cases, the correct clinical diagnosis was among the readers’ 

labels, meaning that two readers could diagnose the correct 

disorder while the other two voted for another disorder. The 

consensus accuracy of the readers was 0.57, and it is higher 

than each individual reader. The accuracies of R1, R2, R3, 

and R4 are 0.56, 0.50, 0.46, and 0.39, respectively which are 

positively associated with the readers’ experience.

More detailed readers’ labeling information is provided 

in Table 2. The Fleiss’ kappa is also calculated per each 

disorder to illustrate the inter-rater agreements in detail. Out 

of the 24 labels from the four readers for 6 MCI-AD cases, 

there were 9 (37.5%) CN, 9 MCI-AD, 4 (16.7%) AD, and 2 

(8.3%) DLB, showing MCI-AD is commonly misdiagnosed 

as CN, which is very common in the clinical interpretation 

[26]. There was only one CN case where all the readers 

voted for CN, and in the remaining ones, votes were scat-

tered mainly among MCI-AD and CN, that explains very 

low agreement in CN cases.

Readers had the highest agreement in AD, with 0.21 as 

the Fleiss’s kappa. In three of 22 AD cases, all four readers 

correctly labeled them as AD and in other three cases, three 

readers converged to AD. Lastly, there was one DLB case 

where there was no agreement among the readers.

 Performance metrics for readers are shown in Table 3. 

In general, readers have higher performance metrics in DLB 

compared to other clinical diagnoses. Readers are perform-

ing very high in ruling out cases having no DLB (100%); 

all of 52 non-DLB (i.e., MCI-AD, AD, or CN) labels were 

truly non-DLB. On the contrary, their performance met-

ric for MCI-AD is relatively low, which is in line with the 

results from [10].

8 For up-to-date information on participation and protocol, please 

visit http:// memory. ucsf. edu/ resea rch/ studi es/ nifd.
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Model training

Figure 3 depicts the 95% confidence intervals for training 

and validation accuracy for each k. The highest validation 

accuracy of 78.9% was achieved with 608 samples and the 

validation accuracy was computed using the remaining 76 

samples of the training set.

Evaluations

The performance metrics for the trained model is shown 

in Table 3, as well as the readers’ performance metrics. 

The ROC curves of the model and the readers are shown 

in Fig. 4. The AUC for prediction of DLB, AD, MCI-AD, 

and CN was 96.2%, 96.4%, 71.4%, and 94.7% respectively. 

Both the model and readers are performing higher in DLB 

Table 1  Demographics of datasets. (a) Alzheimer’s disease neuroim-

aging initiative (ADNI) and the European DLB consortium (EDLB) 

datasets, (b) train set (used for model training and internal validation), 

and the independent test set (used for model testing and comparison 

to readers)

* 15 cases with no registered MMSE score, where one of them reported language barrier as the reason
** No MMSE score collected for normal cases in EDLB
*** One DLB case contained no age-sex information

AD, Alzheimer disease; MCI-AD, mild cognitive impairment due to AD; DLB, dementia with Lewy bodies; CN, cognitively normal

a: Datasets

ADNI set No. (percentage) Average age (year)

Clinical diagnosis No. cases Female sex Male Female MMSE score

AD 200 72 (36.0%) 76.7 ± 8.2 (56–92) 74.0 ± 7.8 (56–89) 22.3 ± 3.3

(8–30)

MCI-AD 200 62 (31.0%) 78.6 ± 7.0 (59–91) 76.6 ± 6.9 (57–96) 26.0 ± 3.9

(10–30)

CN 156 62 (39.7%) 77.5 ± 5.4 (62–89) 78.3 ± 5.0 (64–87) 29.1 ± 1.4

(18–30)

All-ADNI 556 196 (35.2%) 77.6 ± 7.1 (56–92) 76.2 ± 7.0 (56–96)

EDLB set

DLB 157* 59 (37.5%) 73.3 ± 7.2 (53–91) 74.8 ± 6.4

(58–86)

22.4 ± 4.7

(5–30)

CN 44** 22 (50.0%) 70.1 ± 10.3 (48–84) 67.5 ± 9.2

(50–83)

All-EDLB 201 81 (40.2%) 72.7 ± 7.9 (48–91) 72.9 ± 7.9 (50–86)

Total 757 277 (36.6%) 76.4 ± 7.6 (48–92) 75.2 ± 7.4 (50–96)

b: Train and test sets

Train set: No. (percentage) Average age (year) Source (percentage)

Clinical diagnosis No. cases (percentage) Female sex Male

(range)

Female (range) EDLB

AD 178 (89%) 67 (37.6%) 76.9 ± 8.3 (56–91) 74.1 ± 7.7 (59–89) 0 (0.0%)

MCI-AD 194 (97.0%) 60 (30.1%) 78.6 ± 6.8 (60–91) 76.6 ± 7.0 (57–96) 0 (0.0%)

DLB 136 (86.4%) 52 (38.2%) 73.7 ± 7.0 (55–91) 74.8 ± 6.2 (58–86) 136 (100%)

CN 176 (88%) 71 (40.3%) 76.5 ± 6.6 (48–89) 75.4 ± 8.2 (50–87) 34 (19.3%)

All-train set 684 (90.4%) 250 (36.5%) 76.7 ± 7.4 (48–91) 75.2 ± 7.4 (50–96) 170 (25.2%)

Test set:

AD 22 (11%) 5 (22.7%) 75.7 ± 8.4 (57–92) 71.6 ± 10.0 (56–82) 0 (0.0%)

MCI-AD 6 (3%) 2 (33.3%) 78.0 ± 14.6 (59–91) 75.5 ± 2.1 (74–77) 0 (0.0%)

DLB 21***(13.3%) 7 (33.3%) 70.5 ± 8.3 (53–87) 75.5 ± 8.5 (67—86) 21 (100%)

CN 24 (12%) 13 (54.1%) 72.0 ± 10.8

(55–85)

75.9 ± 6.1 (65–85) 10 (41.6%)

All-test set 73 (9.6%) 27 (37.0%) 73.5 ± 9.6 (53–92) 75.9 ± 7.2 (56–86) 31 (42.4%)
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cases and lower in MCI cases. The model reached a per-

fect performance in DLB cases with 86% sensitivity (18 

out of 21 DLB cases were detected), 100% specificity (52 

non-DLB cases by the model were correctly ruled out), 

and 100% precision (18 cases labeled as DLB were cor-

rectly classified), and F1 score 92%. The proposed model 

performed better than all the readers and their consensus, 

in some cases even statistically significant. As depicted in 

Fig. 4, some readers have higher sensitivity in some dis-

orders while others have higher specificity. For instance, 

R1 has higher sensitivity in diagnosing CN, while R3 has 

higher specificity in the same disorder.

Cohen’s kappa among consensus diagnosis and model 

predicted label was 0.54, which is considered as moderate 

agreement. Among 13 misdiagnosed cases by the model, 

there were 5 MCI-AD cases, 2 AD, 3 CN, and 3 DLB cases 

as illustrated in Table 2. We looked into these cases and 

compared them to the readers’ labeling. In MCI-AD cases, 

one case was correctly diagnosed by both the model and the 

readers, and the remaining 5 cases, all were misdiagnosed 

Table 2  Confusion matrix: 

labels of readers and the model 

for the independent test set (the 

highest label ranked by readers 

per each disorder (in each row) 

is shown in bold. The diagonal 

numbers are the true positives 

shown in underlined

* Numbers in parentheses show the percentage of the whole labels collected for all scans per each disorder

AD, Alzheimer disease; MCI-AD, mild cognitive impairment due to AD; DLB, dementia with Lewy bod-

ies; CN, cognitively normal

Readers’ labels

Actual label AD* MCI-AD* DLB* CN* Sum (no. cases) Fleiss’s kappa

AD 36 (40.9%) 27 (30.6%) 6 (6.8%) 19 (21.6%) 88 (22) 0.21

MCI-AD 4 (16.7%) 9 (37.5%) 2 (8.3%) 9 (37.5%) 24 (6) 0.07

DLB 19 (22.6%) 11 (13.1%) 41 (48.8%) 13 (15.5%) 84 (21) 0.04

CN 4 (4.2%) 27 (28.1%) 10 (10.4%) 55 (57.3%) 96 (24) -0.02

Sum 63 (21.6%) 74 (25.3%) 59 (20.2%) 96 (32.9%) 292 (73) 0.19

Model Labels

Actual label AD* MCI-AD* DLB* CN* No. cases Cohen’s kappa 

model vs. con-

sensus

AD 20 (91%) 1 (4.5%) 0 1 (4.5%) 22 0.13

MCI-AD 3 (50%) 1 (16.7%) 0 2 (33.3%) 6 0.21

DLB 0 (%) 1 (4.8%) 18 (85.7%) 2 (9.5%) 21 0.27

CN 1 (4.2%) 2 (8.3%) 0 21 (87.5%) 24 0.68

Sum 24 (32.9%) 5 (6.8%) 18 (24.7%) 26 (35.6%) 73 0.54

Table 3  Performance metrics 

for the proposed deep learning 

model and the consensus 

of the readers (bold values 

are the highest between 

readers consensus vs. model 

performance, underlined values 

illustrate similar performance)

* Numbers in parentheses are the number of cases (raw data) used to calculate the metric

In case of no consensus, the labels are scattered among the annotated labels, e.g. if an AD case is labeled as 

AD by two readers, MCI-AD by one reader, and CN by one reader, we calculate it as 0.5, 0.25, and 0.25 for 

AD, MCI-AD, and CN respectively

AD, Alzheimer disease; MCI-AD, mild cognitive impairment due to AD; DLB, dementia with Lewy bod-

ies; CN, cognitively normal

Metric Sensitivity * Specificity * Precision * F1 score No. cases

Consensus of the readers

  AD 0.47 (10.5/22) 0.90 (46.25/51) 0.68 (10.5/15.25) 0.56 22

  MCI-AD 0.25 (1.5/6) 0.75 (50.25/67) 0.08 (1.5/18.25) 0.12 6

  DLB 0.63 (13.25/21) 1.0 (52/52) 1.0 (13.25/13.25) 0.77 21

  CN 0.70 (17/24) 0.81 (39.75/49) 0.64 (17/26.25) 0.67 24

Model

  AD 0.91 (20/22) 0.92 (47/51) 0.83 (20/24) 0.87 22

  MCI-AD 0.17 (1/6) 0.94 (63/67) 0.20 (1/5) 0.18 6

  DLB 0.86 (18/21) 1.0 (52/52) 1.0 (18/18) 0.92 21

  CN 0.88 (21/24) 0.90 (44/49) 0.81 (21/26) 0.84 24
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both by the consensus of the readers and the model, that 

explains the high agreement between consensus of the read-

ers and the model (Cohen’s kappa 0.68). In total, among 

these 13 model-misdiagnosed cases, 11 cases were also con-

sensus-misdiagnosed, and 6 cases were similarly consensus-

misdiagnosed to the same disorder.

Fig. 3  Confidence intervals 

(95% CI) for training and vali-

dation accuracy during k-fold 

cross validation. KFCV, k-fold 

cross validation

Fig. 4  Receiver operating char-

acteristic (ROC) curves with 

95% confidence interval (CI) 

on the test set for a Alzheimer 

disease (AD), b mild cognitive 

impairment due to AD (MCI-

AD), c dementia with Lewy 

bodies (DLB), and d cognitively 

normal (CN). (R-All indicates 

the consensus labeling among 

the four readers, R1-4, reader 

1–4)

(a) Model vs Readers (AD) (b) Model vs Readers (MCI-AD)

(c) Model vs Readers (DLB) (d) Model vs Readers (CN)
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Model interpretation and visualization

As shown in UMAP visualizations in Fig. 5b, DLB cases 

were separated compared to Fig. 5a and it is explaining the 

good performance of the model due to the relevant extracted 

features. The other interesting pattern in this figure is the 

distribution of cases from CN to MCI-AD and then to AD, 

which is happening also in reality. DLB cases are very well 

separated and cases from CN to AD are spread from CN to 

MCI-AD and to AD, which explains the development of 

AD. The extracted features of the proposed model were able 

to separate these four classes well enough, although using 

unsupervised UMAP.

The test cases with red circles in Fig. 5b are the mis-

classified cases by the model. They are mainly those cases 

that have happened to be in the middle of the wrong class 

or in the borders of two classes. It is worth mentioning 

again that the ground truth labels for the whole dataset 

(both the ADNI and EDLB) are the final clinical diagnosis 

obtained from these sources and we are not aware if nec-

ropsy evaluation has been performed in any of those cases.

The results of the occlusion experiment which indi-

cated the network attention are illustrated in Fig. 6. The 

highlighted regions in each disorder indicate which brain 

regions were of more attention in the proposed model in its 

prediction. In AD (Fig. 6a), the posterior cingulate cortex 

is the most discriminating region, slightly along with the 

temporal lobes and the anterior cingulate cortex. In MCI-

AD (Fig. 6b), the most discriminating regions are similar 

to AD with more emphasis on the posterior cingulate cor-

tex, the middle temporal gyrus, gyrus rectus/orbital gyri, 

and also on the parieto-occipital cortex. Furthermore, the 

Fig. 5  Uniform manifold 

approximation and projection 

(UMAP) visualization of the 

data: a shows the visualization 

of the original input data and b 

shows the map of the features 

extracted from the proposed 

model, the layer before the 

classifier layer. The red circles 

denote the misclassified testing 

samples. (AD, Alzheimer dis-

ease; MCI-AD, mild cognitive 

impairment due to AD; DLB, 

dementia with Lewy bod-

ies; CN, cognitively normal; 

UMAP-D, uniform manifold 

approximation and projection 

dimension)

(a) 2D visualization of data (train/test)

(b) 2D visualization of data representation (train/test) after model training 
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(a) AD (b) MCI-AD

(c) DLB (d) CN
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posterior cingulate cortex is also taking an important role 

in differentiating DLB cases (Fig. 6c) besides the occipital 

cortex. And finally, in CN (Fig. 6d), the occipital cortex, 

the cerebellum, and slightly postcentral gyrus and striatum 

are the highlighted regions.

The posterior cingulate cortex is important for all 

the given neurodegenerative disorders, i.e., AD, MCI-

AD, and DLB, and not in CN. It shows the pattern in 

this brain region makes the most difference in a cog-

nitively normal brain compared to dementia-involved 

ones.

The average over all normalized brain scans for each 

clinical diagnosis is illustrated in Fig. 7. AD (Fig. 7a) and 

MCI-AD (Fig. 7b) share similar metabolism patterns with 

MCI-AD in the highlighted regions as shown in Fig. 6b. The 

hypometabolism pattern in the posterior cingulate cortex dif-

fers the most among the different disorders as expected from 

Fig. 6.

Model robustness

Among the eight FTLD cases, three cases were classi-

fied as CN while the remaining five cases were classi-

fied as AD by the model. Figure 8a shows the UMAP 

representation of the training set (similar to Fig. 5b with 

test cases excluded) where FTLD cases are also plotted. 

All the eight cases are mapped close to each other in the 

UMAP space. Interestingly, the generated representation 

reflects the similarity of FTLD cases with CN and AD 

cases and not to DLB. What is expected to observe in 

FTLD is low FDG uptake in the frontal and temporal 

lobes [29]. A patient with a chronic AD can eventually 

have involvement of the frontal lobes and look like a 

FTLD. These five FTLD cases are very probable to have 

involvement not only of the frontal and temporal lobes 

but even the parietal lobes might be involved. We per-

formed the occlusion experiments using FTLD cases to 

investigate further the highlighted regions in these brain 

scans. As shown (see Fig.  8.b and 8.c), though there 

is a huge overlap in highlighted regions with previous 

results of AD/CN, FTLD cases show different intensities. 

Hence, the learned patterns by the model correspond to 

the metabolism patterns within each disorder.

MMSE-based classification

The new model trained on low MMSE scores achieved best 

accuracy 80%, 82%, 66% for training, validation, and test-

ing accuracy, respectively. The validation accuracy is higher 

than the validation accuracy of the proposed model trained 

without MMSE stratification, while the testing accuracy is 

lower. The decay in performance is expected, due to the 

stratification that forces the model to get trained on easy 

cases and tested on hard cases to predict. The test set con-

tained 112 cases, out of which 33 were misclassified. Fig-

ure 9a depicts the UMAP visualization of the new trained 

model, which conveys the same pattern as the UMAP visu-

alization of the random split model shown in Fig. 5b with 

less clear borders that justifies the lower performance. The 

ROC curves and AUCs are shown in Fig. 9b. Compared to 

the random split results, no change in DLB and MCI-AD is 

observed, but AD and CN experienced a drop of 5 and 10% 

in AUC respectively.

Figure 10 illustrates the MMSE scores of the classifi-

cation results both in the random split (Fig. 10a) which is 

performed in design of the proposed model, and the stratified 

split where the same model is trained on low MMSE scores, 

and tested on high MMSE scores (Fig. 10b). In the random 

split, the misclassification errors happened both in low and 

high MMSE scores in CN and MCI-AD groups, while in AD 

and DLB, the few misclassified test cases occurred close to 

the high MMSE scores. However, in the stratified split, the 

misclassified test cases are not different from the correctly 

classified test cases in terms of MMSE score.

Discussion

Today, nuclear medicine specialist physicians make pat-

tern recognition decisions on FDG PET scans using visual 

and qualitative readings, which is complex and challenging 

and needs years of experience. In this study, we proposed 

a 3D-CNN model to predict the diagnosis based on 18F-

FDG PET scans. The datasets were achieved from ADNI 

and EDLB. The performance of the model was shown to be 

robust across the studied disorders: DLB, AD, MCI-AD, and 

CN and also in comparison to the nuclear medicine read-

ers. The proposed model reached a competitive performance 

compared to an experienced reader and also the consensus 

of them. With further validation with more diverse datasets 

and extending to include more similar disorders, the pro-

posed model can be used as an augmentation to the provided 

18F-FDG PET software, improving the diagnosis of such 

Fig. 6  Results of the occlusion experiments for a Alzheimer disease 

(AD), b mild cognitive impairment due to AD (MCI-AD), c dementia 

with Lewy bodies (DLB), and d cognitively normal (CN). The results 

are projected by creating a mosaic of slices in the axial direction. The 

cross-entropy maps have been over layered with the average brain

◂
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neurodegenerative disorders, especially in situations where 

there is missing presence of experienced physicians.

This study has several strengths and contributions 

that are briefly explained here. First, the dataset is rel-

atively diverse since it contains cases from ADNI and 

EDLB sources, in specific the CN cases were a combi-

nation of both sources and DLB cases were from 7 dif-

ferent sites in Europe. The MCI cases were confined 

to those that further developed AD and not including 

MCI as a generic cognitive impairment. Second, the 

test set was relatively big (n = 73) compared to the 

similar studies, for example (n = 40) within the inde-

pendent test set as reported in [10] and (n < 35) with 

tenfold cross validation as reported in [27]. The CN 

cases in the test set were selected balanced from the 

two sources ADNI and EDLB not to be biased towards 

ADNI which is more dominant in providing our CN 

cases.

(a) AD (b) MCI-AD 

(c) DLB (d) CN 

Fig. 7  The average brain scan for all normalized cases with a Alzheimer disease (AD), b mild cognitive impairment due to AD (MCI-AD), c 

dementia with Lewy bodies (DLB), and d cognitively normal (CN)
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Third, the dataset includes DLB, a non-AD disorder, as 

well as the AD family (AD and MCI-AD), and CN to make 

it more robust in the predicted diagnosis compared to similar 

studies which tried to discriminate different stages of AD, 

make the utility of their algorithm limited to AD patient 

population only.

And finally, the extracted patterns from the interpreta-

tion of the model show that the posterior cingulate cortex 

is playing an important role in discriminating these neuro-

degenerative disorders, i.e., AD, MCI-AD, and DLB, and 

not in CN. It shows the pattern in this brain region makes 

the most difference in a cognitively normal brain compared 

(a) UMAP visualization of data representation (train) after model training and  FTLD cases marked with red circles. 

(b) Occlusion results of FTLD cases predicted as CN (c) Occlusion results of FTLD cases predicted as AD 

Fig. 8  Results of FTLD cases, a the representation space with training dataset and adding new 8 cases with FTLD, b occlusion results of FTLD 

cases labeled as CN, and c occlusion results for FTLD cases labeled as AD
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to dementia-involved ones. It also depicted AD and MCI-

AD sharing the same affected brain regions. While in [10], 

model visualization with saliency map did not reveal a 

human interpretable imaging biomarker that appears influ-

ential for AD prediction.

Recently, substantial work in the area of applying DL 

methods has been done for the classification of differ-

ent brain disorders [9–11]. However, most of the work 

has been performed using structural imaging of the brain 

and very little work has been presented by applying DL, 

particularly CNNs, using functional imaging, specifically 

18F-FDG PET scans. In Table  4, we summarized the 

results obtained by recent DL studies for the diagnosis of 

AD and MCI using FDG PET [10, 14, 27, 28].

In summary, the proposed model takes the advantage 

of the 3D 18F-FDG PET scans and provides high pre-

dictive performance as well as strong generalizability 

with the diagnosis of multiple neurodegenerative dis-

orders. Differently from existing methods, the pre-

sented model can distinguish cases of AD, CN, MCI-

AD, and DLB with AUC of 96.4%, 94.7%, 71.4%, and 

96.2%, respectively. The model robustness test over 

a few FTLD cases (which was not part of the train-

ing process), revealed that the learned metabolism by 

the model are relevant and consistent to the expected 

patterns.

One of the limitations of the study was that all AD 

and MCI-AD disorders were obtained from ADNI, which 

makes the robustness of the proposed model in these two 

cases limited to the clinical distribution of ADNI data-

sets. Furthermore, the number of MCI-AD cases in the 

independent test set was small. Performance dropped 

somewhat for the classification of MCI-AD cases, but 

this was analogous to the performance of the readers. 

Fig. 9  Results of training a new 

model with MMSE-based data 

split, a the UMAP visualization 

of training/testing datasets with 

misclassified test cases identi-

fied with red circles, b receiver 

operating characteristic (ROC) 

curve for model predictions 

with testing dataset

(a) 2D visualization of data representation (train/test) after model training 

(b) ROC-Curve for testing data set

576 European Journal of Nuclear Medicine and Molecular Imaging (2022) 49:563–584



1 3

Also, FDG PET may be normal in the MCI-AD stage 

where the diagnosis heavily relies on fluid biomarkers.

The second limitation is that the proposed model pre-

dicted the diagnosis based on 18F-FDG PET scans only, 

the same with the human readers in this study. But, in real 

practice, clinicians make the final decision based on sev-

eral other clinical evaluations. We believe if other clinical 

evaluations of the patients are added to the model, the 

performance will even reach higher values. On the other 

hand, the proposed model is able to be embedded to the 

18F-FDG PET software devices that nuclear medicine spe-

cialists are normally using without any extra patient infor-

mation needed and still be able to discriminate among sev-

eral neurodegenerative disorders with high performance.

Third, we only include DLB as a non-AD disorder. It is 

worth trying to include more neurodegenerative disorders 

to check the robustness of the algorithm in the presence of 

other similar diseases.

One of the future works alongside with providing solu-

tions to the above-mentioned limitations will be to inves-

tigate integrating the proposed algorithm into clinical 

workflow as a decision support tool. We will look into how 

to add more explanations to the outcome of the provided 

model to increase transparency and trust.
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Fig. 10  MMSE-based clas-

sification results: a random 

split, b stratified split where 

low MMSE scores are used for 

training and high ones for test

(a) random split 

(b) stratified split
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