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Abstract: The task of 3D shape classification is to assign a set of unordered shapes into 
pre-tagged classes with class labels, and find the most suitable class for a newly given 
shape. In this paper, we present a 3D shape classifier approach based on supervision of the 
learning of point spatial distributions. In this classifier, we first extract the low-level 
features by characterizing the point spatial density distributions of 3D shapes, and train one 
feedforward neural network to learn these features by examples. The Konstanz shape 
database was chosen as the test database, and we grouped the classified objects into two 
sets, the training set and the test set, which each had an approximately equal number of 
shapes. We trained the network with the training set, and evaluated the accuracy rate on the 
test set. We also compared this classifier to k nearest neighbors classifier for 3D shapes. 
This approach can be used to classify 3D shapes and enhance the performance of the 
existent 3D shape retrieval methods. 

Keywords: 3D shape classification; 3D shape classifier; point spatial distributions; neural 
network supervision. 

 

 

 

1 INTRODUCTION 

3D data has been widely applied into many applications, 
such as computer aided design, computer games, virtual 
reality environments, computer vision and so on. The large 
number of 3D shapes makes it difficult to find them 
artificially. Accordingly, there is an increasing need to 
develop computer algorithms that enable us to find their 
interesting 3D shape data. 3D shape classification and 
retrieval has been a recent research focus currently, and 
researchers have endeavored to extract the features 
representing one 3D shape (Funkhouser et al., 2004) (Bustos 
et al., 2005). However, it is challenging to describe one 
shape by some mathematical functions. We know that it is 
very easy for human beings to recognize, match and retrieve 
3D shapes. But this same task is very difficult for computers. 
Biology shows that the human brain has more than 10 
billion neural cells with complicated interconnections. 
These neural cells constitute a huge network. Researchers 
have been attempting to simulate the mechanisms of the 

human network to accomplish the task of pattern 
recognition. This paper will discuss the possibility of 
applying one feedforwoard neural network to supervise 3D 
shape classification and retrieval. 

We present a 3D shape classifier based on supervision of 
the learning of spatial density distributions of surface points. 
In this classifier, we first extract the low-level feature of 3D 
shape by characterizing the point spatial distributions in a 
bounding cube after pose estimation. One feedforward 
neural network is trained by the low-level features of 3D 
shape examples. Then, the network is used to classify some 
unknown shapes. We chose the Konstanz shape database 
(Websites 1.) (Bustos et al., 2005), grouped it into a training 
set and a test set, and trained the classifier through 
supervision of the training set and evaluated the 
performance of the classifier on the test set.  (Bespalov et al., 
2005) also presented several distinctive benchmark datasets 
for evaluating techniques for automated classification and 
retrieval of CAD objects. But these datasets includes only 
CAD objects with a small quantity, and is not adaptable for 
a training set and a test set. 

The outline of the remainder of the paper is as follows. In 
the next section we briefly review the previous studies on 



  

 

3D model classification and retrieval. In section 3 we 
describe the main structure of this classifier. Section 4 
describes the technique to extract the low-level features of 
one 3D shape. Section 5 describes the design of one 
feedforward neural network. Section 6 gives the experiment 
results of the accuracy rate, and presents how to enhance the 
existent retrieval methods by using this classifier. Section 7 
discusses the classifier and Section 8 concludes the study.    

2 PREVIOUS WORK 

In this section, we review recent 3D classification and 
retrieval methods with an emphasis on feature distribution 
methods. At the end of this section, we introduce other 
relevant developments. 

The idea of feature distribution originates from statistics. 
It is fast and easy to statistically analyze the feature 
distribution of models, since the analysis does not involve 
any normalization of a 3D mesh-model and does not need 
any complex mathematic transformation. In an earlier well-
known paper, (Ankerst et al., 1999a) used shape histograms 
to decompose shells or sectors around a model’s centroid. 
(Osada et al., 2002) matched 3D models with shape 
distributions. The key idea behind this method is that it 
presents the signature of an object as a shape distribution 
sampled from a shape function that measures the global 
geometric properties of the object. (Liu et al., 2008a) 
utilized multiresolution wavelet analysis on shape 
orientation and the shape can be described by wavelet 
coefficients of each shape orientation function. (Liu et al., 
2006) presented a novel 3D shape descriptor for effective 
shape matching and analysis that utilizes both local and 
global shape signatures. (Liu et al., 2008b) proposed a new 
3D shape descriptor based on spherical healpix, and used 
the healpix structure to analyze the spherical extent function.  

The above shape features has been designed for matching 
tasks, and can not applied directly to semantic classification. 
The task of classification is to assign a set of unordered 
shapes into pre-tagged classes with class labels, and find the 
most suitable class for a newly presented shape. In this 
sense, classification extends matching by assigning 
semantic meaning to shapes. One common 3D shape 
classifier is k nearest neighbors classifier (Ankerst et al., 
1999b), which compare all the features and arrange k 
nearest 3D shapes for each given 3D shape, and assign it to 
the group with k labels. Another classifier proposed by 
(Barutcuoglu et al., 2006) is hierarchical classification based 
on a class hierarchy. 

In this study, we defined a new classifier and evaluated 
the classification performance, and compared this classifier 
with k nearest neighbors classifier (Ankerst et al., 1999b). 
And we also discussed to use this classifier to enhance the 
typical existing feature distribution methods − shape 
histograms on shells (Ankerst et al., 1999a) and shape 
distributions (Osada et al., 2002)  − the two typical methods 
mentioned above. 

3 STRUCTURE OF THE CLASSIFIER 

This classifier is divided into two stages. One is the training 
stage (Figure 1), which is executed under the supervision of 
training data. The other is the classification test stage 
(Figure 2) in which the performance of classification and 
retrieval will be evaluated.  

 

 
Figure 1  Training stage 

 

   
 

Figure 2  Classification test stage 

4 LOW-LEVEL FEATURE EXTRACTOR 

We propose the point spatial density distributions of one 3D 
shape as the low-level feature extractor. The distributions 
can be computed as described below and illustrated in the 
following flow. The detailed computation including pose 
estimation, sampling, and point distributions will be seen in 
the following subsection 4.1, 4.2 and 4.3 correspondingly. 
 

 
 

Figure 3  Flow of low-level feature exaction 

4.1  Pose estimation 

(Jolliffe, 1986) introduced the theory of PCA (Principal 
Component Analysis) method and (Chen et al., 002) applied 
this theory to obtain a rotation invariant measure of 3D 
shape. (Podolak et al., 2006) described a planar reflective 
symmetry transform that captures a continuous measure of 
the reflectional symmetry of a shape with respect to all 
possible planes, but this symmetry is not robust for the 
generic 3D shapes. Here we adopted the classical PCA 
method for pose estimation. As we know, the eigenvectors 
of PCA are called principal axes and describe the three 
orthogonal axes where the scattering of the elements is 
greatest. The eigenvector corresponding to the largest 



  

 

eigenvalue coincides with the direction of largest variance 
of the 3D data set. The direction of the largest variance is 
usually regarded as the principal X-axis direction. A 
majority of vertices distribute along the direction. During 
the actual application, the multiresolution of one shape 
should be considered and the covariance matrix is 
approximated as follows. 
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where Si and gi is the area of a triangle of a shape, and the 
center of gravity respectively, and mI is the center of gravity 
of a shape, and m is the number of triangles of the shape. 

4.2 Random point sampling on the surface of a shape 

Unbiased random points can be generated according to the 
surface area of a triangle on the surface. Here we use 
Monte-Carlo sampling approach (Madras, 2002, Osada, 
2002). Firstly, compute the area of each triangle and store 
the cumulative area of triangles visited in an array. Secondly, 
generate a random number between 0 and the total 
cumulative area and perform a binary search on the array of 
cumulative area. The probability of finding a triangle is 
proportional to its area. Lastly, in each selected triangle with 
vertices (A, B, C), sample a point P with respect to the 
following procedure:  

Generate two random float numbers, r1 and r2 between 0 
and 1. Compute the P according to the following equation: 

              1 1 2 1 2(1 ) (1 ) ( )P r A r r B r r C= − + − +      (2) 
The square root of r1 sets the percentage from vertex A  to 

the opposite edge. r2 sets the percentage along this edge. 
The consideration of taking the square root of r1 is to get an 
unbiased random point with respect to surface area (see 
Figure 4). 

 
 

Figure 4  Sampling a point in a triangle 

4.3 Computation of point spatial distributions 

After pose normalization and random sampling, a shape can 
be represented as a set of points S. S includes T elements 
(points) in total. From these points, a bounding cube can be 
calculated. This computation is based on partitioning of the 
bounding cube. Subdivide the bounding cube to N × N × N 
bins (partitions). With respect to this subdivision, 
accordingly, the set of points S is divided into L = N × N × N 
subsets of points, S1, S2, … , SL. The subset Sl includes all 
the points residing in the l-th bin. Here L will be defined as 
the dimension of input nodes in the following section. 

One element Vl of the low-level feature vector V can be 
computed as the following.  

                                     l
l

NV L=                                    (3) 

where Nl is the number of elements in the subset Sl.  
  The point distributions are described by the low-level 
feature vector V representing the distribution computation of 
sampling points in the partitions of bounding cube. 

5      DESIGN OF TRAINING NETWORK 

We will design our training network (Figure 5) according to 
the basic feedforward neural network (Kishan et al., 1996). 
This network is composed of three layers, input layer, 
hidden layer and output layer.  And every layer contains 
many units, and every unit of two layers is connected with 
weights. We define how the outputs of the neural network 
depend on the input layer of the input vector and network 
weights between every layer. The low-level feature vector is 
input as the input units and the number of input units equals 
the dimensionality of the low-level feature vector. The 
output units are designed as the same as the total number of 
the 3D shape classes. And the number of hidden units can 
vary for finding the best classification. 

 

     
 

Figure 5  Feedforward neural network 

5.1 Neuron model 

 
Figure 6  Neuron model 

Each neuron (Figure 6) computes a weighted sum of its 
inputs, passes the sum u through its activation function f(u) 
and presents the result to the next layer. We use sigmoid 
function as the activation function showed below (Figure 7). 

 
Figure 7  Sigmoid function f(u) 

5.2 Forward computation 

Before forward computation (Figure 8), the weights 
between the input layer and the hidden layer, and other 



  

 

weights between the hidden layer and output layer are set to 
random float numbers belonging to [-1.0 1.0]. Pass the low-
level feature V to the input units and start the computation. 

 
Figure 8  Forward computation 

 
                                  l lI V=                              (4) 

                             
1

( )
L

m lm l
l

H f Iω
=

= ∑                   (5) 

                       
1

( )
M

n mn m
m

O f Hω
=

= ∑                       (6) 

Here, Vl is one element of a low-level feature vector V, Il is 
one input unit in the input layer, and there are L units in 
total in the input layer. Hm is the value of one hidden unit in 
the hidden layer, and there are M units in total in the hidden 
layer. On is one output unit in the output layer, and there are 
N units in the output layer. And f(u) is the sigmoid function 
mentioned above. 

And all the output units can be calculated in the forward 
process. 

5.3 Error back-propagation method 

 

 
Figure 9  Error back propagation 

 
After forward calculation, the error (Figure 9) exists 

between the supervision outputs (desired outputs) Dn and 
actual outputs On of the network. As for the i-th 3D shape, 
the error Ei can be computed as the following. 
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Integrate the formula (7) and (5), (6), and get (8): 
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We can see the error is the function of all the weights. We 
need to discover W, the vector consisting of all weights in 
the network, so that the value of Ei is minimized. One way 
to minimize the error is based on the gradient decent method. 
According to gradient descent, the direction of weight 
change of W should be in the same direction as the minus 
partial derivative. That is, 
                             Eω ω

∂∆ ∝ − ∂                            (9) 
We calculate all the partial derivatives of the weights, and 

then the delta value of each weight ω; lastly, modify the 
weights according to the delta value as the following. 
           ( 1) ( ) ( 1) ( )t t t tω ω α ω η ω+ = + ×∆ − + ×∆          (10) 

Here, α is the momentum, and η is the learning rate. t 
represents this training time, and  t+1 represents the next 
training time need to change weights. 

The error can converge to zero after the modification of 
each weight in many times. That time, we think the network 
has been entirely fit for these training examples. 
 

5.4 Result output 

All the weights can be frozen after supervision and can be 
used to compute output values for new input samples. The 
computation method is the same as the above sub-section 
“Forward computation”.  

 

6 EXPERIMENT RESULTS 

In this section, we will analyze the experiments of this 
classifier, evaluate its classification performance, and 
discuss how to enhance the existent methods by using this 
classifier. 

 

6.1 Evaluation means 

In recent several years, Konstanz shape database has been 
widely used to test the classification and retrieval 
performance of 3D shapes. This database contains 472 
classified objects. The classified objects are composed of 55 
classes of shapes. We group the classified objects into two 
sets, the train set and test set in which the number of shapes 
are approximately equal. That is, the train set contains 55 
classes, 248 shapes, and the test set also contains 55 classes, 
224 shapes. See the Table 1 for detailed classes. 
 
 



  

 

Class 
ants jet-planes axes 

rabbits fighter-planes glasses 
cows propeller-planes knives 
dogs other-planes screws 
fishes zeppelins spoons 
bees motorcycles tables 

CPUs sport-cars skulls 
keyboards cars human-heads

cans formula-cars human-masks
bottles galleons books 
bowls submarines watches 
pots warships sand-clocks 
cups beds swords 

wine-glasses chairs barrels 
teapots office-chairs birches 
biplanes sofas flower-pots 

helicopters benches trees 
missiles couches weeds 

  human-bodies
Table 1  Shape classes in the database. 

 
The classification of the train set is used for teacher 

supervision signal of this neural network, and each shape is 
an example of the network. Each shape has a record of 
corresponding relation between input pattern and the correct 
classification. Each input pattern is the input low-level 
feature signal. The low-level signal can be computed by 
point spatial density distributions mentioned in section 4. 
The correct supervision classification information is a 55-
dimension vector. We define that the value of the unit 
corresponding to the right class is 0.9, and the value of other 
units is 0.1 entirely, instead of 0 and 1, since sigmoid units 
can not produce 0 and 1 given finite weights. Now we give 
one simple example, one ant shape belongs to the first class 
– ant class, and the supervised classification vector is the 
following figure. 

 
Figure 10  Supervision classification vector 

6.2 Training process 

We set the accuracy rate 90% and approximate 2000 
running epochs on the training set as two stopping 
conditions. This process costs the time on samples drawn 
from all of the shapes. In the step of setting learning rate, we 
considered that the high learning rate could cause the 
learning algorithm to take large steps on the error function, 
with the risk of missing a minimum, or unstably oscillating 
across the error minimum. But the lower learning rate can 

also bring on the longer learning time. Therefore, one 
medium learning rate is set to 0.5. The momentum is set to 
0.3.  

We observed how the squared errors including Gross 
Squared Error (GSE) and Mean Squared Error (MSE) 
converged. The GSE and MSE are defined as the following, 
and N is the number of shapes. 
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The following figures give the relation between GSE or 
MSE and epochs. We set the accuracy rate 90% on the 
training set as the stopping condition, but found that the 
classifier takes only approximate 1500 epochs to reach 95% 
accuracy on the training set. 

 

 
Figure 11 Epoch (×100) and GSE 

 

 
Figure 12 Epoch (×100) and MSE 

6.3 Accuracy rate of classification 

We measured the accuracy rate of classification on the test 
database, 55 classes, 224 shapes in total. If the output of this 
classifier is consistent with supervision classification, this 
classification is thought right. The number R of right 
classifications is collected statistics. The accuracy rate of 
classification is the following. 

   accuracy = R/N                      (12) 
where the accuracy represents the accuracy rate and N is the 
total number of shapes or classification items. 



  

 

After some experiments, we found the accuracy rate of 
this classifier could reach 53.6%. 

In the experiment, we also viewed that the accuracy of 
classification had close relations with the number of hidden 
units in the hidden layer of the neural network. We 
investigated this relation by setting variable hidden units. 
Please see the Figure 13. 

 

 
Figure 13  Relation between hidden units and accuracy rate. 

 
Lastly, we set the number of the hidden units to 42 to get 

the best classification result. 
We show several examples of our classification results on 

the test shape database. Firstly, we chose several classes of 
3D shapes including human heads, dogs, and helicopters. 
From any class, input each shape into the classifier, the 
following table represents the right classification for these 
input shapes. 

 
Human head Class 

    

Dog Class 

  

Helicopter Class 

    

Table 2  The examples of classification. 

6.4 Comparison with k nearest neighbors classifier 

We compared this classifier with k nearest neighbors 
classifier (Ankerst et al., 1999b) on this Konstanz shape 
database, and used the same feature as this classifier. We 

measured the accuracy rate of classification on the test 
database, 55 classes, 224 shapes, in total. The next table 
gives the result of comparison.  
 

classifier accuracy rate 

k nearest neighbors classifier 33.5% 

our classifier 53.6% 

Table 3 Comparison between two classifiers. 

6.5 Enhance the existent methods 

This sub-sector will discuss how to use this classifier to 
enhance the existent methods. 

We suppose that the dissimilarity of two shapes defined in 
the existent methods is Dold, and the dissimilarity after 
enhancement is Dnew. We consider the output supplied by 
the classifier is one class-number-dimension vector O. The 
output vector of the one shape in the classifier is O1, and the 
other is O2. The dissimilarity of classifier output between 
two shapes is Dclass.  
                                1 2classD O O= −                    (13) 

We multiply the dissimilarity of the classifier output with 
one constant weight, and add this impact to the dissimilarity 
on the existent method, then form the new dissimilarity. 

                    new old classD D c D= + ⋅                      (14) 
The constant weight c can be designed by making a 

concrete analysis of concrete problems. And the output 
vector O can also be filtered by one high-pass filter because 
we find some output vectors include low-value noise. 

Here, we tested the performance of enhancing the existent 
methods. We chose methods (6.5.1) and (6.5.2), 
programmed and implemented the two algorithms again, 
and compared the existent methods with the enhanced 
version on the same conditions.  

We chose three parameters to evaluate the performance, 
the Recall-Precision (R-P) Curves, the Average Recall 
Precision (R-P), and Enhancement Rate (ER). 

Recall-Precision Curves have been used extensively in 3D 
retrieval methods. The precision is defined as the fraction of 
the retrieved objects relevant to the input query, and the 
recall is given by the fraction of the same kind of objects 
retrieved from the test database. 

The average recall-precision means averaging all the 
precision values. 

The last parameter is defined by us, that is, the 
enhancement rate (ER).  

                  ( ) /new old oldER ARP ARP ARP= −          (15) 
Here, ARPnew is the average recall precision of new 

enhanced version, and ARPold is the average recall precision 
of the existent methods. 

 

6.5.1 Shape Histograms on shells (SH) (Ankerst et al., 
1999a).  



  

 

In this method (Figure 14), the 3D shape can be described as 
histograms of point fractions belonging to different 
partitioning shape shells.  

 
Figure 14  The flow of shape histograms method. 

 
We enhanced the retrieval performance of shape 

histograms under the assistance of our classifier. The plot of 
recall precision and the table of average recall precision 
show the result of enhancement. 

 

 
Figure 15  The effect of enhancement on R-P curves 

 
Methods Average Recall Precision

SH 0.242 

Enhanced SH 0.34 
Table 4  The effect of enhancement on average R-P. 

 
From the above recall precision curves and average values 

we found that the present classifier improved retrieval 
performance and computed the quantity number of the 
enhancement, and the enhancement rate is the following. 

ER = 40% 

6.5.2 Shape Distribution (SD) (Osada et al., 2002).  

This algorithm (Figure 16) sampled the probability 
distribution from two random points on the shape surface, 
and computed a histogram of distances between these pairs 
of points. The similarity between two shapes can be 
measured from the distribution. 

 

 
Figure 16  The flow of shape distributions method. 

 
We enhanced the retrieval performance of shape 

distributions under the assistance of our classifier. The plot 
of recall precision and the table of average recall precision 
show the result of enhancement. 

 

 
Figure 17  The effect of enhancement on R-P curves. 

 
Methods Average Recall Precision

SD 0.283 

Enhanced SD 0.385 
Table 5  The effect of enhancement on average R-P. 

 
The enhancement rate is the following. 

ER = 36% 
 

7 DISCUSSION 

Based on the test of this classifier on the database, we will 
discuss some influences. We believe that this classifier has 
several advantages. At the same time, we discuss the 
shortfalls of the classification algorithm. 



  

 

7.1 Influence of resolution of sampling points 

Firstly, we tested the several resolutions of sampling points 
in the stage of low-level feature extractor, and hoped to 
settle on the influence of sampling resolutions on 
classification rate. We computed several resolutions of 
sampling: 

S1 =128*128 =16384 

S2 = 64*64 = 4096 

S3 = 32*32 = 1024 

And we computed the classification rates on the test set 
showed in the Table 6. Each accuracy rate of classification 
corresponds with each resolution.  

 
Resolution Accuracy Rate 

S1 53.6% 

S2 51.3% 

S3 46.4% 
Table 6 Influence of sampling resolutions. 

 
From the above Table 6, we could find the relation of 

accuracy rates with resolutions. When the sampling 
resolution rises, the accuracy rate of classification is 
improved. When the sampling rate decreases to 1024, the 
accuracy rate falls off approximately 7% from 53.6% to 
46.4%. This table shows that the high sampling resolution 
leads to the improvement of accuracy rate of this classifier. 
However, if the sampling resolution rises to 65536, the need 
of the sampling time will have a heavy effect on the 
performance of this classifier. Therefore, we think the 
sampling rate S1 has a better balance between classification 
rate and time.  

7.2 Influence of shape normalization 

In the stage of pose estimation or shape normalization, the 
orientation of 3D shape must be determined in advance of 
the computation of point spatial distributions according to 
the flow of low-level feature extractor. Here we adopted the 
Principal Component Analysis as the analysis tool, and 
computed the direction of the largest variance as the main 
direction. But this method caused one problem that the 
orientation of shape may be misunderstood, and two 
orientations of two similar shapes are obviously different. 
For example, the following figure presents this problem. 

 
Figure 18 Orientation mistake in shape normalization 

In the Figure 18, there are two 3D shapes, ants. After shape 
normalization by Principal Component Analysis, the 
orientation of each 3D shape is adjusted to the normalized 
direction. But two shapes have different directions, the left 

ant with the main direction pointing at the left side, and the 
right ant with the main direction pointing at the right side. 
And this error will go into the computation of point 
distributions, and affect the classification accuracy finally.  
  After orientation adjusting, the scale factor will be 
considered because many shapes have not the same scale, 
for example, small fish and big fish. Here we scaled each 
shape into unit size of average distances according to the 
triangle area and distances between the vertices and mass 
centre. The detailed scale factor sf is the following. 
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1 n
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= ∑                            (16) 

Here, fi is the area of the i-th triangle of 3D shape, and ri is 
the mass centre of i-th triangle, and fS is the mass centre of 
3D shape. And each vertex will be scaled according to this 
scale factor. We know this scale factor will be influenced by 
triangle area, and low resolution with big triangles will 
bring in the error of scale factor. And scale error will cause 
one problem that this classifier cannot compute the point 
distributions in the bounding cube precisely. And the neural 
network may classify this shape into one wrong class. 

7.3 Merits of the algorithm 

1) We discussed one approach to apply one feedforward 
neural network to classify the 3D shapes. This approach can 
make good use of examples of man-made classification, and 
learn the classification mode from human. And this 
classifier also supplied better classification accuracy than k 
nearest neighbor classifier. 

2) This method has extensible property because the training 
knowledge can be supplemented by humans step by step, 
and the performance can also be advanced step by step. 

3) This algorithm can enhance the existent 3D shape 
retrieval methods, and also improve the retrieval 
performance under supervision of knowledge learning. 

7.4 Drawback of the algorithm 

The accuracy rate of classification is not higher, and the 
ideal or desired rate should be about 70% or higher. There 
are perhaps three reasons.  

The main reason is that the training is not enough, and 
then the neural network cannot recognize some 3D shapes 
accurately. It is clear that a neural network is useless if it 
only sees fewer examples of a matching input/output pair, 
and it cannot infer the characteristics of the input data. This 
is similar as a child memorizes some animals with different 
types. In advance, this child needs to observe several 
examples of each type of animal so that he can classify one 
new animal of the observed type. After this child is able to 
distinguish fish from bird and bugs, he also need recognize 
more fishes because he cannot classify some types of fish, 
for example, carp, tuna, and whale. It is difficult to require 
that a child could remember the distinctions between types 
of animal after seeing them only once. This means that this 
child must repeat to observe these animals until the 
necessary information sinks in. The training set we used is 



  

 

also faced with this problem, and it is not also big and we 
need one bigger training set and more training shapes. Every 
desired class needs 100 3D shapes or more, and enough 
shapes can ensure that the neural network learns more 
knowledge and does the more right judgments in the test 
process. This factor impacted the accuracy rate of 
classification and the performance of retrieval.  

Another reason is perhaps that the proposed low-level 
feature is not discriminative, and brings the neural network 
the difficulty of distinguishing two shapes. We will try more 
discriminative feature descriptor as the training subject.  

The last reason we must consider is that the error back 
propagation method adopted the “steepest down” or called 
gradient descent, which can lead to the local minima of the 
error function. It is difficult to find the global minimum of 
the error function, and therefore, the probability of running 
into the local minima is not low. This drawback of “steepest 
down” error back propagation brings one problem that the 
classification system cannot get the best performance. The 
following figure shows this problem. W and E represent the 
connection weights and error, and the point P is the start 
point, and LM and GM are local minimum and global 
minimum relatively. 

 
Figure 19  local minimum and global minimum 

8 CONCLUSION AND FUTURE WORK 

In this paper, a 3D shape classifier approach based on 
supervision of the learning of point spatial distributions is 
presented. In this classifier, firstly, the low-level feature of 
3D shape is extracted, and then we train one feedforward 
neural network to learn this feature by supervision examples.  
We tested this classifier on the Konstanz shape database, 
and evaluated its accuracy rate, compared the classification 
rate to k nearest neighbors classifier for 3D shape, and also 
analyzed the efficiency of enhancing the existent methods 
by using this classifier. It can be used to classify 3D shapes 
and enhance the 3D shape retrieval performance.  

In the future, we plan to improve two aspects. Firstly, 
consider researching more adaptable low-level feature to let 
classifier have a rise on the classification rate. Secondly, we 
intend to adopt one better method to avoid the local 
minimum of error function, for example, Boltzmann 
machine (Ackley et al., 1985). 
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