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Abstract

Control and modelling of continuum robots are challenging tasks for robotic researchers. Most

works on modelling are limited to piecewise constant curvature. In many cases they neglect to

model the actuators or avoid a continuum approach. In particular, in the latter case this leads to

a complex model hardly implemented. In this work, a geometrically exact steady-state model

of a tendon-driven manipulator inspired by the octopus arm is presented. It takes a continuum

approach, fast enough to be implemented in the control law, and includes a model of the

actuation system. The model was experimentally validated and the results are reported. In

conclusion, the model presented can be used as a tool for mechanical design of continuum

tendon-driven manipulators, for planning control strategies or as internal model in an

embedded system.

(Some figures may appear in colour only in the online journal)

1. Introduction

The effort to enhance the performance of robot manipulators

has resulted in an increased attention towards continuum soft

manipulators and in particular towards ‘biologically inspired’

soft manipulators [1, 2]. A continuum soft manipulator can be

thought as a (continuous) bending robot composed of elastic

elements with ideally infinite degrees of freedom (d.o.f.).

They pertain to the class of hyper-redundant manipulators,

which consists of a large number of short rigid links, but go

beyond them by virtue of their infinite degrees of freedom

[3]. Continuum soft robots have been inspired by biological

systems, for example elephant trunks [4, 5], cephalopod arms

[2] and mammalian tongues, which are commonly known

as muscular hydrostats (for more details on the octopus arm

muscular hydrostat structure see [6]).

The control and modelling of continuum manipulators are

not trivial tasks because they require a continuum approach and

present several degrees of nonlinearity both on the material and

1 Author to whom any correspondence should be addressed.

geometrical side. Nowadays many researchers are involved in

this stimulating challenge, but the problem is yet far from being

solved. Most of the approaches currently in use are limited

to piecewise-constant-curvature approximation [7, 8] or they

are restricted to the kinematic analysis [9]. Recently Jones and

Gray [10] presented a steady-state model of a continuous robot

but they did not model the actuation acting on it. In the elegant

work of Boyer and Porez [11] the distributed force and torque

acting on the robot are estimated but no discussion is given on

the actuators that could generate them. Zheng and Branson [12]

developed a model based on a spring-mass approach instead of

a continuum one that is too complex to be implemented in an

embedded system. Exact solutions also exist [13] but, in any

case, the bottle neck in their use is the real time implementation

of the model due to the computational effort required. This

suggests the necessity of smart simplifications.

In this work, a 3D geometrically exact steady-state model

of a continuum manipulator inspired by the octopus arm,

driven by tendons, is presented. With respect to the state

of the art, in this work both robot body and actuators have

been modelled and the developed continuum approach is fast
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Figure 1. Cosserat beam kinematics. The material element is

identified by a position vector u and a local reference frame�t, �n, �b.

enough to be implemented in the embedded control of the

manipulator. Thanks to its generality, this model can also be

used as a powerful virtual platform for testing a number of

design parameters.

The rest of the paper is divided into six sections. In

section 2, the mathematical framework of the model is

described, both for the kinematic and static problems. In

section 3, the mechanical design of the octopus-inspired robot

arm is described and section 4 is focused on showing how the

3D steady-state model has been derived. In section 5, the model

has been validated through several tests on a real prototype

and the potentialities of the model are shown through specific

results in section 6. Section 7 is dedicated to the conclusions.

2. Mathematical framework

The idea is to model a continuum manipulator (composed of

a single piece of silicone) as a slender Cosserat beam. In the

following subsections the kinematic and static models (chosen

for this work) of such a rod are described.

2.1. Kinematics

A Cosserat beam is a one-dimensional continuum body

in which the generic material element is considered as

a (infinitesimally small) rigid body which can rotate

independently of the neighbouring fellows [14]. In order to

describe this rotation every material element is represented by a

tern of directors. Two of them (�n and�b) lie on the cross-section

plane and the third, perpendicular to the plane, comes out in

the direction of the tip of the beam (�t) (figure 1). Furthermore,

as in other beam theories, the material element carries the

t

n

b

q

 

 

 

Figure 2. D.o.f of one cross section.

material properties and the geometrical properties of the cross

section. For this reason, in the remainder of the paper we will

directly call the material element the cross section. For all

the local reference frames �t × �n = �b holds. The geometric

transformation between two consecutive local frames is

determined by the strain values of the section itself; thus we

could reconstruct the shape of the beam, after referring it to a

fixed frame, by knowing the strain quantities along the beam

and the position and orientation of the base local frame. In fact

the deformation of the beam is the continuous infinitesimal

homologous of the usual internal joint (d.o.f.) of a serial

manipulator. In the following let us call the deformations of

the robot arm d.o.f., which is more suitable in the robotic field.

In the classical theory, the d.o.f. of one section are six

[14]: the curvatures along the two axes lying on the section

plane, the torsion on the third perpendicular axis, two shear

strains and the longitudinal strain. We assume the shear strains

to be negligible; therefore in our case each section of the beam

has four d.o.f. In other words, the Euler–Bernoulli hypothesis

has been adopted. In this case the perpendicular axis of the

section is parallel to the tangent vector of the beam backbone.

Let us call t the matrix of the local reference frame (�t,�n,�b)T

expressed in a fixed frame lying at the base of the beam

(figure 1), s the material arc length along the reference

configuration of the manipulator and S the spatial arc length

on the actual configuration. We know from the literature

[15] the push forward transformation of t with respect to

S: dt/dS = (ω̂)T t, where ω̂ is the skew-symmetric tensor of

ω = (τ, ξ , k), that is the vector of the three rotational d.o.f.

expressed in the local reference frame. k and ξ represent

respectively the curvature with respect to the axes �b and �n,

and τ represents the torsion of the section with respect to the

axis�t (figure 2).

Thanks to the Euler–Bernoulli hypothesis we have

dt/ds = dt/dS ∗ dS/ds = (ω̂)T t diag(1 + q). In the same

2
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way we have du/ds = (1 + q)�t, where u is the position
vector of the centre of mass of the section identified by the
variable s expressed in the fixed frame (figure 1) and q is
the longitudinal strain (figure 2). The following expressions
(1) show the kinematic equations of our Cosserat beam in an
‘expanded’ and friendlier version:

d

ds

(

�t
)

= k (1 + q)�n − ξ (1 + q)�b,

d

ds
(�n) = −k (1 + q)�t + τ (1 + q)�b,

d

ds

(

�b
)

= ξ (1 + q)�t − τ (1 + q)�n,

d

ds

(

u
)

= (1 + q)�t.

(1)

Those d.o.f. correspond to the joint space of a classical serial
manipulator; thus the Euler–Bernoulli simplification simplifies
not only the model but also the control strategy and it favours
its implementation on an embedded system.

2.2. Statics

The motion of a beam is described by the equilibrium and
constitutive equations. The following expressions (2) show
the equilibrium equations (under the steady-state condition)
derived by Simo and Vu-Quoc in their fundamental works on
a geometrically exact Cosserat beam [16–18]:

d

ds

(

F
)

+ n = 0,

d

ds

(

M
)

+ d

ds

(

u
)

× F + m = 0,

(2)

where F is the vector of the internal contact force and M is the
vector of the internal torque force. n and m are respectively the
external applied force and torque for unit of reference length.
Everything is expressed in the local reference frame.

We assume the beam to be made of a hyper-elastic material
and the constitutive equations to be linear ((3a), (3b)):

⎛

⎝

GI 0 0

0 EJn 0

0 0 EJb

⎞

⎠

⎛

⎝

τ (s)

ξ (s)

k(s)

⎞

⎠ = M(s), (3a)

EAq(s) = N(s). (3b)

N is the �t component of F , E is the Young modulus, G is
the shear modulus, I, Jn and Jb are respectively the moment of
inertia of the section with respect to axes�t, �n and�b. We assume
that both the cross section and the constitutive equations do
not change with the deformation.

The rotational d.o.f. has been considered to belong to
C1 class function; thus we can derive equation (3a) obtaining
the following expression:

⎛

⎝

GI 0 0

0 EJn 0

0 0 EJb

⎞

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

d

ds
τ

d

ds
ξ

d

ds
k

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎝

Gİ 0 0

0 EJ̇n 0

0 0 EJ̇b

⎞

⎠

×

⎛

⎝

τ (s)

ξ (s)

k(s)

⎞

⎠ = Ṁ(s), (4)

Figure 3. Octopus-like arm prototype.
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Figure 4. Transversal section of a robot arm anchorage cross section
in the reference configuration. The figure shows the relative position
of the four cables indicated with the symbols Ti1, Ti2, Ti3 and Ti4.

where the dot means the derivative with respect to s. For our

problem it is useful to solve equation (4) instead of equation

(3a) as shown in the following sections.

3. Octopus-inspired robot arm

In this section the octopus-inspired robot arm is described

(figure 3).

The robot arm is composed of a single conical piece of

silicone (that represents our Cosserat beam) actuated by several

cables immersed inside the body and anchored at different

distances from the base through a rigid plastic disc built in

the robot arm. Such discs are embedded in the silicone during

the fabrication process and they can be placed in any position

inside the arm. There are four cables for each anchorage cross

section aligned with the axes �n and �b as shown in figure 4 (for

more detail on the design of such a prototype see [19, 20]).

By pulling one cable the robot arm bends on the side of the

cable in a way that depends on the cable tension and on the

3
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Figure 5. Tendon position inside the body of the robot arm. Rmax and Rmin are respectively the radius of the base and of the tip; u(s) is the
position vector of the material element; yci (s) is the distance from the cables to the midline; uc23(s) is the position vector of the third cable
fastened at the second anchorage cross section; a2 and b2 are respectively the distance at base and at anchorage level of the cables fastened at
the second anchorage cross section with length l2; L is the total length of the manipulator, equal to l1 in this paper. To enhance the clarity of
the representation, the cables of sections 1 and 3 are hidden.

arrangement of the tendon inside the robot body. In this way

the manipulator can be bent and twisted ‘arbitrarily’ in 3D

space by pulling several cables anchored at different distances

from the base. The anchorage sites have been labelled with the

corresponding cross sections s using the subscript i to number

them beginning from the tip of the robot arm. In particular, in

this paper a robot arm with three anchorage cross sections has

been analysed.

The tendons are coated by a polymer sheath to avoid

friction generated by the direct contact between the cable and

the silicone body of the robot.

The robot arm works in water, to exploit the mechanical

properties of the material and the interaction with the

environment.

The path of the cables inside the body is linear with respect

to s (5). All the tendons that are attached at the same cross

section have the same distance to the midline. Let us call yci(s)

the distance of the cables attached to the ith anchorage section

from the midline (figure 5), which is simply

yci =
(

bi − ai

li

)

s + ai, (5)

where ai and bi are respectively the distance of the tendon from

the midline at base level and at anchorage level and li is the

value of s relative to the anchorage cross section i (figure 5).

The kinematics of the robot arm and function yci(s) determine

the kinematics of the cables as follows:

uci1(s) = u(s) + yci�n,

uci2(s) = u(s) + yci
�b,

uci3(s) = u(s) − yci�n,

uci4(s) = u(s) − yci
�b. (6)

We add a subscript c for all the kinematic quantities relative to

the tendons. We call R(s) the radius of the section s. Since the

manipulator has a conical shape it is linear with respect to s,

as shown in (7), where L is the total length of the robot arm,

Rmax and Rmin are respectively the radius of the base and of the

tip anchorage cross sections:

R =
(

Rmin − Rmax

L

)

s + Rmax. (7)

Note that L is equal to l1 if the cables are fixed to the tip as in

this paper.

The manipulator has a circular cross section; therefore

Jn(s) and Jb(s) are the same and equal to πR(s)4/4. The

torsion moment of inertia I is equal to πR(s)4/2 and the area

A is equal to πR(s)2. The shear modulus G can be calculated

with E/2(1 + υ) where υ is the Poisson ratio.

4. 3D steady-state model of the octopus-inspired
robot arm

In this section the 3D steady-state model is derived, followed

by a discussion on the computational aspect of the numerical

solution.

The force and torque acting on the robot arm are due

to the tension of the cables, gravity and buoyancy (under a

steady-state condition). In our model we consider only the

first one because the others require a more complex solution

algorithm that we are going to develop directly for the full

dynamic case. Furthermore the robot arm has been designed

such that the buoyancy and gravity are almost complementary,

as the density of silicone is very close to the density of water.

The remaining force could be eventually eliminated by

applying floats on the arm.

Let us consider the robot arm stuck at the base to the

frame; then the cables allow a point load located where the

cables are fastened, equal to the cable tension and tangent

to it −T�tc(li) (i.e. the classical tendon transmitted load) and

a distributed load along the cable configuration, due to the

contact between the cable and the robot arm silicone body.

Since we neglect the friction, the contact force is orthogonal to

the cable (centripetal) and equal to T d�tc
/

dSc (figure 6), where

Sc represents the arc-length parameterization of the cable. In

other words we assume the tendon to be a pure tension element.

For a detailed mechanical analysis of this tendon load see the

fundamental work of Camarillo et al [8].

Since the tendons are immersed inside the body, the static

problem is a following force problem.

4
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Figure 6. Distributed and point load acting on the manipulator due
to cable tension. The latter is the classical tendon transmitted force
and the former is the contact force between the cable and the
silicone robot body. Since there is no friction, the contact force is
orthogonal to the cable (centripetal).

Given the loads of figure 6, the equilibrium equations of

our manipulator are

Mi j(s) = − Ti j�tci j(li) × (u(s) − uci j(li)) +
l

∫

s

Ti j

d�tci j

dη

× (u(s) − uci j(η)) dη, (8a)

Ni j(s) = −Ti j�tci j(li) ·�t(s) +�t(s) ·
l

∫

s

Ti j

d�tci j

dη
dη, (8b)

where j ∈ {1, 2, 3, 4} identifies one of the four cables of

the anchorage section i; therefore the subscript ij identifies

univocally one tendon. Note that to deduce the equations in

(8) the following equivalence has been used: d�tc
dSc

× (...)dSc =
d�tc
dη

dη

dSc
× (...) dSc

dη
dη = d�tc

dη
× (...)dη.

By deriving equation (8a) and developing the integrals we

obtain the expressions of Ni j and Ṁi j as follows:

Ni j(s) = −Ti j�tci j ·�t, (9a)

Ṁi j(s) = −Ti j�tci j ×�t − Ti j

d�tci j

ds
× (u − uci j). (9b)

�tci j is equal to duci j/ds, where we have assumed s to be a good

approximation of the arc-length parameterization of the cables

(Sc) and of the midline (S). uci j is defined in the equations in (6).

Finally, once we have developed the products, the equations (9)

represent the stress contribution of one cable ij.

The equation in (9b) can be easily expressed in terms of

the local frame contrary to Mi j (8a). This is the reason why we

do not use directly the equation of Mi j to solve the equation
in (3a).

The internal stresses of equations (3b) and (4) are defined

as follows: N(s) =
n,4
∑

i, j=1

Ni j(s) and Ṁ(s) =
n,4
∑

i, j=1

Ṁi j(s), where

n ∈ ℵ in the interval [1, nmax] and represents the number
of anchorage cross sections which are from the section s to
the tip of the robot arm and nmax is the total number of
anchorage cross sections (three for our prototype). It follows
that the behaviour of N(s) and Ṁ(s) has a point of discontinuity
for every value of s corresponding to an anchorage cross
section. Finally, handling the constitutive equations (3b) and
(4) the characteristic differential equations of the d.o.f. of the
manipulator have been obtained:

d

ds
τ = −τ

Gİ +
∑n

i=1

(

2yciẏci

∑4
j=1 Ti j

)

GI +
∑n

i=1

(

y2
ci

∑4
j=1 Ti j

)

− kξ

∑n
i=1

(

y2
ci

(

Ti1 − Ti2 + Ti3 − Ti4

))

GI +
∑n

i=1

(

y2
ci

∑4
j=1 Ti j

)

+ k

∑n
i=1

(

yci

(

Ti2 − Ti4

))

GI +
∑n

i=1

(

y2
ci

∑4
j=1 Ti j

)

+ ξ

∑n
i=1

(

yci

(

Ti1 − Ti3

))

GI +
∑n

i=1

(

y2
ci

∑4
j=1 Ti j

)
,

d

ds
ξ = −ξ

EJ̇ +
∑n

i=1

(

2yciẏci

(

Ti2 + Ti4

))

EJ +
∑n

i=1

(

y2
ci

(

Ti2 + Ti4

))

− τk

∑n
i=1

(

y2
ci

(

Ti2 + Ti4

))

EJ +
∑n

i=1

(

y2
ci

(

Ti2 + Ti4

))

+ τ

∑n
i=1

(

yci

(

Ti3 − Ti1

))

EJ +
∑n

i=1

(

y2
ci

(

Ti2 + Ti4

))

+
∑n

i=1

(

ẏci

(

Ti4 − Ti2

))

EJ +
∑n

i=1

(

y2
ci

(

Ti2 + Ti4

)) ,

d

ds
k = −k

EJ̇ +
∑n

i=1

(

2yciẏci

(

Ti3 + Ti1

))

EJ +
∑n

i=1

(

y2
ci

(

Ti3 + Ti1

))

+ τξ

∑n
i=1

(

y2
ci

(

Ti3 + Ti1

))

EJ +
∑n

i=1

(

y2
ci

(

Ti3 + Ti1

))

+ τ

∑n
i=1

(

yci

(

Ti4 − Ti2

))

EJ +
∑n

i=1

(

y2
ci

(

Ti3 + Ti1

))

+
∑n

i=1

(

ẏci

(

Ti1 − Ti3

))

EJ +
∑n

i=1

(

y2
ci

(

Ti3 + Ti1

)) ,

q =
∑n

i=1

[

kyci

(

Ti1 − Ti3

)

+ ξyci

(

Ti4 − Ti2

)

−
∑4

j=1 Ti j

]

EA
.

(10)

The equations in (10) have to be integrated with (5) and
(7), missing nothing but the geometrical parameters and the
values of the cable tensions (both arbitrarily chosen). Thanks
to its generality, the model expressed in the equations in
(10) could be used as a powerful design tool for many kinds
of slender continuum manipulators driven by tendons. The
longitudinal strain q is a function of k and ξ ; thus it can be
calculated in one step once we obtain them. The last equation
in (10), indeed, is not a differential equation.

5
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 )(sf

 s  s

 )(sf ))(,( sfsf

 ))(,( sff

Figure 7. Graphical example of transformation (12) from a final
value problem for differential equation (left) to an initial value
problem for differential equation (right).

The equations in (10) embed the same points of

discontinuity along the domain of s because the expressions of

N(s) and Ṁ(s) change dramatically immediately before and

after an anchorage cross section. What changes is the number

of cables acting on the section that is represented by the index

n. Therefore we use one set of equations for each interval

between two anchorage cross sections each with a different

value of n. The ith equation set is defined in the semi-open

domain (li+1, li] except the last one (recall that we begin to

enumerate from the tip of the robot arm) which is defined in

the interval [0, lnmax
].

Since the robot arm is stuck to the frame at the base we

have the so-called kinematic boundary condition at s = 0 (i.e.

u(0), �t(0), �n(0) and �b(0)) and static boundary condition at

s = L = l1 (τ (l1), ξ (l1), k(l1) and q(l1)). Therefore the idea is

to integrate the equations in (10) beginning from the tip of the

robot arm to obtain the expression for the robot arm d.o.f. and

afterwards to integrate the kinematic equations (1) to obtain

the arm shape. The boundary condition for the ith internal set

of equations at s = li (equations in (11)) is composed of the

contribution of the cables fixed at the anchorage cross section

i and of the solutions at s = l+i of the (i − 1)th ordinary

differential equation (ODE) where the apex + indicates the

positive limit. The first contribution is derived calculating M

using equation (3a):

τ (li) = τ (li)
+,

ξ (li) = bi(Ti4 − Ti2)

bi
2(Ti4 + Ti2) + EJ

+ ξ (li)
+, (11)

k(li) = bi(Ti1 − Ti3)

bi
2(Ti1 + Ti3) + EJ

+ k(li)
+.

From a mathematical point of view every set of equations

(10) and (11) is a final value problem for ordinary differential

equations. For our purposes we integrate them numerically as

shown in the following section.

4.1. Computational aspect

Some modifications have to be applied on the equations in

(10) and their domain to be numerically integrated by an ODE

solver. In particular, the following are obtained:

Figure 8. FEM model (top) and analytical model (bottom) with the same parameters: the two models behave in a very similar manner.

6
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Figure 9. The comparison between the real silicone arm and the model highlights a very small difference on the midline configuration.

Figure 10. Several bending planes and relative cable tension ratio.

Table 1. Tip error between the analytical model and the real
prototype under different tension conditions.

T (N) �u(L)
/

L (%)

0.53 3.0
1.09 5.5
2.00 3.5
2.60 6.7
3.06 7.8
3.44 7
3.95 4.8
Average 5.4

s̃ = −s,

ω̃(s̃) = ω(s), (12)

d

ds
ω̃(s̃, ω̃) = − d

ds
ω(−s, ω).

Table 2. Model parameters (all lengths are in (mm)).

E (kPa) υ L = l1 Rmin Rmax b1 a1 b2 a2 l2 b3 a3 l3

110 0.5 310 6.5 15 1 7.5 3.5 3.5 217 6 6 93

Table 3. Tension of the tendons associated with the relative results
(not reported cables are set to zero).

T11 (N) T12 (N) T13 (N) T14 (N)

Figure 11(a) 0 0 1 1

Figure 11(b) 1
√

3 0 0

Figure 11(c) 0 1
√

3 0

Table 4. Model parameters (all lengths are in (mm)).

E (kPa) υ L = l1 Rmin Rmax b1 a1 b2 a2 l2 b3 a3 l3

110 0.5 450 2 15 1 7.5 3.5 3.5 315 6 6 135

Table 5. Tension of tendons both for two-dimensional and
three-dimensional fetching (not reported cables are set to zero).

T13 (N) T21 (N) T33 (N) T32 (N)

Figure 14 0.5 4 13 0
Figure 15 0.5 4 0 13

Applying substitutions (12) in (10) and (11) (note that

they also influence (5) and (7)) we obtain a set of initial

value problem for ordinary differential equation in the

variable s̃ and the unknown ω̃(s̃), that can be solved in

MatLab R© (MatLab R© 2009a, The Mathworks Inc., Natick,

MA) using an appropriate ODE function (for example

ode23). Figure 7 illustrates the meaning of the

transformation (12).
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Figure 11. Three different planes of bending: (A) 135◦; (B) −30◦; (C) 60◦.

Figure 12. Trend of the d.o.f of the manipulator along the arm in the case of figure 11(a).

Afterwards a pullback transformation has to be performed

just by applying the first and the second equations in (12) to

the results.

The kinematic equations in (1) are solved directly with

MatLab R© once we obtain the functions τ (s), ξ (s), k(s) and

q(s), starting from any desired initial condition of u, �t, �n and

8
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Figure 13. Octopus fetching movement composed of three bends: proximal, medial and distal (reproduced with the permission of the author
and publisher of [21]).

Figure 14. Simulated fetching in one plane.

�b that corresponds to the position and orientation of the base

of the manipulator.

5. Validation of the model

To corroborate the above model a procedure divided into two
steps has been followed.

5.1. Analytical versus FEM model

First of all a FEM model (on MARC R©/Mentat R© 2010,

MSC Software) with the same parameters (see below) of
the analytical model has been used to validate the algebraic
correctness of the equations.

The silicone arm has been modelled using HEX elements
with Herrmann formulation (known to be better performing

for highly deformable materials) while the cable has been
represented by a chain of beam elements. Since the sheath
is composed of the same material as the rest of the arm, its

function has been replicated with an almost cylindrical internal
space left inside the silicone arm, in which the cable is lodged.
In this way, the cable is free to go in and out of the arm when

pulled, but the contact analysis has been activated to predict
the correct distribution of the stresses when it touches the
silicone and to avoid compenetration of the cable into the

rest of the arm. All material and geometric properties of
the real prototype have been used, but the friction between

the cable and the silicone has been set to zero to meet the same
assumption of the analytical model.

For these tests an arm with length L equal to 300 mm has

been used, and Rmax and Rmin are respectively equal to 10 and

9



Bioinspir. Biomim. 7 (2012) 025006 F Renda et al

Figure 15. Different views of the three-dimensional fetching.

1.5 mm. Only one cable has been simulated with a1 equal to

0.66 mm and b1 equal to 1 mm. As can be seen in figure 8 an

almost perfect correlation has been obtained with a maximum

error detected on the tip equal to 1 mm, in the case of the same

cable tension.

5.2. Analytical model versus real prototype

A silicone arm, with one cable fixed to the tip, has been built

and a Plexiglas tank has been set up to measure the curvature of

the real arm and compare it with the analytical model. On one

side of the tank we fixed the silicone arm with the following

characteristics: L is equal to 270 mm, the base radius Rmax is

15 mm, the last anchorage section radius (the tip of the

arm) Rmin is equal to 7.4 mm, b1 is 2.5 mm, a1 is 5 mm

and E is equal to 110 kPa (stress–strain linear approximation

for compression). Finally we exerted various tensions on the

cable and we took pictures of the arm by means of a camera

fixed over the plane of motion. The midline was manually

extrapolated and processed in MatLab R© for comparison with

the corresponding midlines obtained with the model.

As shown in table 1 the average error measured at the tip

is less than 6% of the arm length L.

In figure 9 the real arm and the model configuration are

shown in the case of 3 N tension. The error generally is higher

on the distal part of the manipulator (a small error on the

base results in a big error on the tip because it is integrated

along the arm, see (1)). The highest errors are probably due to

the nonlinearity of the material, the friction of the cables and

in particular to the human error in the manual extrapolation

process of the midline from the pictures.

6. Results

The results of the model actuated by several tendon tensions

are shown in the following. In all the results the steady-

state behaviour of a manipulator with three anchorage cross

sections and four cables for each section is reproduced. The

data of every simulation are collected in a summarizing table.

In all the cases the orientation of the base is: �t = (1, 0, 0),

�n = (0,−1, 0), �b = (0, 0,−1), centred at (0, 0, 0) (fixed

frame coordinates).

It is important to remember that the considered robot arm

is highly under-actuated, as we do not have an actuator for

every (4 ∗ ∞) d.o.f. Those d.o.f. are highly connected to each

other by the law developed in this paper. For this reason the

equations in (10) become a fundamental tool for planning

control strategy.

6.1. Bending

To generate bending it is sufficient to pull one cable, but the use

of different cables of the same level also allows the modulation

of the plane of bending.

The results show that it is possible to select a plane of

bending just by pulling two consecutive cables (Ti1 – Ti2, Ti2 –

Ti3, Ti3 – Ti4, Ti4 – Ti1) with a specific ratio between the tensions.

This ratio, in fact, corresponds to the ratio between the sine

and the cosine of the desired inclination of the bending plane

(figure 10). In other words the following expression holds:

θ = tan−1(Ti3−1/Ti2−4), where θ is the anticlockwise angle of

the bending plane. Increasing the absolute value of the tension

leads to a higher curvature along the arm, similarly to the case

of one cable presented in the validation.

In figure 11 a few explanatory examples of those important

characteristics are shown. Figure 12 illustrates in particular the

trend of the d.o.f. in the 45◦ bending.

Of course the bending can start arbitrarily from any

anchorage cross section maintaining the same characteristic.

In table 2 the manipulator parameters used for every

simulation are reported. In table 3 the tendon tensions

associated with the relative results are shown.

6.2. Fetching

When an octopus grasps some food, in order to fetch the food

to the mouth, the arm generates a series of bends that serve as

proximal, medial and distal joints [21] (figure 13).

To replicate this movement composed of three bends it

is necessary to have at least three different anchorage cross

sections. In the results below, two different fetch images are

shown as example, performed with the model parameters of

table 4 and the different actuation reported in table 5. The first

fetching movement shown in figure 14 lies in one plane as

the octopus one [21]. Since the actuation of the manipulator

is not localized like the octopus muscles (all the tendons of

the manipulator start from the base), the distal tendons can

prevent the action of the more proximal ones if they are pulled

in opposite directions.

10
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Fetching in three dimensions has been investigated. The

simulation results show that for our robot arm a three-

dimensional fetching is more efficient; in fact with the same

actuator strength the distal part of the arm is closer to the base

(mouth) as shown in figure 15.

7. Conclusions

In conclusion, in this work a general geometrically exact

steady-state model of an octopus-inspired robot arm driven by

cables was developed. The ordinary differential equations that

describe the behaviour of all the d.o.f. (deformation of the rod-

like body) are fully reported. The model was experimentally

validated and many interesting results are shown. It could be

a powerful tool for mechanical design of such a manipulator

because of its generality and because it includes the modelling

of the tendon actuation. The model is developed following

a continuum approach that leads to fast computation and

the possibility to implement the model into the control

algorithm.

The validation tests highlight a very small difference

between the model and the real prototype (the average of the

tip error is less than 6% of the total length of the arm) due to

the nonlinearity of the material, the friction of the cables and in

particular the human error in the manual extrapolation process

of the midline from the pictures. This is an acceptable error

compared to the benefit that arises from the approximations

employed.

In the results it is shown how the model can be easily used

to define important characteristics of such a system such as

the selection of the bending plane and the best way to perform

complex behaviours (e.g. fetching).

The model presented in this paper could be used for

simulating the behaviour of many kinds of continuum soft

robot arms composed of a slender body and driven by cables.

Different shapes of the body could be tested as well as the effect

of different paths of the tendons inside the robot body. There

are no limitations to the position and number of anchorage

cross sections that could be considered. Different materials

could be tested too.

Furthermore, there are many reasons why the model

represents a powerful tool for solving the control problem.

It makes explicit the connection between the actuation and the

configuration of the arm, which is not trivial like in the case

of classical rigid body manipulators and is a fundamental lack

in the state of the art. The numerical solution presented here

is fast enough to implement the model on a microcontroller as

virtual sensor or internal model. For those reasons the model

presented in this paper is currently employed for the control

of the octopus-inspired robot arm of section 3.

An important related work could be the investigation of the

stiffness control of the robot arm in a dynamical environment

(grasping object, in water current), which is a fundamental

topic in modern control field. A robot arm such as that

described in this paper is able to modulate its flexional stiffness

in any configuration (if we neglect the longitudinal strain) just

by properly actuating antagonistic tendons. Furthermore, the

whole arm has to be considered as an end effector; therefore the

relation between the curvatures of the grasped object and of the

robot arm could play the role of the displacement difference

of an impedance control. A deep investigation of these control

properties will be carried out in a future work.
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