
Approximation Algorithms for Guarding 1.5
Dimensional Terrains

by

James Alexander King

B.Math., University of Waterloo, 2003

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

We accept this thesis as conforming
to the required standard

. .

. .

THE UNIVERSITY OF BRITISH COLUMBIA

August, 2005

c© James Alexander King, 2005

In presenting this thesis in partial fulfilment of the requirements for an ad-
vanced degree at the University of British Columbia, I agree that the Library
shall make it freely available for reference and study. I further agree that permis-
sion for extensive copying of this thesis for scholarly purposes may be granted
by the head of my department or by his or her representatives. It is understood
that copying or publication of this thesis for financial gain shall not be allowed
without my written permission.

(Signature)

Computer Science

The University Of British Columbia
Vancouver, Canada

Date

iv

Abstract v

Abstract

The 1.5-dimensional terrain guarding problem gives an x-monotone chain (the
terrain) and asks for the minimum set of vertices of the terrain (guards) such
that every vertex of the terrain is seen by at least one guard. This terrain
guarding problem is a restriction of the Set Cover problem, which is known to
be both NP-complete and inapproximable within a sub-logarithmic factor [19].
Fortunately, it is known that the 1.5-dimensional terrain guarding problem is
approximable to within a constant factor [5, 11], though no attempt has been
made to minimize the approximation factor.

We give a 4-approximation algorithm for the general 1.5D terrain guarding
problem, as well as a 2-approximation algorithm for the case with upward-
looking guards, i.e. when guards cannot see vertices that are below themselves.

vi Abstract

Contents vii

Contents

Abstract . v

Contents . vii

List of Figures . ix

Acknowledgements . xi

1 Introduction . 1
1.1 Problem Statement . 2
1.2 Motivation . 4

1.2.1 Applications . 4
1.2.2 Minimizing the Approximation Factor 4
1.2.3 Failure of Trivial Methods 4

1.3 Related Work . 6
1.3.1 The Art Gallery Problem 6
1.3.2 1.5-Dimensional Terrain Guarding 6
1.3.3 2.5-Dimensional Terrain Guarding 8
1.3.4 Watchtower Problems . 8

1.4 Organization . 9

2 Preliminaries . 11
2.1 Terminology and Notation . 12
2.2 Elementary Lemmas . 12

3 Upward Looking Guards . 15
3.1 Introduction to the Upward Looking Case 16
3.2 The TG-Up Algorithm . 16
3.3 Modifications for TG-TT-Up . 18
3.4 Time Complexity . 18

4 The General Case . 19
4.1 Introduction to the General Case 20
4.2 Preliminaries . 20
4.3 Finding a Good Left Vertex . 23
4.4 The Terminal Case . 24
4.5 The Recursive Case . 24

viii Contents

4.6 Modifications for TG-TT . 25
4.7 Time Complexity . 25

5 Domination of Directed Acyclic Graphs 29
5.1 Motivation . 30
5.2 NP-Hardness and Inapproximability 30

6 Future Work . 33
6.1 NP-Completeness . 34
6.2 Characterization of Terrain Graphs 34
6.3 Reductions Between Restricted Visibility Problems 35

Bibliography . 37

List of Figures ix

List of Figures

1.1 An example of a 1.5D terrain. d can see b, c, and e but not a or f . 2
1.2 A terrain for which the greedy method achieves a logarithmic

approximation factor [4]. 5

2.1 The shaded areas are terrain free and their union contains ad. . . 13

4.1 The order of some vertices related to an open vertex v. 21
4.2 L′(v) and R(v) must be in the shaded region. 22
4.3 The shaded region is terrain free, so every left vertex in [L(v), R′(v)]

must see v. 23
4.4 The nested interval [L(y), R(L(y))] can be handled independently

with the help of a dominant outside vertex. 25

x List of Figures

Acknowledgements xi

Acknowledgements

I would like to thank my supervisor, Will Evans, for his guidance throughout
my Master’s degree and in particular for this project. I would also like to thank
my second reader, David Kirkpatrick, for his many helpful comments. I am very
grateful to Boaz Ben-Moshe for taking the time to assist me with this problem.
I would like to thank all of my colleagues at UBC, especially the students and
faculty of the BETA lab. Finally, I would like to thank Melinda for all of her
love and support.

xii Acknowledgements

1

Chapter 1

Introduction

2 Chapter 1. Introduction

1.1 Problem Statement

In the 1.5-dimensional terrain guarding problem we are given as input a ter-
rain T that is an x-monotone polygonal chain. An x-monotone polygonal chain
is a polygonal chain that intersects any vertical line at most once. It can be
thought of as an array of n vertices in 2-dimensional space sorted in ascending
order of x-coordinate, where edges ‘connect the dots’ from left to right. Note
that the x-monotonicity requires x-coordinates to be distinct.

a

b

c

d

e

f

Figure 1.1: An example of a 1.5D terrain. d can see b, c, and e but not a or f .

We say that a point on the terrain sees another point on the terrain if there is a
line of sight between them, i.e. the line segment connecting them is never strictly
below T . A guard is simply a point on the terrain that we add to a ‘guarding
set’. Given a terrain T , we are asked for the smallest possible guarding set,
i.e. the smallest set G of points on T such that every point on T is seen by some
point in G.

Along with the terrain T , we are given two (possibly infinite) subsets of the
points on T : SG, the set of points on which we are allowed to place guards
(i.e. the set of points that are allowed to be in our guarding set), and ST , the
target set of points that our guarding set must see. With these sets in mind,
we can be slightly more formal and say that the problem is to find the smallest
subset G of SG such that every point in ST is seen by some g ∈ G.

For a terrain T , we use V (T) to denote the vertex set of T . There are two
different versions of this terrain guarding problem that are natural to consider:

1. TG-VV: SG = V (T) and ST = V (T).

2. TG-TT: SG = T and ST = T .

1.1. Problem Statement 3

In this paper our main focus is the problem TG-VV in which guards must
be placed on vertices and only vertices need to be guarded; this can be thought
of as the discrete version of the problem. We will often refer to this problem
simply as TG.

Ben-Moshe et al. [5] point out a reduction from TG-TT to TG-VV (see Sec-
tion 1.3.2 for details). The algorithms we present actually work for both versions
of the problem, though minor modifications are required to apply them to TG-
TT.

4 Chapter 1. Introduction

1.2 Motivation

1.2.1 Applications

Naturally, the motivation for 1.5D terrain guarding comes from guarding or
covering terrain. The 1.5D case appears, for example, when guarding or covering
a road, perhaps with security cameras or street lights.

The 2.5D case has more powerful applications, most notably for providing
a wireless communication network that covers a given region. Its proven in-
tractibility and inapproximability, however, motivate us to look towards the
1.5D case for insight. It is also applicable, for example, if we only need to cover
the path between two points on a polyhedral terrain. It has been pointed out
[5] that the 1.5D terrain guarding problem can be utilized in heuristic methods
for the 2.5D case.

1.2.2 Minimizing the Approximation Factor

The recent results of Ben-Moshe et al. [5] and Clarkson and Varadarajan [11]
showed that constant-factor approximation algorithms exist for TG. Efforts to
design an exact polynomial-time algorithm for TG have been unsuccessful and
it is very possible that no such algorithm exists. If TG is NP-hard, then the best
algorithm running in polynomial time will be the approximation algorithm with
the lowest approximation factor. For this reason there is significant motivation
to minimize the approximation factor.

1.2.3 Failure of Trivial Methods

The greedy algorithm for Set Cover, which achieves the optimal approxima-
tion factor of O(log n), repeatedly picks the set that contains the most uncovered
elements. Similarly, the natural greedy algorithm for terrain guarding repeat-
edly picks the guard that sees the most unguarded vertices. It is not at all
obvious that this method would not achieve a constant approximation factor.
However, Ben-Moshe [4] provides the following example on which the greedy
algorithm achieves a logarithmic approximation factor.

Observe the terrain in Figure 1.2. There are O(log n) ‘bowls’. Each bowl
contains 3 times as many vertices as the bowl to its right. Half of the vertices of
each bowl are seen by a and the other half are seen by b. The minimum guarding
set for the terrain is {a, b}, but the greedy algorithm will pick the circled vertices
from left to right to achieve an approximation factor of O(log n).

There are other natural greedy-like algorithms that one might consider. For
example, one could repeatedly pick the guard that maximizes the leftmost un-
guarded vertex or the lowest unguarded vertex. Terrains exist for these al-
gorithms that prove they do not achieve constant approximation factors. The

1.2. Motivation 5

...

3
3^23^{k-1}3^k

a b

PSfrag replacements

3
32

3k−1

3k

Figure 1.2: A terrain for which the greedy method achieves a logarithmic ap-
proximation factor [4].

apparent absence of simple algorithms that achieve constant approximation fac-
tors motivates us to consider more sophisticated techniques.

6 Chapter 1. Introduction

1.3 Related Work

1.3.1 The Art Gallery Problem

The 1.5D terrain guarding problem is similar to a well-studied polygon guard-
ing problem known as the art gallery problem. This problem, posed by Victor
Klee in 1973, asks for the minimum number of security cameras (that can ro-
tate to obtain a full field of vision) required to guard a given art gallery. The
art gallery is represented by a simple polygon and cameras are points inside the
polygon. A camera guards a point if the line segment between them is contained
within the polygon. The size n of a problem instance is the number of vertices
of the polygon.

Chvátal’s Art Gallery Theorem [10] states that bn
3 c cameras are always suf-

ficient and sometimes necessary for guarding a polygon. Kooshesh and Moret
[23] give a linear-time algorithm for guarding a polygon with bn

3 c cameras that
is based on 3-colouring the triangulated polygon. Finding the minimum number
of cameras required to guard a given polygon is NP-hard, as proven by Aggarwal
[2].

The variation of the art gallery problem in which cameras must be placed on
the perimeter of the polygon is more closely related to 1.5D terrain guarding.
bn

3 c cameras are still sufficient and sometimes necessary, and Kooshesh and
Moret’s algorithm works in this variation since it actually places cameras on
vertices. This variation is still NP-complete as proven by Lee and Lin [24].

Eidenbenz et al. [17] prove that the art gallery problem is APX-hard, re-
gardless of restrictions on guard placement. This means that there is some
positive constant δ such that no polynomial-time algorithm with an approxima-
tion factor less than 1 + δ exists. In other words, the problem does not admit
a polynomial-time approximation scheme unless P=NP. They provide an even
stronger result in the case of polygons with holes: no polynomial-time algorithm
can have a sub-logarithmic approximation factor.

1.3.2 1.5-Dimensional Terrain Guarding

When guarding a 1.5D terrain it is easy to see that bn
2 c guards are sufficient

(place a guard at every other vertex) and sometimes necessary (e.g. if every
vertex is on the upper hull of the terrain). If only the vertices of the terrain
need to be guarded this bound drops to dn

3 e.

Every instance of TG is an instance of Set Cover, but we know that Set
Cover is NP-complete (see, e.g., [20]) and no sub-logarithmic approximation
factor can be obtained unless NP ⊆ DTIME(nlog log n) [19]. In general it is not
particularly difficult to modify a TG-VV algorithm to solve instances of TG-TT,
though this often involves some polynomial increase in time complexity.

1.3. Related Work 7

It is unknown whether or not TG is NP-hard. In 1995 Chen et al. [9] proposed
an NP-hardness proof obtainable via a modification of Lee and Lin’s proof
[24]. However, the proof, whose details were omitted, was never completed
successfully. Since then, attempts to find a polynomial-time algorithm for TG
and attempts to prove that it is NP-hard have both been unsuccessful.

The first constant-factor approximation algorithm for the 1.5D terrain guard-
ing problem was given by Ben-Moshe et al. [5]. Their algorithm works by first
placing guards to divide the terrain into independent subterrains. Each sub-
terrain has the property that it does not require internal guards, i.e. every
unguarded vertex can be seen from outside the subterrain. For each such sub-
terrain that is not completely guarded they then proceed with steps that either
reduce the subterrain or split it into multiple independent subterrains. They
made no attempt to minimize their algorithm’s approximation factor; as such
it is very large (at least 48). It could be brought down possibly as low as 6 with
some minor modifications and careful accounting, but due to the inevitable cost
incurred by repeatedly dividing the terrain it does not seem that it could be
brought any lower than 6.

Our approach differs from that of Ben-Moshe et al. in that ours is completely
iterative. By avoiding a divide and conquer approach we are able to get the
approximation factor as low as 4. We need to work differently than they do
their iterative steps since we cannot depend on the desirable properties that
their division offers.

Ben-Moshe et al. also give a reduction from TG-TT to TG-VV. They show
that a quadratic number of extra vertices can be added in the middle of any
terrain’s edges to create a terrain in which any set of vertices that guards every
vertex must guard the entire terrain. They then show that any edge guard
can be replaced by two vertex guards, essentially saying that a c-approximation
algorithm for TG-VV can be applied to one of these augmented terrains to give
a 2c-approximation algorithm for TG-TT.

Another constant-factor approximation algorithm is given by Clarkson and
Varadarajan [11]. Consider a partition of a 1.5D terrain into maximal intervals
such that, for any two points p and p′ in a given interval, the leftmost point that
sees p and the leftmost point that sees p′ are the same. If we label each interval
with the leftmost point that sees it and read the labels from leftmost interval
to rightmost interval, Clarkson and Varadarajan note that we end up with an
(n, 2) Davenport-Schinzel sequence [25]. Such a sequence must have length at
most 2n. This characterization of the lack of complexity in 1.5D terrains allows
them to efficiently find appropriate ε-nets [21] for instances of TG. They then
apply the Set Cover method of Brönnimann and Goodrich [8] to solve the
problem using these ε-nets. The end result is a constant-factor approximation
algorithm that runs in polynomial time.

8 Chapter 1. Introduction

The 1.5D terrain guarding problem becomes easy if, instead of being placed
on the terrain, all guards ’float’ above the terrain at a fixed altitude that is above
the highest vertex. Eidenbenz [14] gives a linear-time algorithm for finding an
optimal set of guards in this case. The problem also becomes easy if guards can
only look rightwards. Chen et al. [9] give a linear-time algorithm for this case.

1.3.3 2.5-Dimensional Terrain Guarding

A 2.5D terrain is a polyhedral surface that intersects every vertical line at
most once and whose projection onto the x, y-plane is a simple polygon with no
holes. The 2.5D Terrain Guarding Problem is therefore a natural extension of
the 1.5D problem to the next dimension.

Bose et al. [7] prove that bn
2 c vertex guards are sufficient and sometimes

necessary. If guards can be placed on edges then bn
3 c guards are sufficient [18]

and b 4n−4
13 c are sometimes necessary. Efficient algorithms for achieving these

bounds for vertex guards and edge guards are given by Bose et al. [6].

Finding a minimum number of guards for a 2.5D terrain is NP-complete and
Eidenbenz shows that it cannot be approximated within a sub-logarithmic factor
unless NP ⊆ DTIME(nlog log n) [15]. Eidenbenz et al. show that the problem
is also NP-complete and equally inapproximable when guards ’float’ at a given
altitude that is higher than the highest point in the terrain [16] (recall that this
can be solved in linear time for 1.5D terrains).

1.3.4 Watchtower Problems

A k-watchtower problem provides a terrain and an integer k and asks for
the minimum height h such that k guards can be placed at height h above the
terrain (not above “sea level”) to guard the terrain. The discrete version of the
problem is that in which the guards must be above vertices of the terrain.

Most of the best results for these problems when k = 2 are due to Agarwal
et al. [1]. For 1.5D terrains they present polynomial-time algorithms for both
the discrete and continuous versions of the 2-watchtower problem. For 2.5D
terrains they present a polynomial-time algorithm for the discrete 2-watchtower
problem. Zhu gives an O(n log n) algorithm for the 1-watchtower problem on
2.5D terrains.

1.4. Organization 9

1.4 Organization

The rest of the paper is organized as follows. In Chapter 2 we introduce
notation and some small but fundamental lemmas. In Chapter 3 we give our
2-approximation algorithm for the upward-looking case. In Chapter 4 we give
our 4-approximation algorithm for the general case. In Chapter 5 we prove
NP-hardness and inapproximability of Dominating Set on directed acyclic
graphs to show that our 2-approximation algorithm for the upward-looking case
is significant. In Chapter 6 we discuss open problems and suggest directions for
future work regarding 1.5D terrain guarding.

10 Chapter 1. Introduction

11

Chapter 2

Preliminaries

12 Chapter 2. Preliminaries

2.1 Terminology and Notation

An instance of the 1.5D terrain guarding problem is simply an x-monotone
chain T . This chain is a set of n vertices, {v1, . . . , vn}, such that vi is to the right
of vj if and only if i < j. We compare vertices using their indices; this makes it
much easier to describe relationships between them. For example, x < y means
that x is left of y, and for a set S of vertices, max(S) is the rightmost vertex
in S. When referring to points on the terrain that are not vertices we use the
comparators in a similar manner.

For a vertex x we use L(x) to denote the leftmost point where we can place
a guard that sees x and R(x) to denote the rightmost point where we can place
a guard that sees x. It is not difficult to see that L(x) and R(x) will always be
vertices in the general case, whether x is a vertex or not (this is not necessarily
true in the upward-looking case, as we explain in Section 3.3). We use TL(x) to
denote the terrain restricted to the interval [v1, x] and use TR(x) to denote the
terrain restricted to [x, vn]. We use CHL(x) to denote the convex hull of TL(x)
and use CHR(x) for that of TR(x).

If a vertex x sees every unguarded vertex that another vertex y sees we say
that x dominates y. We can also say that a set S dominates a vertex x if every
unguarded vertex seen by x is also seen by some vertex in S. We say that x
dominates y with respect to a certain region of T if x sees every unguarded
vertex in that region that y sees.

We consider a minimum guarding set GOPT for the terrain T . We assume
there is some mapping g of vertices of T to guards in GOPT such that, for a
vertex v, g(v) is a guard in GOPT that sees v. We say that g(v) is the guard
responsible for g. g is surjective but never injective (since |GOPT | < n); we
use it to simplify the explanation of our accounting scheme. Our algorithms are
iterative; in each iteration they find some appropriate unguarded vertex v. They
then place a constant number of guards that together dominate g(v) and charge
them to g(v). Repeatedly doing this gives us constant-factor approximation
algorithms.

2.2 Elementary Lemmas

Here we state and prove several small but fundamental lemmas that we will
use in the rest of the paper. They apply to both the general case and the
upward-looking case. These lemmas and corollaries can be used with left and
right interchanged; this is stated explicitly for Corollary 1 as an example but is
not stated for the others.

Lemma 1. (Order Claim) [5, 9] For vertices a, b, c, d such that a ≤ b < c ≤ d,
if a sees c and b sees d then a sees d.

2.2. Elementary Lemmas 13

Proof. This becomes quite clear with the help of a diagram (see Figure 2.1). It
is trivially true if a = b or c = d; otherwise we know that a < b < c < d. In this
case b cannot be above ac and c cannot be above bd (otherwise the fact that a
sees c and b sees d would be violated). This means that the two line segments
must cross; we call their intersection point p. Considering the triangle formed
by a, p, and d, we note that no point on the terrain can be above the lower hull
and ad is the upper hull. Therefore no point on the terrain can be above ad.
For the upward-looking case it is not difficult to see that if a sees c and b sees
d then a must be below d so the lemma holds.

a

b

c

d

p

Figure 2.1: The shaded areas are terrain free and their union contains ad.

Corollary 1. For vertices v, u, x with v ≤ u < x, if v and u can both be seen
from TR(x) then R(u) ≤ R(v).

Corollary 1. (Symmetric Version) For vertices v, u, x with x < u ≤ v, if v
and u can both be seen from TL(x) then L(v) ≤ L(u).

Lemma 2. For an interval [a, b] where a sees b, any guard in (a, b) is dominated
with regard to TR(b) by a.

Proof. Let v be a guard in (a, b) and let u be some vertex in TR(b) seen by u.
If u = b we know that a sees u. Otherwise the order claim, applied to a, v, b, u,
states that a sees u.

Corollary 2. For vertices x and y such that x < y < R(x), we know that
R(y) ≤ R(x).

14 Chapter 2. Preliminaries

15

Chapter 3

Upward Looking Guards

16 Chapter 3. Upward Looking Guards

3.1 Introduction to the Upward Looking Case

We consider a restricted version of the 1.5-dimensional terrain guarding prob-
lem in which guards cannot see below themselves. That is, a guard at x can see
a point y if and only if the line segment xy does not pass under the terrain and
y is not below x. With this restriction we refer to the problem as the upward
looking 1.5-dimensional terrain guarding problem. We can define TG-VV-Up =
TG-Up and TG-TT-Up, whose definitions should be obvious from Section 1.1.
In Section 3.2 we give a 2-approximation algorithm for TG-Up. In Section 3.3
we show how the algorithm can, with minor modifications, be applied to TG-
TT-Up to obtain the same approximation factor. In Section 3.4 we show that
our algorithm runs in quadratic time.

The restriction that a guard cannot see points below it has several effects on
the visibility graph of the terrain. First of all, since visibility between two ver-
tices is no longer symmetric, the visibility graph is a directed graph. Secondly, if
we assume that the vertices are in general position (specifically that no two are
at the same height), the visibility graph is acyclic since a vertex on the terrain
can only see vertices above it and can only be seen by vertices below it. With
such an assumption the problem TG-Up is therefore equivalent to Dominating
Set (see, e.g., [20]) on a restricted class of directed acyclic graphs.

We refer to the Dominating Set problem on general DAGs as Dom-DAG.
In Chapter 5 we show via a simple reduction from Set Cover that Dom-
DAG is NP-hard. We also show that any polytime approximation algorithm
for Dom-DAG must have at least a logarithmic approximation factor unless
NP ⊆ DTIME(nlog log n). Since, with the assumption of general position, TG-
Up is a restricted case of Dom-DAG, this inapproximability increases the sig-
nificance of a constant factor approximation algorithm for TG-Up. We should
note that our algorithm does not require vertices to be in general position.

3.2 The TG-Up Algorithm

Our algorithm starts with an empty set G of guards and repeatedly considers
the lowest vertex p on the terrain that is not seen by G. We will place up to 3
guards to dominate g(p) and charge them to g(p). Our algorithm is based on
the following lemma:

Lemma 3. If p is the lowest unguarded vertex then {L(p), p, R(p)} dominates
any vertex that sees p.

Proof. Any vertex that sees p must be in [L(p), R(p)]. Using Lemma 2 we can
see that {L(p), p} dominates any vertex in [L(p), p] with regard to TR(p) and
{p,R(p)} dominates any vertex in [p,R(p)] with regard to TL(p). p must be the
highest point in [L(p), R(p)], so there are no unguarded points in [L(p), R(p)]
other than p. What remains to be shown is that {L(p), p, R(p)} dominates

3.2. The TG-Up Algorithm 17

any vertex in (L(p), p) with regard to TL(L(p)) and dominates any vertex in
(p,R(p)) with regard to TR(R(p)).

Let v be a vertex in (L(p), p). If there is an unguarded vertex u to the left
of L(p) that is seen by v then the order claim tells us the line segment between
p and u is uninterrupted by the terrain. This means that if u does not see p
then p must see u. u cannot see p because this would contradict the definition
of L(p), so p must see u. This proves our claim for the left side; the right side
can be proven symmetrically.

Our algorithm is very simple. Once we have found the lowest unguarded
vertex p, we simply place guards at L(p), p, and R(p) and charge them to
g(p). Lemma 3 tells us that any vertex that sees p must be dominated by
{L(p), p, R(p)}. These vertices may or may not be distinct so in actual fact we
have placed 1, 2, or 3 guards.

At first it seems that this algorithm can have an approximation factor as high
as 3, but with a bit more analysis we can prove an upper bound less than 2.
Let P be the set containing the lowest unguarded point at each iteration of our
algorithm (i.e. the points p for which we placed guards at L(p), p, and R(p)).
|P | ≤ |GOPT |. Let p be some vertex in P . We know that L(p) ≤ p ≤ R(p), but
we can be more specific. We consider three cases based on the vertices related
to p:

1. L(p) = p = R(p)

2. L(p) = p < R(p) or L(p) < p = R(p)

3. L(p) < p < R(p).

Clearly our algorithm places 1 guard in the first case, 2 in the second, and 3
in the third. We know that |G| ≤ 3|P |, but we can also say that if Case 1 occurs
at least as often as Case 3 then |G| ≤ 2|P |. Case 1 will occur if and only if p is a
local minimum. Case 3 will occur if and only if p is an intermediate maximum,
where we define an intermediate maximum as a local maximum that is neither
the leftmost nor the rightmost vertex in the terrain. Any other situation falls
into Case 2.

Now we show that Case 1 occurs more often than Case 3, bringing the ap-
proximation factor below 2. The number of local minima is one more than the
number of intermediate maxima, since there is exactly one local minimum be-
tween any two intermediate maxima, as well as one to the left of the leftmost
and one to the right of the rightmost. Also, every local minimum is in P since
a local minimum can only be guarded by itself. Therefore Case 1 must occur
strictly more often than Case 3, so our algorithm’s approximation factor is be-
low 2. It is not difficult to come up with sample terrains in which our algorithm
achieves an approximation factor as bad as 2 − Θ(1/n), and that is the upper
bound.

18 Chapter 3. Upward Looking Guards

Pseudocode for our algorithm is as follows:

Algorithm 1 TG-Up(T)

G ← ∅;
while unguarded points remain do

let p be the lowest unguarded vertex;
add p, L(p), and R(p) to G;

end while

3.3 Modifications for TG-TT-Up

To make the TG-Up algorithm work for TG-TT-Up we need to consider
guarding edges instead of guarding vertices. The following two observations are
crucial. First of all, if p is the lowest unguarded point on the terrain, any guard
that sees p must see every unguarded point on the same edge as p. Secondly, the
lowest unguarded point on the terrain will always be the lowest point on some
edge. These observations together mean that if a guard sees part of an edge but
not all of it then, for our purposes, it may as well see none of that edge. We are
therefore only concerned about whether a guard sees all of an edge or not.

Consider an edge (x, y) where, without loss of generality, x is below y. A
point sees all of (x, y) if and only if it sees x and is not below the line passing
through x and y. The leftmost point that sees this edge will either be L(x) if
it not below the line passing through x and y and will be x otherwise. The
rightmost point that sees this edge will be x. It is therefore clear that there are
no more than 2n potential guard locations that we need to consider.

3.4 Time Complexity

For TG-VV-Up we first compute the visibility graph of the terrain. As Ben-
Moshe points out [3] this can be done in O(n2) time. From here on it is simple
to show that the algorithm runs in quadratic time. Our algorithm goes through
O(n) iterations. In each iteration we find the lowest unguarded vertex p, find
L(p) and R(p), place guards at these vertices, then mark all vertices seen by
our new guards as guarded. All of the work in an iteration can clearly be done
in linear time. Our algorithm for TG-Up therefore runs in O(n2) time.

For TG-TT-Up we do the same. The only difference is that the visibility
graph will be a bipartite graph with points on the terrain seeing edges (see
Section 3.3). The size of the graph will still be O(n2) and can be constructed
in O(n2) time. Our algorithm therefore runs in O(n2) time for TG-TT-Up.

19

Chapter 4

The General Case

20 Chapter 4. The General Case

4.1 Introduction to the General Case

Our algorithm for the general case works by repeatedly finding an unguarded
vertex u and a set S of up to 4 vertices such that S must dominate g(u). By
doing so, we achieve an approximation factor of 4. Our algorithm does not
require any knowledge of previously placed guards other than which vertices
are unguarded.

GuardRight is a recursive subroutine that does most of the algorithm’s
work. GuardRight takes two vertices x and c as parameters and it places
guards appropriately until every vertex in [x, R(x)) is guarded. The precondi-
tions are that x is unguarded, x is not on CH(T), and every unguarded vertex
in [L(R(x)), x) is seen by c. We note that if x is not on CH(T) then x 6= R(x),
which is a fact we will need later. The other significant consequences of x not
being on the convex hull are that L(R(x)) ≤ L(x) < x and, due to Corollary 2,
no vertex outside of [L(R(x)), R(x)] can see an unguarded vertex y in [x,R(x)).

In the outermost loop of our algorithm we consider the two leftmost un-
guarded vertices p and q with p < q. In the case where p is not on CH(T) we
call GuardRight(p, p) and the preconditions are satisfied. If p is on CH(T)
but q is not we call GuardRight(q, p) and the preconditions are satisfied. If
both p and q are on the convex hull we can simply place a guard at R(p) and this
will dominate g(p). Clearly if there is only one unguarded vertex p remaining
we can just place a guard on p to dominate g(p).

We say that an interval I is independent if no unguarded interior vertex in I
can be seen from outside I. For a call to GuardRight(x, c) we say that the
interval [L(R(x)), R(x)] is pseudo-independent since we could make it indepen-
dent with the placement of a single guard (at c in this case). GuardRight will
either find an unguarded vertex u ∈ [x,R(x)) for which g(u) can be dominated
by 4 guards or will find a pseudo-independent subinterval of [x,R(x)] that it
can recurse on.

4.2 Preliminaries

Here we introduce some lemmas that hold in the general case.

Lemma 4. (Lip Lemma) For an interval [a, b] where a sees b, if there are no
unguarded vertices in (a, b) then {a, b} dominates any guard in [a, b].

Proof. This follows easily from Lemma 2 since a sees b and b sees a.

Lemma 5. For a vertex x, any guard v in TL(x) is dominated with regard
to TR(x) by a guard in CHL(x). One such dominating guard is the rightmost
vertex in TL(v) ∩ CHL(x).

4.2. Preliminaries 21

Proof. Let u be the rightmost vertex in TL(v) ∩ CHL(x). If v is on CHL(x)
then v = u and the lemma clearly holds. Otherwise let w be the first vertex on
CHL(x) to the right of u. Now u dominates v with regard to TR(x) ⊆ TR(w)
by Lemma 2.

Corollary 3. For vertices x and v, if L(v) ≤ x ≤ v then L(v) is on CHL(x).

At this point we introduce some new terminology and notation that depends
on the parameters of GuardRight. It should be emphasized that this notation
applies only to this particular call to GuardRight. We say that a left vertex
is a vertex in CH([L(R(x)), x]) − {x}. A right vertex is a vertex in [x,R(x)].
An open vertex is an unguarded vertex in [x,R(x)) that can be seen by a left
vertex. A closed vertex is an unguarded vertex in [x,R(x)) that cannot be seen
by a left vertex. For an open vertex v we provide additional notation: R′(v) is
the rightmost left vertex that sees v and L′(v) is the leftmost right vertex that
sees v. R′(v) and L′(v) are undefined unless v is an open vertex.

Lemma 6. (a) If v is a closed vertex then L(R(x)) ≤ x ≤ L(v) ≤ v ≤ R(v) ≤
R(x). (b) If v is an open vertex then L(R(x)) ≤ L(v) ≤ R′(v) < x ≤ L′(v) ≤
v ≤ R(v) ≤ R(x).

Proof. (a) L(R(x)) ≤ x since R(x) sees x. x ≤ L(v) otherwise v would be
an open vertex. L(v) ≤ v by definition. R(v) ≤ R(x) by Corollary 2. (b)
L(R(x)) ≤ L(v) by Corollary 1 if x < v and by the Order Claim otherwise.
L(v) ≤ R′(v) < x ≤ L′(v) ≤ v by definition. R(v) ≤ R(x) by Corollary 2.

R(x)

L(R(x))

x

v

L(v)

L’(v)

R’(v)

R(v)

Figure 4.1: The order of some vertices related to an open vertex v.

22 Chapter 4. The General Case

Lemma 7. For an open vertex v, L′(v) sees R(v).

Proof. If v = x this is clearly true since x = L′(x). Otherwise, it is easy to
see that this is true as long as v is not above the line passing through L′(v)
and R(v). L′(v) cannot be below the line passing through x and v otherwise v
would be seen by a vertex in [x, L′(v)) which contradicts the definition of L′(v).
Similarly, R(v) cannot be below the line passing through v and R(v). It should
now be clear that v is not above the line passing through L′(v) and R(v) (see
Figure 4.2). The rest follows trivially.

x

v

L’(v)

R(x)

R(v)

Figure 4.2: L′(v) and R(v) must be in the shaded region.

Lemma 8. For an open vertex v the set of left vertices that see v is contiguous,
i.e. every left vertex in [L(v), R′(v)] sees v.

Proof. Consider CH([L(v), R′(v)]). This is a subset of CH([L(R(x)), x]) −
{x} since L(v) and R′(v) are both on CH([L(R(x)), x]). So we can see that
CH([L(v), R′(v)]) is a set of left vertices and we know that no left vertex not in
the set can see v. Now we will show that if w is a vertex in the set, w 6= L(v),
w sees v, and u is the first vertex in the set to the left of w, then u also sees
v. Consider the line passing through v and w. u must be above this line since
w 6= L(v). Since u and w are consecutive points on the convex hull, w sees u.
Now we can see that uw and wv are line segments that do not interfere with
the terrain, so uv cannot interfere with the terrain since it is above uw and wv.
Therefore u sees v. It is easy to extend this into an induction proof for the
lemma.

Lemma 9. For every vertex v in [L(R(x)), x) there is a left vertex u such that
{c, u} dominates v. This guard u is the rightmost vertex in TL(v) ∩ CHL(x).

Proof. By Lemma 5 we know that u dominates v with regard to TR(x). If u 6= v
then v cannot see any vertex to the left of u so u dominates v with regard to
TL(u). c can see every unguarded vertex in [L(R(x)), x). Since L(R(x)) ≤ u,
we can see that TL(u) ∪ [L(R(x)), x) ∪ TR(x) = T . Therefore {c, u} dominates
v.

4.3. Finding a Good Left Vertex 23

x

v

L(v)

R’(v)

Figure 4.3: The shaded region is terrain free, so every left vertex in [L(v), R′(v)]
must see v.

Lemma 9 tells us that, as long as we place a guard at c when we place other
guards, we needn’t place any guard in [L(R(x)), x) unless it is on a left vertex.

4.3 Finding a Good Left Vertex

The first thing we note is that there must be at least one open vertex in
[x,R(x)), namely x. There may or may not be a closed vertex in [x,R(x)). We
define b as the leftmost left vertex such that some open vertex v is seen by b
but not by any left vertex to the right of b. In other words, b is the minimum
R′(v) over all open vertices v. We define d as the leftmost open vertex for which
R′(d) = b.

Lemma 10. Every open vertex in (L′(d), R(x)) is seen by L(d).

Proof. If d = x then the proof follows easily from the symmetric version of
Corollary 1, so we will assume this is not the case. First we will prove that
there are no open vertices in (L′(d), d). Assume for the sake of contradiction
that there is an open vertex v in (L′(d), d). We can apply the order claim to
R′(v), L′(d), v, d to see that R′(v) sees d. This tells us that R′(v) ≤ R′(d),
which violates the definition of d, so there cannot be any such vertex v. Now
we show that L(d) sees every open vertex in (d, R(x)). Let u be an open vertex
in (d, R(x)). We have L(u) < d < u so by the symmetric version of Corollary 1
we know that L(u) ≤ L(d). By the definition of d we know that R′(d) ≤ R′(u).
Therefore L(d) ∈ [L(u), R′(u)], so by Lemma 8 we know that L(d) sees u.

Lemma 11. Any guard in [L(R(x)), x) that sees d is dominated by {L(d), c}.
Proof. Let v be a guard in [L(R(x)), x) that sees d. Since c sees every unguarded
vertex in [L(R(x)), x) it suffices to prove that L(d) dominates v with regard to

24 Chapter 4. The General Case

TR(x). L(d) ≤ v, so by Lemma 2 L(d) dominates v with regard to TR(d). Now
we show that no left vertex that sees d can see any open vertex to the left of
d. It follows from the definition of b = R′(d) and from Lemma 8 that any open
vertex seen from the left of R′(d) must be seen by R′(d). However, d is the
leftmost open vertex seen by R′(d), so no open vertex to the left of d can be
seen by R′(d). In other words, no open vertex to the left of d can be seen by
a left vertex that sees d. This, along with Lemma 5, tells us that v cannot see
any unguarded vertices in [x, d). Since v cannot see any closed vertices at all,
this means that L(d) dominates v with regard to TR(x). v cannot see anything
left of L(R(x)) except possibly if v = L(d), so {L(d), c} dominates v over the
entire terrain.

Recall that, while searching for a suitable vertex u for which we can dominate
g(u) with 4 guards, either we find one right away or we find some pseudo-
independent pocket (i.e. a subinterval of [x,R(x))) that we can recurse upon.

4.4 The Terminal Case

We first consider the case where there are no closed vertices in (L′(d), R(d)).
We place guards at {c, L(d), L′(d), R(d)} and claim that these guards dominate
any guard that sees d. Lemma 10 tells us that every open vertex in (L′(d), R(d))
is seen by L(d), and since there are no closed vertices in (L′(d), R(d)) there
are no longer any unguarded vertices in (L′(d), R(d)). L′(d) sees R(d) by
Lemma 7. Therefore, by Corollary 4, any guard in [L′(d), R(d)] is dominated
by {L(d), L′(d), R(d), c}. By Lemma 11 any guard in [L(R(x)), x] that sees d
is dominated by {L(d), L′(d), R(d), c}. Any guard that sees d must either be
in [L(R(x)), x] or in [L′(d), R(d)], so {L(d), L′(d), R(d), c} dominates any guard
that can see d.

4.5 The Recursive Case

If there are closed vertices in (L′(d), R(d)) our job is slightly more compli-
cated and requires recursion (this is where we find our ‘independent pocket’).
We require another subroutine, GuardLeft, that is like a mirror image of
GuardRight. For GuardLeft(x′, c′) the precondition on c′ is flipped hori-
zontally: every unguarded vertex in (x′, R(L(x′))] must be seen by c′.

Let y be the rightmost closed vertex (note that y is not necessarily in the
interval (L′(d), R(d)), but it must be in (L′(d), R(x))). We will show that
the preconditions are satisfied if we call GuardLeft(y, L(d)). By Corollary 2
R(L(y)) ≤ R(x) and by the definition of y any unguarded vertex in (y,R(x)) is
an open vertex. Therefore by Lemma 10 every unguarded vertex in (y, R(L(y)))
is seen by L(d). If R(L(y)) < R(x) then either R(L(y)) is already guarded or
it is an open vertex and is seen by L(d). If R(L(y)) = R(x) then L(d) sees

4.6. Modifications for TG-TT 25

R(L(y)) since every vertex in CH([L(R(x)), x]) sees R(x). Therefore every un-
guarded vertex in (y, R(L(y))] is seen by L(d). We know y is unguarded and
y ∈ (x,R(x)) (and is therefore not on CH(T)), so the preconditions are satisfied.

R(x)

L(R(x))

x

y

L(y)

R(L(y))

Figure 4.4: The nested interval [L(y), R(L(y))] can be handled independently
with the help of a dominant outside vertex.

In this way we can do a sort of recursive zig-zagging where each call to
GuardRight will spawn a call to GuardLeft and each call to GuardLeft
will spawn a call to GuardRight. It is not difficult to see that eventually, after
at most a linear number of these zig-zagging steps, we will find a suitable u. At
this point we can simply place our 4 guards and, if we need to, start a brand new
call to GuardRight. Pseudocode for GuardRight and the main algorithm
Guard that calls it is given as Algorithm 3 and Algorithm 2 respectively.

4.6 Modifications for TG-TT

No real modifications need to be made to apply our TG algorithm to TG-TT.
However, we need to keep track of more information if we want our algorithm
to run as efficiently as possible. This is discussed in Section 4.7.

4.7 Time Complexity

It is clear that at most O(n) initial calls to GuardRight can be made. For
TG-VV it is also easy to see that an initial call to GuardRight will result in a

26 Chapter 4. The General Case

Algorithm 2 Guard(T)

while T is not completely guarded do
let p be the leftmost unguarded vertex;
if p is the only unguarded vertex then

place a guard at p;
charge the guard to g(p);

else if p is not on CH(T) then
GuardRight(p, p);

else
let q be the second leftmost unguarded vertex;
if q is not on CH(T) then

GuardRight(q, p);
else

place a guard at R(p);
charge the guard to g(p);

end if
end if

end while

Algorithm 3 GuardRight(x, c)

Require:
• c sees every unguarded vertex in (L(R(x)), x)
• x is unguarded
• x /∈ CH(T)

b ← min{R′(v) : v is open};
d ← min{v : R′(v) = b};
if there is a closed vertex in (L′(d), R(d)) then

let y be the rightmost such closed vertex;
GuardLeft(y, L(d));

else
place guards at c, L(d), L′(d), and R(d);
charge the guards to g(d);

end if

4.7. Time Complexity 27

number of guards being placed in O(n2) time. We can therefore give an upper
bound of O(n3) for the running time of TG-VV.

If we want TG-VV to be more efficient, we can make GuardRight(x, c) con-
tinue placing guards until [x,R(x)) has been completely guarded. This changes
things slightly; on a given iteration, x is not necessarily unguarded so there is
not necessarily an open vertex. If there is no open vertex, however, we can just
recurse immediately by calling GuardRight(y, c) so this is not a problem. To
increase efficiency, we can sort the open vertices v by R′(v) (breaking ties using
the x-coordinates of open vertices) to find an appropriate b and d faster in each
iteration.

A call to GuardRight(x, c), ignoring all recursive calls that it spawns, can
now run in O(n + m log m) time, where m is the number of open vertices in
[x,R(x)). It is easy to see that the ‘n’ terms, added up over the entire course
of the algorithm, will cost O(n2) time since there will be at most O(n) calls
to GuardRight. Any vertex will be an open vertex for at most one call to
GuardRight, so the sum of all m log m factors encountered will actually be
bounded by O(n log n). All other overhead incurred by the algorithm can be
dealt with in O(n2) time, so the running time of TG-VV is bounded by O(n2).
Pseudocode for the efficient but less elegant version of GuardRight is given
as Algorithm 4.

When dealing with TG-TT the only real problem is finding b and d at each
iteration of a call to GuardRight. Instead of open vertices and closed vertices,
we consider open edge sections and closed edge sections. It is not difficult to see
that for each edge of the terrain, at most one contiguous section will be open
and at most one will be closed. From left to right on an edge, we can have a
guarded section, a closed section, an open section, and another guarded section,
though not all of these sections will necessarily exist. For an open section, the
leftmost point will have the leftmost R′.

L(p) is always a vertex regardless of where p is. If we keep track of the
transition points for the function L(p) (there are only O(n) of them [11]) then
we can know where open sections end and closed sections begin. For every edge,
our algorithm also keeps track of where the unguarded section starts and ends
(it must be contiguous). After placing a guard, updating the unguarded section
on every edge can be done quite easily in linear time. Assume we have just
placed a guard at g. To the left of g call the first vertex x1 and consider the
edge e1 whose left endpoint is x1. Mark down that every point on e1 is guarded.
Now, moving left from x1, find the first vertex above the line going through g
and x1; call this x2, define e2 appropriately and mark down that every point on
e2 above the line going through g and x1 is guarded. It is easy to see how we
can proceed to update the unguarded section of each edge in linear time. Since

28 Chapter 4. The General Case

Algorithm 4 GuardRight(x, c) (Efficient Version)

Require:
• c sees every unguarded vertex in (L(R(x)), x)
• x /∈ CH(T)

while there are unguarded vertices in [x,R(x)) do
if there is a closed vertex then

let y be the rightmost closed vertex;
if there is an open vertex in (y, R(x)) then

b ← min{R′(v) : v is open};
d ← min{v : R′(v) = b};
if y is in (L′(d), R(x)) then

GuardLeft(y, L(d));
else

place guards at c, L(d), L′(d), and R(d);
end if

else
GuardLeft(y, y);

end if
else

b ← min{R′(v) : v is open};
d ← min{v : R′(v) = b};
place guards at c, L(d), L′(d), and R(d);

end if
end while

we place O(n) guards the total cost of updating guarded edge sections of the
terrain is O(n2).

If we do all of the aforementioned maintenance, we will only need to consider
the leftmost point in each open section when looking for b and d. Therefore
we do not need to worry about asymptotically more points in TG-TT than in
TG-VV. The running time therefore remains O(n2).

29

Chapter 5

Domination of Directed
Acyclic Graphs

30 Chapter 5. Domination of Directed Acyclic Graphs

5.1 Motivation

Dominating Set is a well-known NP-complete problem for general undi-
rected graphs [20]. Every undirected graph can be represented as a directed
graph, so the problem is NP-complete for general directed graphs as well. For
undirected acyclic graphs, i.e. trees, there is a simple linear-time algorithm for
Dominating Set [12]. In this section we show that the Dominating Set prob-
lem on directed acyclic graphs (DAGs), which we will abbreviate as Dom-DAG,
is NP-complete and cannot be efficiently approximated within a sub-logarithmic
factor.

While the general 1.5D terrain guarding problem is a restriction of Dom-
inating Set on general graphs, the upward-looking case is a restriction of
Dom-DAG (assuming the vertices are in general position). It is therefore nat-
ural to consider the complexity of Dom-DAG before trying to solve TG-Up.
The hardness and inapproximability of Dom-DAG support the relevance of a
2-approximation algorithm for TG-Up.

5.2 NP-Hardness and Inapproximability

Lemma 12. Dominating Set on directed acyclic graphs is NP-complete.
Furthermore, if k is the size of the minimum dominating set, it cannot be
approximated to within a factor of o(log k) in polynomial time unless NP ⊆
DTIME(nlog log n).

Proof. The proof follows from a fairly trivial gap-preserving reduction from Set
Cover.

Recall that an instance I of Set Cover is a set S along with a collection
C of subsets of S, and the problem is to find the smallest subset C ′ of C such
that every element of S is in at least one of the subsets in C ′. Our reduction
creates a DAG G with |S|+ |C|+ 1 vertices that is an instance of Dom-DAG.
For each element in S we create a vertex with no outgoing edges. We will call
these element vertices. For each X ∈ C (recall that X ⊂ S), we create a vertex
with an outgoing edge to each element vertex that represents an element in X.
We will call these set vertices. We then create one final vertex, the source, with
no incoming edges and with an outgoing edge to every set vertex.

There are several things to note about G. First of all, the source is in
every dominating set of G since it has no incoming edges. Secondly, for any
dominating set A of G that contains an element vertex, a dominating set B of
equal or lesser cardinality can be constructed trivially by replacing each element
vertex v in A with one of the set vertices that has an outgoing edge to v.

Finding a minimum dominating set of G that contains the source and does
not contain any element vertices is therefore no harder than finding any mini-
mum dominating set of G. So a minimum dominating set of G consists of the
source, plus the minimum subset of set nodes required to cover all of the element

5.2. NP-Hardness and Inapproximability 31

nodes. It should be clear that the minimum dominating set for G has size k +1
if and only if the minimum set cover of I contains exactly k elements of C.

Set Cover is NP-complete and cannot be approximated to within a factor
of o(log |S|) in polynomial time unless NP ⊆ DTIME(nlog log n)[19]. Also, the
size of the minimum dominating set for the graph obtained by our reduction is at
most |S|. Since our reduction is gap-preserving and is clearly polynomial, Dom-
DAG must be NP-complete and cannot be approximated to within a factor of
o(log |k|) in polynomial time unless NP ⊆ DTIME(nlog log n).

32 Chapter 5. Domination of Directed Acyclic Graphs

33

Chapter 6

Future Work

34 Chapter 6. Future Work

6.1 NP-Completeness

The most pressing and obvious question regarding the 1.5D terrain guard-
ing problem is whether or not it is NP-complete. All of our attempts at an
NP-hardness proof have been stymied by the Order Claim. On the other hand,
attempts at designing an exact polynomial-time algorithm have also been un-
successful.

If the problem is not NP-hard, we would be interested in a polynomial-time
algorithm. If the problem is NP-hard, we would be interested in approximabil-
ity thresholds, e.g. whether it is APX-complete or admits a PTAS or even an
FPTAS.

6.2 Characterization of Terrain Graphs

We define an ordered graph as a graph G in which the vertices v1 < v2 <
. . . < vn have an ordering and there is an edge between vi and vi+1 for every
i ∈ [1, n − 1]. We define a terrain graph as a graph G that is the visibility
graph of a 1.5D terrain (specifically, an instance of TG-VV). It is easy to see
that every terrain graph is an ordered graph, but not every ordered graph is a
terrain graph.

The Order Claim seems to capture much of the restriction of terrain graphs.
However, it is not the case that every ordered graph obeying the Order Claim is
a terrain graph (consider, for example, a cycle of 4 or more vertices). What ad-
ditional restrictions must we place on ordered graphs to ensure they are terrain
graphs? Consider the following lemma for 1.5D terrains:

Lemma 13. (Midpoint Claim) For any vertices vi and vj such that j > i + 1
and vi sees vj, there is some vertex in (vi, vj) that is seen by both vi and vj.

Proof. Let x be the vertex in (vi, vj) closest to the line passing through vi and
vj (note that all vertices in this interval are below the line). It is easy to see
that vi and vj both see x.

We would like to know whether the Order Claim and the Midpoint Claim
together are restrictive enough that every ordered graph obeying both claims is
a terrain graph. If this is not the case, there may be some other useful property
of terrain graphs that we could exploit in our search for a polynomial-time
terrain guarding algorithm.

6.3. Reductions Between Restricted Visibility Problems 35

6.3 Reductions Between Restricted Visibility
Problems

Terrain guarding is easy when guards can only see to the right. It also seems
that many troublesome scenarios are eliminated when guards can only see up-
wards. When guards can only look downwards, however, the problem seems
as complex as the unrestricted case if not more so, though it seems that our
algorithm for the general case can solve this variant.

We would be interested in reductions between upward-looking, downward-
looking, and general terrain guarding. For example, would a polynomial-time
algorithm for the downward looking case imply that the general case is in P?
Would an NP-hardness proof for the upward-looking case imply that the general
case is NP-hard? In particular it seems that the upward-looking case should be
at least as hard as the general case. However, our efforts to provide reductions
of this kind have been unsuccessful.

36 Chapter 6. Future Work

Bibliography 37

Bibliography

[1] P. Agarwal, S. Bereg, O. Daescu, H. Kaplan, S. Ntafos, and B. Zhu. Guard-
ing a terrain by two watchtowers. In Symposium on Computational Geom-
etry, pages 346–355, 2005.

[2] A. Aggarwal. The art gallery problem: Its variations, applications, and
algorithmic aspects. PhD thesis, Johns Hopkins University, 1984.

[3] B. Ben-Moshe. Geometric Facility Location Optimization. PhD thesis,
Ben-Gurion University, 2004.

[4] B. Ben-Moshe. Personal communication, 2005.

[5] B. Ben-Moshe, M. Katz, and J. Mitchell. A constant-factor approxima-
tion algorithm for optimal terrain guarding. In Symposium on Discrete
Algorithms, 2005.

[6] P. Bose, D. Kirkpatrick, and Z. Li. Efficient algorithms for guarding or
illuminating the surface of a polyhedral terrain. In Proceedings of the 8th
Canadian Conference on Computational Geometry, pages 217–222, 1996.

[7] P. Bose, T. Shermer, G. Toussaint, and B. Zhu. Guarding polyhedral
terrains. Computational Geometry: Theory and Applications, 7, 1997.

[8] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite
VC-dimension. Discrete & Computational Geometry, 14, 1995.

[9] D. Z. Chen, V. Estivill-Castro, and J. Urrutia. Optimal guarding of poly-
gons and monotone chains (extended abstract), 1996.

[10] V. Chvátal. A combinatorial theorem in plane geometry. J. Comb. Theory
Series B, 18:39–41, 1975.

[11] K. L. Clarkson and K. Varadarajan. Improved approximation algorithms
for geometric set cover. In Symposium on Computational Geometry, 2005.

[12] E. Cockayne, S. Goodman, and S. Hedetniemi. A linear algorithm for the
domination number of a tree. Information Processing Letters, 4(2):41–44,
November 1975.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2001.

38 Bibliography

[14] S. Eidenbenz. (In-)Approximability of Visibility Problems on Polygons and
Terrains. PhD thesis, ETH Zurich, 2000.

[15] S. Eidenbenz. Approximation algorithms for terrain guarding. Information
Processing Letters, 82(2):99–105, April 2002.

[16] S. Eidenbenz, C. Stamm, and P. Widmayer. Positioning guards at fixed
height above a terrain — an optimum inapproximability result. Lecture
Notes in Computer Science, 1461, 1998.

[17] S. Eidenbenz, C. Stamm, and P. Widmayer. Inapproximability results for
guarding polygons and terrains. Algorithmica, 31(1):79–113, 2001.

[18] H. Everett and E. Rivera-Campo. Edge guarding polyhedral terrains. Com-
putational Geometry: Theory and Applications, 7, 1997.

[19] U. Feige. A threshold of ln n for approximating set cover. Journal of the
ACM, 45(4):634–652, July 1998.

[20] M. Garey and D. Johnson. Computers and Intractibility: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[21] D. Haussler and E. Welzl. ε-Nets and Simplex Range Queries. Discrete &
Computational Geometry, 2:127–151, 1987.

[22] D. S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences (JCSS), 9:256–278, 1974.

[23] A. A. Kooshesh and B. M. E. Moret. Three-coloring the vertices of a
triangulated simple polygon. Pattern Recognition, 25, 1992.

[24] D. T. Lee and A. K. Lin. Computational complexity of art gallery problems.
IEEE Transactions on Information Theory, 32:276–282, 1986.

[25] M. Sharir and P. K. Agarwal. Davenport-Schinzel sequences and their
geometric applications. Technical report, 1995.

