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Abstract: The conventional discrete wavelet transform (DWT) introduces artifacts during denoising of images containing smooth
curves. Finite ridgelet transform (FRIT) solved this problem by mapping the curves in terms of small curved ridges. However, blind
application of FRIT all over an image is computationally heavy. Finite curvelet transform (FCT) selectively applies FRIT only to
the tiles containing small portions of a curve. In this work, a novel curvelet transform named as 4-quadrant finite curvelet transform
(4QFCT) based on a new concept of 4-quadrant finite ridgelet transform (4QFRIT) has been proposed. An image is band pass filtered
and the high frequency bands are divided into small non-overlapping square tiles. The 4QFRIT is applied to the tiles containing at
least one curve element. Unlike FRIT, the 4QFRIT takes 4 sets of radon projections in all the 4 quadrants and then averages them in
time and frequency domains after denoising. The proposed algorithm is extensively tested and benchmarked for denoising of images
with Gaussian noise using mean squared error (MSE) and peak signal to noise ratio (PSNR). The results confirm that 4QFCT yields
consistently better denoising performance quantitatively and visually.
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1 Introduction

The visual images should be smooth or spontaneous on
regions and curves. They should also be sharp enough to
protect high frequency information. Every electronic unit
that sends or receives an image signal is susceptible to noise.
One may not visually observe the noise when he looks at an
image. However, it is always corrupted with noise to dif-
ferent extents. Thus, denoising is a very important field of
image processing which aims to improve the visual quality
of digital images by minimizing noise contents.

Wavelet theory has been studied for a fairly long
time and has applications in many engineering fields.
The basic wavelet theory has been proposed and cus-
tomized for various applications such as histogram
operations[1], watermarking[2], medical image analysis[3−5],
face recognition[6−7], fingerprint recognition[8], etc. While
using it for compression, coding or even as a denoising
tool for images containing smooth curves, it introduces
artifacts. Though it has this limitation while processing
curved edges, it is being widely used for image compression
and coding. Denoising performance of multi-scale Bayesian
approaches[9] and wavelets are presented[10]. Starck et
al.[11] proved that a new approach named “Ridgelets” per-
forms better than the mature wavelets for processing curves.
Subsequently, finite ridgelet transform (FRIT) was pre-
sented and explored further for denoising of images contain-
ing curves. It has been observed that FRIT introduces less
artifacts compared to discrete wavelet transform (DWT)
during processing of curves, as it processes images using
polar representation system like radon projections. Keep-
ing aside the denoising performance, it has been observed
that the curves processed by FRIT still contain some arti-
facts.

Finite curvelet transform (FCT) is a new multi-scale geo-
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metric function introduced for processing images containing
objects which are smooth and continuous across curves[11].
The FCT is designed to represent edges and other singulari-
ties along the curves much efficiently than the other orthog-
onal transforms[8,10−12]. The length and width of a ridge
at a fine scale are related by scaling law: width ≈ length2.
So anisotropy increases with decreasing scale like a power
law. On an image with successively twice differentiable sin-
gularities, non-optimal systems like Fourier and wavelets
have approximation errors presented in (1) and (2)[10−13].
If m represents the number of coefficients used for approx-
imation of a signal, f and fm are the approximated forms
using Fourier (F ) and Wavelet (W ) approximations.
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The FRIT employs a set of radon projections to process
images using a system similar to polar coordinates. In this
system, the curves are mapped in terms of ridges, i.e., small
horse shoe shaped curves rather than line segments. Thus,
there is a reasonable scope to believe that image curves will
now be better processed as compared to wavelets. How-
ever, computation complexity of FRIT of an image is very
heavy due to computations of projections. As many parts of
an image may not contain any curve, this increase in com-
putation overhead is undue. The FRIT is applied only on
small square size non-overlapping tiles of the high frequency
bands of the image containing curved edges. The FCT is
thus expected to yield better results as the tiles without
edges are processed using the rectangular coordinate sys-
tem like wavelets, and the tiles containing curved edges
are processed using polar coordinate systems like ridgelets.
Thus, the FCT requires much less computations compared
to FRIT. Usually, smaller prime number tile sizes like 3× 3
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or 5× 5 are used for better processing of sharp curves using
FRIT. Thus, FCT is a hybrid algorithm that uses DWT
for tiles without curves and FRIT for tiles including curves
to yield curvelet coefficients. The coefficients are further
denoised followed by inverse computations for a denoised
reconstruction. The approximation error while in repre-
senting a curve with C singularities using FCT is presented
in (3). It is obvious that the approximation error is less as
compared to Fourier and wavelets.

lim
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−2(log m)3. (3)

The approximation error in (3) is roughly m−2[10−12]
. From

(3), the FCT offers the closest m-term approximation to
the lower bound[2, 3, 5, 14, 15]. Therefore, in images con-
taining large number of curves with small radii of curva-
tures, it would be advantageous to use curvelet algorithm
for better processing of curves due to its processing ca-
pabilities in planar and polar coordinate systems. Struc-
tural elements of curvelet transform include dimensions, lo-
cation and orientation[16], which offer it good orientation
characteristics. Thus, FCT maintains original smoothness
of the curved edges while denoising images compared to
DWT that introduces artifacts. This has already attracted
good research efforts and yielded better results in image
denoising[8,12,13,17−22] and curve representation.

In this paper, we propose a 4-quadrant curvelet transform
(4QFCT) for better curve representation and denoising of
digital images compared to the published curvelet trans-
form. The 4QFCT uses a novel 4-quadrant finite ridgelet
transform (4QFRIT) that computes 4 sets of projections
in the 4 quadrants for the tiles containing curves. Aver-
aging of the curvelet coefficients leads to the first level of
denoising. Denoised image is reconstructed as the average
of the 4 individual reconstructions. The mean squared er-
ror (MSE) or peak signal to noise ratio (PSNR) show that
the 4QFCT yields better denoising performance. The result
images show that all the edges and curves are reconstructed
more smoothly than the FRIT and FCT transform.

The organization of this paper is as follows. Section
2 describes the concepts required for building the pro-
posed transform. Section 3 introduces the novel concept of
4QFRIT, followed by 4QFCT in Section 4. Experimental
procedures are discussed in Section 5, and the new trans-
form is qualitatively and procedurally compared with the
other contemporaries, especially FRIT and FCT. Section
5 benchmarks the results of denoising and curves process-
ing using 4QFCT with the other techniques in presence of
varying Gaussian noise. Section 6 concludes the paper.

2 Basic concepts of curvelet transform

2.1 Ridgelet transform

Ridgelet transform is computed by integrating along lines
perpendicular to a line that is at an angle θ with x axis all
over a 2D signal. The continuous ridgelet transform (CRIT)
of a function f(x, y) is presented in (4)

CRITf (a, b, θ) = ∫ ψa,b,θ(x, y) × f(x, y)dx (4)

where the function ψ is given by

ψa,b,θ(x, y) =
1√
a
× y cos θ + x sin θ − b

a
(5)

and y cos θ + x sin θ = k.
Therefore, substituting k, we get

ψa,b,θ(x) =
1√
a
× k − b

a
. (6)

The parameters a, b and θ represent scale, location and
orientation parameters. The “k” is a constant which de-
fines a projection line. Thus, (6) represents a basic ridge.
The ridgelet coefficients are calculated using 1D DWT of
rows of radon transform. Most of the image processing
algorithms work on point singularities while ridgelet trans-
form is expected to operate on line singularities at an angle
θ. This problem is handled using finite radon transform
projections[23, 25]. FRIT is the sampled form of CRIT. The
computational complexity of FRIT all over the projection
lines of a 2D signal is very high. But the increased compu-
tational load is the cost paid for smoother representation
of curved edges in terms of small horse shoe like ridges us-
ing radial (polar system like) radon projections. This is
the basic advantage of the ridgelet transform and curvelet
transform that uses the ridgelet transform on image sub-
band tiles.

2.2 Curvelet transform

Curvelet transform developed by Struck et al.[11] is a new
multiscale approach to represent edges and other singulari-
ties along curves much more efficiently than the traditional
transforms using fewer coefficients for a given accuracy of
reconstruction. The curvelet transform uses ridgelet trans-
form on areas of a 2D signal containing curves. The input
image is band pass filtered. The curves in the high fre-
quency sub-bands of the filtered image are processed by first
separating the image into series of disjoint tiles, and then,
analyzing each tile using ridgelet transform separately, if it
contains curve[24, 26].

The implementation of FCT is described in terms of steps
for decomposition and reconstruction. Fig. 1 graphically
presents steps of Algorithm 1.

Algorithm 1. The curvelet transform

Step 1. An input image I is filtered into sub-bands,
H0 (∆m, m > 0). H0 represents low pass component while
∆m represents high frequency sub-band components.

I → (H0I, ∆1I, ∆2I, · · · ). (7)

Step 2. Each high frequency sub-band is partitioned us-
ing a window wQ into m square tiles “Q” (Q1, Q2, · · · , Qm).
The tiles must have prime number square size.

∆mI → (wQ∆mI)Q∈Qm
. (8)

Step 3. The resulting tiles in Step 2 are normalized to
obtain gQ.

gQ = T
−1
Q wQ∆mI, Q ∈ Qm (9)

where TQ =
∑

wQ∆mI, m > 0.
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Step 4. FRIT is applied to each tile gQ with at least one
curve element. FRIT generates a set of coefficients αµ us-
ing orthonormal basis elements ρλ. This is repeated for all
Q. αµ is further used for computing inverse of the ridgelet
coefficients (R2) using a 2D inverse ridgelet transformation
(L2).

αµ = 〈gQ, ρλ〉 , µ = (Q, λ) for L
2
R

2
. (10)

Fig. 1 Organization of finite curvelet transform

Algorithm 2. Reconstruction of original

image[17, 24]

Step 1. Each square is reconstructed from the orthonor-
mal ridgelet system as described using (1).

gQ =
∑

λ

αλQρλ. (11)

Step 2. Each square available in the previous stage is
renormalized to its own proper size using (12).

hQ = TQgQ, Q ∈ Qm. (12)

Step 3. The windowing dissection of the windows re-
constructed in the previous stage is reversed as in (13).

∆mI =
∑

Q∈Qm

wQhQ. (13)

Step 4. Reconstruct I using (14)

I = H0 (H0I) +
∑

m>0

∆m(∆mI). (14)

3 4-quadrant ridgelet transform

Multiple sets of projections can be used for better
reconstruction[27]. It is obvious that curves may be bet-
ter represented in polar coordinates than Cartesian sys-
tem. Thus, curves are better processed using ridges of

the FRIT. This is the initial motivation behind propos-
ing the 4QFCT. Svalbe and Kingston[28] proved that all
Farey sequence points in Cartesian domain cannot be rep-
resented in projection domain, specially in the annular or
corner regions opposite origin as shown in Figs. 2 (a) and
2 (b). As a result of radial projections, pixels in the annu-
lar corner region diagonally opposite to origin are poorly
represented in projection domain and may result into in-
troduction of more artifacts in curved edges in that region.
The conventional ridgelet transform[29] for denoising works
only on the first quadrant as in Fig. 2 (a) for a tile of 11× 11
size. This results in non-uniform representation over the tile
in the radial projection domain as observed in Figs. 2 (a).
Fig. 2 (b) presents the same concept for the second quad-
rant. The projections in terms of pixels for the remaining
two quadrants of a tile can be easily imagined on the lines
of Figs. 2 (a) and 2 (b). The reference point or origin of each
quadrant is marked “O” while the most poorly represented
corner has been marked “C”. The following digits in Fig. 3
indicate the respective quadrant number. This problem is
fairly solved by averaging the 4 quadrant projections over
the tile as presented in Figs. 3 (a) and 3 (b).

Fig. 2 Projections in the first two quadrants in polar domain

Fig. 3 More uniform representation achieved in 4 QFRIT

Thus, to solve the problem of non-uniform representa-
tion over a tile to represent the curves more smoothly, we
propose 4-quadrant finite ridgelet transform instead of the
conventional FRIT based on radon projection only in the
first quadrant. Corresponding to the 4 quadrants, we take
4 sets of projections over tile Z2

p . The projections for each
quadrant can be written as (15). Finally, (16) presents the
averaged set of projection and the 4QFRIT.

The average set of projections of each tile is used to com-
pute its inverse ridgelet for reconstruction of the denoised
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image.

FBPr(i, j) =
1

P

∑

(k,1)∈Pi,j

∑

(i′,j′)∈Lk,l

f [i′, j′] (15)

FBPr(i, j)m =
1

4P

3
∑

m=0

∑

(k,l)∈Pi,j

∑

(i′,j′)∈Lk,l

fm[i′, j′].

(16)
The indices values of m (0 to 3) indicate the quadrants
Q1 to Q4 respectively for computing projections of a tile
f [i′, j′].

Images can be processed using tiles of various prime num-
ber square sizes as discussed earlier. Each tile has Z2

p slopes
and those slopes represent Z2

p finite projections. For denois-
ing algorithms, the smallest tile size 3× 3 is found to offer
the best denoising performance. As the tile size goes on
increasing, the computational load also increases, but the
denoising performance marginally degrades. While com-
puting the inverse ridgelet, there are two options: 1) The
average of the four projections can be considered as result-
ing projection and will be subjected to the inverse ridgelet
algorithm using (15). 2) The four projections as in (16) can
be individually subjected to the inverse ridgelet algorithm,
and the resulting four images can be averaged. In this work,
we have preferred to implement the first approach. Both of
them yield nearly the same results. Thus, due to the com-
paratively uniform distribution of projections over a tile as
in Fig. 3 (b) and subsequent more uniform representation of
pixels all over a tile in projection domain, the 4-quadrant
ridgelet transform performs better as compared to ridgelet
transform. This reduces the artifacts in the opposite corner
regions to the origin of the quadrants. However, it must
be noted that the improvement is at the cost of the in-
creased computational load which increases roughly 4 times
using the first option discussed above. Thus, the 4-quadrant
ridgelet transform improves its denoising capability by tak-
ing average of the 4 sets of projections. The conventional
hard thresholding and averaging techniques may further be
used with the 4-quadrant ridgelet transform for actual de-
noising of the signal followed by FRIT. The other properties
of the proposed 4-quadrant ridgelet transform are similar to
the ridgelet transform[29−31]. Computation of 4 quadrant
ridgelet transform and denoising steps of the algorithm for
computation of the 4-quadrant ridgelet transform are sum-
marized in Algorithm 3.

Algorithm 3. Denoising using 4-quadrant ridgelet

transform

Step 1. Each high frequency sub-band is smoothly win-
dowed using a window WQ into m square tiles titled Q1,
Q2, · · · , Qm of appropriate size as in (8). The square win-
dow must have prime number size.

Step 2. For each tile, compute ridgelet transform using
Algorithms 1 in all the 4 quadrants.

Step 3. Find average FRIT of each tile from Step 2, and
insert it back in the sub-band image matrix in the place of
the tile.

Step 4. Repeat Steps 2 and 3 for all the m tiles.
Step 5. After computation of the 4-quadrant ridgelet

transform, local averaging (low pass filtering) of the coef-
ficients over the complete coefficient matrix using a 3× 3
window is implemented.

Step 6. After local averaging, inverse FRIT is computed
for achieving denoising. Inverse FRIT computation is pre-
sented as Algorithm 2.

4 4-quadrant curvelet transform

A 4-quadrant curvelet transform is based on band pass
filtering operation followed by conditional application of 4-
quadrant ridgelet transform. The band pass operation iso-
lates different scales like ridges and curves which may oc-
cur at any location with any orientation. Fig. 4 shows the
flow graph of a 4-quadrant curvelet transform. It should be
noted that the transform is made of an invertible chain of
steps and thus theoretically has exact reconstruction prop-
erty.

Fig. 4 Flowgraph of a 4-quadrant curvelet transform

Fig. 4 illustrates the decomposition of the band pass fil-
tered image into sub-bands using 2D DWT to detect the
edges in an image. The image is partitioned into prime
size square blocks (tiles) as discussed earlier. Every tile
is checked for appearance of a curved edge in it. The 4-
quadrant ridgelet transform is then applied to the tile if
an edge exists in it. The 4QFCT computation algorithm is
presented in terms of the following 4 steps.

Step 1. Band pass filter is applied on the image to
compute the required 4 bands for applying 4QFCT.

The band pass filter is implemented as a combination of
a low pass filter and a high pass filter in 2D DWT. In this
work, we used a perfect reconstruction Harr filter pair of 2
tap low pass and high pass coefficients, i.e., [1 1] and [1
−1], respectively. Harr low pass filter is convolved row-wise
and then column-wise, the resulting image is then convolved
with the high pass filter in the same way as low pass filter
to yield the band pass filtered images.

Step 2. Edge (curve) detection is carried out in the
3 high frequency bands as indicated in Fig. 4 and subse-
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quently over the main image using different thresholds dis-
cussed further.

Edge detection of nontrivial images is one of the most dif-
ficult task in image processing. Detection accuracy deter-
mines the eventual success or failure of computerized analy-
sis procedure. We have used the following four components
of 2D DWT for a threshold based edge detector in this work.

1) Average component is detected by the LPLP (low pass
filter along rows and columns both) subband Wφ(j,m,n).

2) Vertical edges are detected by the HPLP (high pass
along rows and low pass along columns) subband W V

ψ (i, j).
3) Horizontal edges are detected by the LPHP (low pass

along rows and high pass along columns) subband W H
ψ (i, j).

4) Diagonal edges are detected by the HPHP (high pass
filter along rows and columns both) subband W D

ψ (i, j).
Following thresholds in (17), (18) and (19) are proposed

to detect edges in color images using DWT subbands.
1) Local thresholding: This threshold is computed for a

region surrounding a tile (m > k, n > k).

Thl =

n
∑

i=1

m
∑

j=1

W D
ψ (i, j) + W H

ψ (i, j)

3
. (17)

2) Global thresholding: A single threshold is computed
for a color band using all three frequency bands.

Thg =
n
∑

i=1

m
∑

j=1

W D
ψ (i,j)

m × n
+

n
∑

i=1

m
∑

j=1

W V
ψ (i,j)

m × n
+

n
∑

i=1

m
∑

j=1

W H
ψ (i,j)

m × n

3
. (18)

3) Mask thresholding: This is computed for a single tile
at a time and is applicable only for the tile.

Thm =

k
∑

i=1

k
∑

j=1

W D
ψ (i,j)

k2 +
k
∑

i=1

k
∑

j=1

W V
ψ (i,j)

k2 +
k
∑

i=1

k
∑

j=1

W H
ψ (i,j)

k2

3
(19)

where k 6 Zp, and Zp is a prime number representing a
square tile side length.

The global threshold is computed only once for a com-
plete image, or three global thresholds can be computed for
the three color planes of an image using (15). The local
threshold can be computed for each pixel in the sub-band
and used for edge detection only at that position. The
threshold for an image tile can be computed for its specific
size and used for edge detection only over the tile area of the
image. The computed thresholds are used for edge detec-
tion with the sub-band coefficients using simple comparison.
If a coefficient value is greater than the neighboring coeffi-
cient (E(i, j) = W V

ψ (i, j) − W (i ± 1, j ± 1) > Thl,g,m) by
at least the value of threshold, then an edge is considered
to present at the neighboring pixel, else the edge is absent.
The edge′s present spatial position is marked white (255),
while the edge′s absent position is marked black (0).

E(i, j) =

{

255, if E(i, j) > Thl,g,m

0, otherwise.

Thus, the complete image is edge detected using one of the
three thresholds. The resulting binary image E(i, j) is as

shown in Fig. 4. As far as this work is concerned, global
threshold is used since it can give the best result. The
edges of interest appear more clearly with this threshold.

Step 3. Tiling is done over the complete image.
The image is then partitioned into square tiles of prime

size. In this work, we have experimented with tile sizes
of 3× 3 and 5× 5. Each tile is checked for availability of
edges in it. When we partition each sub-band into squares
or tiles, we see either an “empty square” or “line detected
square”. The ridge fragments are nearly straight at fine
scales, because an edge is nearly straight at fine scales. Such
nearly straight ridge fragments are the desired inputs for the
4 quadrant ridgelet transform.

Step 4. 4-quadrant ridgelet transform as in (15) and
(16) is applied only to the tiles in which an edge exists.

The inverse procedure is exactly opposite to these four
steps, i.e., it starts at Step 4 and ends at Step 1. The
inverse ridgelet is applied only on tiles containing edges.
The order of application of low pass and high pass filters
is also reversed. A record of tiles on which the 4QFRIT is
applied is maintained for computing their inverse 4QFRIT.

5 Experimental results and discussion

The experimentation has been carried out on a variety
of gray scale and color images of different types. However,
only a few representative results have been presented here.

The 2D DWT, FRIT, FCT and 4QFCT were imple-
mented for benchmarking of the denoising and curves pro-
cessing performance. Initially, Table 1 presents MSE and
PSNR results of transforms and the subsequent reconstruc-
tions of the original test images. The term “method noise”
represents the intrinsic noise introduced in an original image
by a denoising algorithm in absence of any external noise
or zero external noise. An ideal denoising algorithm should
have zero method noise. Thus, Table 1 represents method
noise of the transforms. The test images were further added
Gaussian noise of varying means (µ = 2 to 12) and stan-
dard deviation (σ = 2 to 10). Denoising performance of the
algorithms in presence of noise (µ = 0, σ = 2) is the same
as that in presence of noise (µ = 2, σ = 2). The resulting
noisy images were denoised using the said transforms, and
benchmarked using MSE and PSNR of the individual recon-
structed images. The comparative denoising performance
has been presented in Table 2. It is clear from Table 2 that
the proposed 4QFCT yields on an average 7 dB to 8 dB
better performance than 2D DWT, around 3 dB to 4 dB
better performance than the FRIT, 0.75 dB to 1 dB better
performance than the FCT. However, the curve process-
ing performance is not obvious from the denoising perfor-
mance. Visual comparison of images is the only way to com-
pare the curve processing performance. The visual denois-
ing results are presented on a gray X-ray wristhand image
in Figs. 5 (a)–5 (h). Figs. 5 (a) presents original wristhand
image. Figs. 5 (b)−5 (d) present the reconstructed images
using FRIT, FCT and 4QFCT. Fig. 5 (e) presents the gaus-
sian noise (µ = 10, σ = 12) added image. Figs. 5 (f)−5 (h)
present the denoised images using FRIT, FCT and 4QFCT.

Note the smooth reconstruction of the denoised image
in Fig. 5 (h) and specially the numbers compared to all the
other reconstructed images.
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Table 1 Reconstruction using the transforms represents method noise

2D wavelet Finite ridgelet Finite curvelet 4-quadrant curvelet

Images transform transform transform transform

MSE PSNR (dB) MSE PSNR (dB) MSE PSNR (dB) MSE PSNR (dB)

Barbara 56.8 30.6 56.7 30.6 54.1 30.8 34.5 32.7

Wristhand 25.5 34.6 14.7 36.5 6.4 40.1 5.8 40.8

Peppers 28.8 33.6 17.8 35.7 10.4 37.9 8.2 38.9

Severe 2 14.5 36.5 10 38.1 2.9 42.4 2.6 43.9

Table 2 Denoising performance of various transforms

I∗ Noise µ,σ
DWT FRIT FCT 4QFCT

MSE PSNR (dB) MSE PSNR (dB) MSE PSNR (dB) MSE PSNR (dB)

1∗ 2,2 27.1 33.8 14.9 36.4 6.8 39.8 5.7 40.5

4,4 34.1 32.8 19.1 35.3 7.3 39.4 6.1 40.2

7,5 41 32 25.2 34.1 8 39.1 6.7 39.8

9,7 46 31.5 27.1 33.8 9.8 38.2 8.2 38.9

12,10 47.1 31.4 32.5 33 11.0 37.5 10.3 37.9

2∗ 2,2 74.6 29.4 63.5 30.1 56.6 30.6 38.2 32.3

4,4 85.7 28.8 74.6 29.4 63.5 30.1 42.9 31.8

7,5 96.1 28.3 83.7 28.9 69.6 29.7 50.4 31.1

9,7 105.4 27.9 98.4 28.2 81.8 29 55.3 30.7

12,10 113 27.6 105.4 27.9 89.7 28.6 62.1 30.2

3∗ 2,2 37 32.4 20.6 34.9 10.8 37.9 8.2 38.9

4,4 34.2 32.8 24.3 34.2 10.4 37.7 8.7 38.7

7,5 49.8 31.2 26.8 33.8 12.3 37.2 9.7 38.2

9,7 71 29.6 30.9 33.2 13.1 36.9 10.3 37.9

12,10 79.8 29.1 36.1 32.5 14.9 36.4 10.7 37.8

4∗ 2,2 105.4 27.9 78.1 29.2 5.4 40.5 3.9 42.2

4,4 159.6 26.1 110.4 27.7 8.8 38.5 7.9 39.1

7,5 183.2 25.5 149 26.4 17.3 35.7 14.2 36.5

9,7 241.5 24.3 201 25.1 27.8 33.6 24.7 34.2

12,10 253 24.1 187.5 25.4 34.7 32.7 28.6 33.5

I∗: Images, 1∗: Wristhand, 2∗: Barbara, 3∗: Peppers, 4∗: Severe 2.

Fig. 6 (a) presents a close up portion of the original im-
age in Fig. 5 (a). Fig. 6 (b) presents the reconstruction using
4QFCT. Fig. 6 (c) presents the same portion after adding
the said noise as in Fig. 5 (e).

Figs. 6 (d)−6 (f) present the reconstructed images using
FRIT, FCT and 4QFCT. The edges of the bones in the
X-ray image reconstructed using 4QFCT are least worn.

Figs. 7(a)−7 (h) present a set of color biomedical im-
ages titled Severe 2. Fig. 7 (a) presents original image,
while Figs. 7(b)−7(h) present the processed images in ex-
actly the same sequence to the Wristhand images presented
in Fig. 5 (a) 5(h). Similar observations can be made from
Figs. 7 (b)−7 (h). The results of 4QFCT with and without
presence of the noise (µ = 10, σ = 12) as presented in
Figs. 7(d) and 7 (h) are much better as compared to the
other discussed transforms; quantitatively and visually. A
small part of the original Severe 2 as in Figs. 8 (a) is enlarged
and processed using the discussed algorithms. The results
are presented in Figs. 8 (b)−8 (f). The result of denoising

using 4QFCT as in Fig. 8 (f) is comparably smoother than
the other results. The denoising performance in Table 2 is
plotted in Figs. 9 and 10 between standard deviation of the
added noise and PSNR of reconstruction for Wristhand and
Severe 2 images. It has been found that PSNR decreases
gradually with the increase in noise level.

The bar chart in Fig. 11 benchmarks 2D DWT, FCT with
4QFCT denoising performance on the test images. These
experiments have been carried out on a P-IV, 2.6 GHz, 2 GB
RAM with Windows. Matlab R2009a has been used as the
computing platform.

The timing requirement and comparison for denoising
of images are highly subjective and depends upon the im-
age size, type (gray or color), machine, operating system
setup, computational platform and their settings. For pre-
senting the computational time comparison, we have exe-
cuted all the algorithms on a noisy gray image of resolu-
tion 256× 256. The denoising computations with 2D DWT
takes roughly 0.8 s. Denoising of the same image with
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Fig. 5 Wristhand: original, reconstructed and denoised images

Fig. 6 Part of Wristhand: original, reconstructed and denoised images
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Fig. 7 Severe 2: original, reconstructed and denoised images

Fig. 8 Part of Severe2: original, reconstructed and denoised Images
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FRIT (3× 3 tile) takes around 6 s. Denoising using FCT
requires 4 s. Denoising using the proposed 4QFCT requires
around 8 s. Thus, a better denoising and smooth curves are
achieved at the cost of the increased computational time.

Fig. 9 PSNR in dB against standard devation of noise for Wrist-

hand

Fig. 10 PSNR in dB against standard deviation of noise for Se-

vere 2

Fig. 11 Denoising performance of 2DDWT, finite curvelet

transform and 4-quadrant curvelet transform

This work uses theory of angular projections to explain
concepts of the poor representation of annular region pix-
els in large size tiles and to explain better representation
of sharp curves using radial system like representation in
ridgelets against the Cartesian coordinate system. We have
used discrete parallel projections in actual implementation.
The reconstruction of the text and numbers in the result
images of the proposed algorithm are smoother than those

in the results of the other discussed algorithms, though they
are slightly blurred in the process of denoising. Improve-
ment in PSNR result from thresholding of coefficients, av-
eraging in curvelet/spatial domain and robust signal repre-
sentation using 4QFRIT. Though inclusion of mean value
of random noise is non-conventional in the image process-
ing experiments, it highlights the fact that the quantitative
denoising performance is only marginally dependent on the
mean value even for large mean values of random noise rang-
ing up to 10% of the peak signal. The tile sizes of 3× 3 and
5× 5 are found to be suitable for a broad variety of images.
However, bigger tile sizes can be used for images that are
not expected to contain curves with sharp turns. It is ev-
ident from the result images that the visual performance
of the proposed algorithm is much better than that of the
other discussed algorithms.

6 Conclusions

The proposed 4QFCT that uses average of the 4 quad-
rant radon projection improves the denoising performance
and representation of smooth curves compared to FRIT and
FCT. Though the proposed 4QFCT improves the denois-
ing performance only by a marginal value of around 1 dB
compared to FCT, it improves the performance consider-
ably compared to FRIT on an average by around 6 dB.
Thus, though the 4QFCT yields only slight improvement
in PSNR of reconstruction from noisy images compared to
FCT, it yields better visual quality images at less computa-
tional cost compared to FRIT and FCT. The smallest 3× 3
tile yields best denoising and curve processing performance
with FRIT, FCT and 4QFCT.
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