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Abstract—A microprocessor implementing IBM S/390 archi-
tecture operates in a 10+ 2 way system at frequencies up to
411 MHz (2.43 ns). The chip is fabricated in a 0.2-�m Le�

CMOS technology with five layers of metal and tungsten local
interconnect. The chip size is 17.35 mm� 17.30 mm with
about 7.8 million transistors. The power supply is 2.5 V and
measured power dissipation at 300 MHz is 37 W. The micro-
processor features two instruction units (IU’s), two fixed point
units (FXU’s), two floating point units (FPU’s), a buffer control
element (BCE) with a unified 64-KB L1 cache, and a register unit
(RU). The microprocessor dispatches one instruction per cycle.
The dual-instruction, fixed, and floating point units are used to
check each other to increase reliability and not for improved
performance. A phase-locked-loop (PLL) provides a processor
clock that runs at 2� the system bus frequency. High-frequency
operation was achieved through careful static circuit design and
timing optimization, along with limited use of dynamic circuits for
highly critical functions, and several different clocking/latching
strategies for cycle time reduction. Timing-driven synthesis and
placement of the control logic provided the maximum flexibility
with minimum turnaround time. Extensive use of self-resetting
CMOS (SRCMOS) circuits in the on-chip L1 cache provides a
2.0-ns access time and up to 500 MHz operation.

Index Terms—CMOS integrated circuits, computer architec-
ture, integrated circuit design, logic design, microprocessors.

I. INTRODUCTION

T HE single-chip microprocessor was designed for the
IBM S/390 Enterprise Server Generation-4 system. This

microprocessor allowed IBM to fully replace its water-cooled
Enterprise ES/9000 system [1], implemented in bipolar tech-
nology, with an air-cooled system implemented in CMOS
technology. The microprocessor was initially designed in
IBM’s CMOS5X technology and then migrated to CMOS6S
technology by shrinking the FET channel length dimensions
for performance but not shrinking the interconnect dimensions
for time to market [2]. Typical technology parameters are
shown in Table I. The technology features 0.2-m , 5.5-nm
gate oxide, low resistance Ti-salicided Nand P polysilicon
and diffusions, shallow trench isolation, metal fuses for laser
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TABLE I
TECHNOLOGY FEATURES

blow, N precision resistors, five levels of metal, and tungsten
local interconnect. The power supply is 2.5 V. A die photo is
shown in Fig. 1. The chip characteristics are shown in Table II.
The chip is 17.35 mm 17.30 mm with about 7.8 million
transistors. There are about 3.8 million logic transistors and
4.0 million array transistors. The measure power dissipation at
300 MHz is 37 W. There are 1600 area C4 and 448 off-chip
signal I/O’s. Dedicated thin-oxide capacitors [3]–[5] of 102 nF
are provided for on-chip decoupling. This, combined with
the “built-in” nonswitching well-to-substrate and diffusion-to-
well capacitances, provides about 200-nF on-chip decoupling
capacitance. The chip operated successfully in a 102 way
system configuration, where the extra two processors served
as I/O processors for the ten-way system. Fig. 2 shows the top
view, front view, and side view of a 10 2 way multichip
module. The module also contains eight L2 cache chips, eight
bus switch node chips, and four memory bus adapter chips.
The size of the module is 127.5 mm 127.5 mm in area and
12.4 mm thick before planarization. It consists of four thin-
film wiring layers and 68 ceramic layers and handles up to
900 W (nominal) at 2.7 V with a nominal air flow rate of
150 cubic-feet per minute (CFM). It has 3526 bottom surface
metallurgy (BSM) I/O’s, of which 1763 are signal I/O’s. In
engineering system test, a 102 way system runs at

• 2.70 ns at 2.57 V with ambient air at 35C,
• 2.62 ns at 2.70 V with ambient air at 25C,
• 2.52 ns at 2.80 V with chiller cooling module top hat to

25 C.

A five-way system runs at 2.50 ns (400 MHz) at 2.80 V with
ambient air at 10C. A 10 2 way system with fast chips runs
at 2.43 ns (411 MHz) at 2.50 V with chiller cooling module
top hat to 12C.

0018–9200/97$10.00 1997 IEEE
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Fig. 1. A 400-MHz S/390 CMOS microprocessor micrograph.

TABLE II
CHIP CHARACTERISTICS

The microprocessor is designed with fast cycle time as the
primary goal. High-frequency operation is achieved through
global focus on the timing and high-frequency circuit design
methodology and techniques. At the architecture level, cycle
time is emphasized over cycle-per-instruction (CPI). Judicious
use of the static, dynamic, and self-resetting circuits balanced
the design time and performance return. Section II describes
the architecture features of the microprocessor. The chip
floorplan and clock distribution are presented in Section III,
followed by the several different clocking/latching strategies
used for cycle time reduction in Section IV. The global design
style and issues are discussed in Section V. The conclusion of
the paper is given in Section VI.

II. A RCHITECTURE FEATURES

The microprocessor implements the ESA/390 instruction set
architecture using five major units. The instruction unit (IU)
handles instruction fetch, instruction decode, address genera-
tion, and operand fetch functions. This includes full support

(a)

(b)

Fig. 2. Multichip module: (a) top view and (b) front and side views.

of the register-register (2-byte), register-storage (4-byte), and
storage-storage (6-byte) ESA/390 instructions. Operand and
branch addresses are formed via a three-input 32-b adder.
Operand controls generate fetch and store requests for fields
up to 256-bytes long with arbitrary byte alignment. Decoded
instructions are passed to a six-deep first-in–first-out (FIFO)
instruction queue. The fixed-point execution unit (FXU) is
implemented as a 64-b dataflow stack consisting of working
registers, a rotator, a bit-wise logic unit (BLU), an insert-
under-mask element (AIM), a 64-b binary adder, and a 32-b
binary-coded-decimal adder. The FXU also maintains the
ESA/390 condition code and controls the taking of ESA/390
interrupts. A single register file (five-read/one-write) imple-
ments the ESA/390 general registers (GR’s) and access reg-
isters (AR’s) used by the IU for address generation and by
the FXU for execution. The floating-point execution (FPU)
contains a radix-8 Booth encoded multiplier which shares
a 120-b adder with the add function. Most floating-point
instructions are pipelined one per cycle with a latency of three
execution cycles. The floating point unit also executes division
and square root using a Goldschmidt algorithm and extended
precision and fixed point multiply and divide instructions.



WEBB et al.: 400-MHz S/390 MICROPROCESSOR 1667

Fig. 3. Pipeline for typical register-storage instruction.

The ESA/390 Floating Point Registers (FPR’s) are imple-
mented in a two-read/one-write register file. The buffer control
element (BCE) contains a 64-Kbyte cache organized in 128-
byte lines with a four-way set-associative absolute-address
directory. The BCE also includes a 256-entry translation
lookaside buffer (TLB), an eight-entry fully-associative access
register translation lookaside buffer (ALB), an eight-deep store
address queue, and a 64-deep 64-b-wide store data buffer. A
32-Kbyte read only store (ROS) holds frequently used internal
code (millicode) routines. The cache is interleaved on a double
word (8-byte) basis, and “continuation fetch” controls allow
access to multiple portions of the same cache line without
reaccessing the TLB and directory, significantly improving
cache bandwidth for sequential instruction fetching and for
long storage operands. The BCE also includes the interface
to the off-chip second-level cache. The register unit (RU)
maintains an error correction code (ECC)-protected copy of
the architectured processor state, including FR’s, AR’s, FPR’s,
ESA/390 control registers, millicode control registers, and
ESA/390 timing facility. The RU also implements various
system support functions, including processor error detection
and recovery (to be discussed later). The pipeline for a typical
register-storage instruction is shown in Fig. 3.

In order to obtain a suitable performance level, many
features of the ESA/390 architecture must be implemented
with hardware controls, making even a “simple” microar-
chitecture relatively complex. These features include a full
set of register-storage and storage-storage operations, several
addressing modes, byte-oriented (unaligned) storage operands,
packed-decimal arithmetic, strong storage ordering and consis-
tency (including store-in-instruction-stream), precise interrup-
tions, and program event recording. Many hardware structures
in the processor exist solely to support these features, rep-
resenting a conscious tradeoff between simplicity of design
and the need for high-performance execution of ESA/390
functions. Where possible, the impact to mainline execution
has been confined to monitoring for unusual conditions (e.g.,
program exception conditions) and blocking execution of
affected instructions. In these cases, the pipeline is purged and
the affected instruction(s) re-executed in a nonpipelined mode
or with internal code (millicode). Even this design approach
placed considerable pressure on the timing of many control
logic paths.

Mainframe-class reliability and availability are achieved by
a unique checking and recovery design. The IU, FXU, and
FPU are replicated on the chip, and all outputs that directly
affect the architected processor state are sent from both copies
of these units to the RU. The RU compares the copies of

the outputs and buffers the state updates for each hardware
instruction. As each instruction is completed, those results are
moved to a checkpoint array in which the entire architected
state of the processor is maintained with ECC protection. The
state updates sent to the RU from the FXU and FPU are
also broadcast to the BCE and IU so that local copies of
architected facilities (e.g., certain ESA/390 control registers)
are maintained in lock step with changes to the master copy
in the RU. To this end, the architected processor state is
mapped into an 8-b address space of 32-b and 64-b registers, so
that all state updates are communicated via a single address
and data bus. If an error is detected in the RU comparison
of the IU, FXU, or FPU outputs, or if any other error is
detected in the hardware (e.g., a parity error in the cache),
then updates to the checkpoint array are blocked and a CPU
recovery sequence is initiated. In this sequence, completed
operand stores are drained to the level-2 cache; the cache,
directory, TLB, and ALB are purged; all pipeline controls in
the IU, FXU, and FPU are reset; and the processor state is
refreshed by reading each entry from the RU checkpoint array,
passing the data through the FXU data flow, and writing it
back to the same RU address, updating all IU, FXU, FPU,
and BCE copies of that register in the process. This restores
the processor to a consistent architected state from before the
hardware fault, and instruction processing can proceed from
that point. This sequence is performed entirely by hardware
and is transparent both to ESA/390 code and to internal code
(millicode). This design eliminates the need for error checking
within the IU, FXU, and FPU logic while providing almost
100% recoverability from all transient (soft) hardware faults.

The robust checking and recovery mechanism is crucial
in the mission-critical enterprise-wide server applications of
S/390 systems, where customers expect and rely on “bullet-
proof” design to protect their data and to support continuous
operation. On the test floor, miscompares of outputs from
two copies of the units have been observed during cycle
time stressing and in noise-induced failures. The design also
includes on-chip internal error-injection logic, which forces
various errors (including miscompares of the two copies)
at random and/or at controllable points in time. Well over
99% of all such random transient errors are fully recovered
with no corruption of machine state. These random transient
errors were either observed during cycle time stressing or
intentionally injected using error-injection logic on the test
floor. Fault data due to -particle, electromigration, etc. are
not available at this moment. A hardware trace facility is
provided primarily for debugging logic bugs during system test
but may also be used to analyze hardware errors. All errors
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are logged. When an error occurs and the CPU performs its
refresh/retry operation, an internal interrupt is made pending,
and at the next interruptible point the millicode will get control,
clean up some asynchronous interrupt controls, log out the
hardware trace array, and indicate the recovery event to the
service processor, which will record it in a log. No operator
or software action is required. There is no option to use
only one side of a failing processor since some secondary
data connections are not replicated, and it is not acceptable
to customers for the machine to run for even a short time
with no checking. The system design does support dynamically
transferring work from a failing CPU to a different CPU in
the same system, including a provision for having “hot spare”
CPU’s on the module. There is no provision for using the
redundant units for increased performance (super-scalar mode)
instead of self-checking. Supporting any sort of super-scalar
mode would have added far more complexity and would have
required doubling most RU facilities and many BCE facilities,
and would not have fit on the chip.

Some ESA/390 functions are too complex for hard wired
control sequences. These functions are implemented via a
form of internal code known as millicode. Millicode executes
in a special mode of processor operation as a set of highly-
privileged subroutines. The millicode architecture is a variant
of the ESA/390 instruction set architecture and includes its
own set of GR’s and AR’s and all of the hard-wired ESA/390
instructions. It also includes a set of special instructions
(unique to millicode) which provide access to the processor
state in the RU checkpoint array, directly exploit the execution
hardware in the FXU, and invoke special hardware functions
to accelerate performance-sensitive ESA/390 operations. Mil-
licode is invoked when the IU decodes an ESA/390 instruction
which is not implemented in hardware or when an interruption
condition is detected. The FXU then executes a millicode entry
operation, saving information about the ESA/390 instruction
in the millicode GR’s, placing the processor in millicode
mode, and branching to the start of the appropriate millicode
routine. The millicode routine is then executed using the
same IU, FXU, FPU, BCE, and RU controls as are used
for ESA/390 instruction execution. When a “millicode end”
instruction is executed, the processor returns to ESA/390 mode
and branches to the updated ESA/390 instruction address.
Millicode instructions reside in a portion of main storage
which is not accessible to ESA/390 programs. A 32-Kbyte
ROS in the BCE contains frequently used millicode routines
to minimize cache displacement due to millicode instruction
fetches.

The emphasis on cycle time has had an impact on processor
performance as measured in CPI. This is primarily due to the
lengthening of the instruction pipeline (one cycle longer than
in most past S/390 processors) and the use of millicode instead
of horizontal microcode for complex functions. At the same
time, analysis of critical timing paths in this processor and in
other S/390 processor designs shows that this simpler design
yields a frequency advantage that is substantially greater
than the CPI disadvantage given the same technology. When
compared with the previous IBM S/390 CMOS microprocessor
(G3), this design achieves a cycle time improvement of 70%

(given the same technology) with 30% higher CPI, yielding
a net gain of 30% in processor performance (excluding cache
effects). The CPI disadvantage is somewhat larger (55%) when
compared with the IBM ES/9000 model 9021 processor [1],
which was a two-way S/390 super-scaler design with register
renaming, out-of-sequence execution, branch target prediction,
and an internal bandwidth comparable to a four-way super-
scalar RISC design. Even in this comparison, the frequency
advantage (approximately 60% given the same technology)
is dominant, and the added benefits in chip area and design
schedule further favor the simple, high-frequency architecture.

III. FLOORPLAN AND CLOCK DISTRIBUTION

The microprocessor floorplan and clock distribution is
shown in Fig. 4. The BCE and RU are centrally located
in the floorplan to support communication with both sets of
instruction and execution units. The phase-locked loop (PLL)
is located near the center of the chip and generates the internal
system clocks that runs at 2the system bus frequency. It
operates over the range from 36 MHz to 571 MHz with less
than 4.0 ps/mV of long-term phase error between the PLL
output and reference clock due to power supply noise and
less than 1.0 ps/mV reduction in cycle time due to noise. A
single-phase clock is distributed from the chip PLL/central
clock buffer to all the latches inside the macros in three levels
of hierarchy. The first two levels of clock distribution are in
the form of balanced H-like trees, using primarily the top two
metal layers. The first level tree routes the global clock from
the central clock buffer to the nine sector buffers. Each of
IU, FXU, FPU, and RU has one sector buffer while the BCE
has two sector buffers. The sector buffers repower the clock
to all macros inside the sectors. There are 580 macro clock
pins among all the units. The clock propagation delay along
the tree is balanced against macro input capacitance and RLC
characteristics of the tree wires. Horizontal wiring of each
tree is in low resistance Metal-5. At various places along the
tree, inductive coupling is reduced and return path improved
by using power wires for shielding. Decoupling capacitors are
incorporated into central and sector buffers to reduce delta-
I noise. A clock wiring methodology was developed with
custom routing and timing CAD tools. The detailed routing
as well as the widths of all clock wires were optimized
to minimize skew, mean delay, power, wiring tracks, and
sensitivity to process variations. Three-dimensional modeling
was performed using a full-wave electromagnetic field solver
[6], and distributed RLC modeling was used for virtually every
wire in all the trees during the design and tuning/optimization
process [7]. A number of cases were analyzed, and the results
were used to generate a combination of analytic models and
look-up tables containing distributed RLC parameters for all
clock geometries used. Each wire segment was represented by
a equivalent circuit consisting of up to six RLC “” segments.
Extensive simulations and wire width tuning [8] were done
to guarantee low clock skew at macro pins. Typical simulated
RLC delay of the first level tree is 300 ps with 20 ps skew at
the sector buffers. The sector buffer delay is 230 ps. Typical
simulated RLC delay within sectors is 210 ps with 30 ps skew
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Fig. 4. Chip floorplan and clock distribution.

at the macros. The last level of clock distribution is local to
each macro. Fig. 5 shows clocking scheme within macros.
From the macro pin the clocks are wired to clock blocks. The
overall target skew for this wire is under 20 ps. For large
area macros, multiple clock pins were used to reduce wire
length to clock blocks. The clock block generates local clocks
that drive latches as will be explained in the next section.
The target skew for local clocks is under 50 ps. All macro-
level wiring is done by hand for custom macros or with a
place and route tool for synthesized macros. For synthesized
macros that had many latches, and therefore multiple clock
blocks, a clock optimization tool was used that reassigned
latches to clock blocks based on cell placement. This resulted
in clock blocks driving latches that were placed closest to
them. Macro layouts were extracted for and parasitics,
and the extracted netlists were used to time the macros. This
means that any skew in the last level of clock distribution was
captured in that macro’s timing abstraction.

Fig. 6 shows the measured waveforms of the central clock
buffer output and clocks at ten points of the 580 macro pin
locations (marked on Fig. 4) driven by the second level clock
tree. The measurement was performed using a novel electron-
beam prober with a 20-ps time resolution on the top wiring
layer [9]. No special pads or test structures were required to
enable the electron-beam probing, since the clock distribution
used top metal layer for most horizontal wiring, and the spatial
resolution of the probe (2.0m) allowed probing of minimum
width wires. The only chip preparation needed was the removal
of area solder balls and all passivation above the top
wiring level. Because the chip was powered using a standard
cantilever probe card in the electron-beam prober, the chip

Fig. 5. Clocking scheme within macro.

Fig. 6. E-beam measured clock waveforms at macro pin locations marked
on Fig. 4.

clock was run at low frequency to reduce power supply noise.
Power supply noise during these measurements was measured
to be less than 100 mV. The results indicate a mean delay of
740 ps and less than 30 ps skew from the central clock buffer
to the macro pins.

IV. CLOCK BLOCKS AND LATCHES

There are two types of latches used in the microprocessor
outside the arrays: L2 only latch and L1–L2 pair. Both latch
types are cycle boundary latches (i.e., there are no midcycle or
phase latches). Cycle boundary is defined to occur at “CLKG”
falling. Corresponding to the two latch types are two types of
clock blocks. The first clock block/latch combination is shown
in Fig. 7(a). This clock block chops the global clock on the
falling edge to create a short pulse “CLKL” that triggers the
latch [10]. By using either a dynamic multiplexer [Fig. 7(a)] or
a preset static multiplexer [Fig. 7(b)] in front of the latch, a fast
latch delay is achieved. This mux/latch combination interfaces
smoothly with the static circuits and yet allows fast delays
for multi-input high-fanout registers typical of the data flow.
While “CLKL” is inactive (high), the dynamic multiplexer
is in the precharge state while the latch is holding its state.
Similarly, the static multiplexer is preset high (node muxA is
high) while the latch is holding its state. When “CLKL” low
going pulse arrives, the latch node “LAT” begins to discharge.
If multiplexers’ data/selects are such that the multiplexers
remain in their precharged/preset state, node “LAT” fully
discharges. If, however, the multiplexers evaluate, then node
“LAT” is driven high. The n/p transistors in the multiplexers
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(a)

(b)

Fig. 7. Clock block/latch combination: (a) generation of local clock “CLKL” and latch with dynamic multiplexer and (b) latch with preset static multiplexer.

are skewed to favor the transition launched by the arrival of the
“CLKL” pulse. Strength ratios in the preset static multiplexer
are limited to 2.5 : 1 to maintain reasonable noise margin and
allow adequate time for presetting all gates at the end of the
clock pulse. The seven-input preset static multiplexer evaluates
in about 225 ps compared to about 400 ps for a standard static
multiplexer with the same input capacitance and area. When
“CLKL” is active the latch is in the transparent mode.

The second clock block/latch combination is shown in
Fig. 8. This clock block splits the global clock on the falling
edge to create C1/C2 clocks. C1–C2 clock-overlap at the
cycle boundary is set close to 0 ps. Having a positive overlap
would reduce the latch propagation delay but it would also
require more early-mode padding. These latches are used in
nontiming-critical data flow macros and in control macros
where all latches are single input and the speed advantage
of an L2-only latch is reduced.

All latches used in the design are fully scannable and level
sensitive scan design (LSSD) compatible. The overall chip
area penalty is less than 5%. Having an LSSD-compatible
design increased productivity during test vector generation and
allowed 99.5% dc (stuck at fault) test coverage. AC test
coverage often suffers from the inability to create appropriate
transitions due to latch adjacency in the scan chain. This is

most prevalent in dataflow macros with complicated logic
functions (e.g., multipliers). To eliminate the latch adjacency
problems, nonfunctional scan-only latches were inserted into
some macros for every register bit. With this addition,91%
ac transition test coverage was achieved.

Special circuitry was added to all clock blocks to allow
edge-shifting at the cycle boundary. Taking the clock splitter
as an example, we are able to do the following.

• Completely unoverlap C1 falling and C2 rising edges by
large amount. This provides a work-around for potential
early-mode problems.

• Delay C1 falling from its nominal value. This allows
stressing of early-mode and provides a determination of
how much margin exists in the design.

• Delay C1 falling and C2 rising together from their nom-
inal values. This allows cycle-stealing from the previous
cycle.

The last feature was found to be extremely useful in debugging
late-mode problems. To facilitate clock stressing and late-
mode debugging, each macro contains a 3-b scan-only register,
which controls all the clock stressing functions in the clock
blocks located in the macro. Since the clock stressing is local
to each macro, when the first late-mode path was found, more
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Fig. 8. Clock block/latch combination: generation of C1/C2 clocks for L1/L2 latches.

Fig. 9. Use of clock-splitter/clock block to separate C1 falling edge and C2 rising edge.

time was given to the failing cycle through cycle-stealing. This
usually did not create late-mode problems in the following
cycle for the stressed macro. With the worst late-mode path
now masked, work could continue in finding the next late-
mode path that failed. Fig. 9 shows how clock-splitter/clock
block was modified to cause unoverlap between C1 falling
and C2 rising edges.

V. GLOBAL DESIGN STYLE AND ISSUES

The most fundamental strategy was to design the dataflow to
the most aggressive cycle time achievable and then match the
control portion to the dataflow cycle time. In cases where the
control paths lag the dataflow cycle time after all possible logic
optimization, the CPI was sacrificed for cycle time. A concur-
rent bottom-up and top-down design approach was adopted
for achieving high-frequency operation as well as for time-
to-market. The dataflow are full-custom bottom-up designs
with mostly static circuits except the dynamic multiplexer.
The control portions are synthesized with top-down macro
aspect-ratio and pin placement and placed/routed using static
books with fine power level granularity. Two carefully tuned
standard cell booksets were developed for use with synthesis.
One of these booksets contained fixed schematics and layouts
and the other bookset was parameterizable with capabilities
for automatic layout generation. Both bookset’s designs were
limited to relatively simple functions. The unit and macro
interconnect were implemented in parallel to the macro layout.

The power distribution supports an average dc voltage
drop of 23 mV. The Delta-I current transients were managed
by including additional on-chip decoupling capacitors around
large noise sources such as the off-chip drivers, clock buffers,
and on-chip drivers with large loads. Since a large amount
of switching capacitance occurs in the dataflow stacks, de-
coupling capacitors were also placed under the wiring tracks.
Dedicated thin-oxide capacitors of 102 nF are provided for on-
chip decoupling [3]–[5]. This, combined with the “built-in”
nonswitching well-to-substrate and diffusion-to-well capaci-
tances, provides about 200 nF on-chip decoupling capacitance.
The thin-oxide capacitor features a “built-in” fuse mechanism
where “weak” spots between M1 and contact are used to blow
connections to and GND in the presence of large current
resulting from oxide defects. Each capacitor also has a gated
NFET control device with an external “decap_enable” pin for
leakage current measurement during test. A special decoupling
capacitor cell (Fig. 10) is designed to fit under the dataflow
wiring tracks. The cell is double bit-pitch wide (43.2m) and
14 tracks tall (25.2 m). Two out of the 14 horizontal wiring
tracks are specifically blocked for the decoupling capacitor
wiring so the capacitor can fit right under the wiring tracks.
A low-resistance layout of the capacitor cell provides a fast
time constant of about 85 ps.

The 64-kbyte unified cache features a 33.2-m planar six-
transistor cell. Fast signal conversion between static CMOS
and self-resetting CMOS (SRCMOS) circuits, and extensive
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Fig. 10. Decoupling capacitor layout.

use of SRCMOS circuit techniques, achieve 2.0 ns access and
up to 500 MHz operation in the cache [11]. An “array-build-in-
self-test” (ABIST) macro is included for extensive test pattern
coverage and access time evaluation at cycle speed.

VI. CONCLUSION

We have described a microprocessor implementing IBM
S/390 architecture in a 0.2-m CMOS technology. The
microprocessor features dual instruction and execution units
for reliability and layered millicode architecture. Judicious
choice and tailoring of the process technology and concurrent
bottom-up and top-down design approach improved the design
time and time-to-market. Clock distribution skew was mini-
mized using extensive three-dimensional modeling and tuning.
Custom design, synthesis, and placement methodologies were
developed with timing as the top priority. High-frequency
operation was achieved through careful static circuit design
and timing optimization, along with the limited use of dynamic
circuits for highly critical functions, and several different
clocking/latching strategies for cycle time reduction. The mi-
croprocessor operated in a 102 way system at frequencies
up to 411 MHz.
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