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Abstract—A microprocessor implementing IBM S/390 archi- TABLE |
tecture operates in a 10+ 2 way system at frequencies up to TECHNOLOGY FEATURES
411 MHz (2.43 ns). The chip is fabricated in a 0.2¢ém Leg

CMOS technology with five layers of metal and tungsten local Loff 0.2 um
interconnect. The chip size is 17.35 mmx 17.30 mm with Gate Oxide 5.5 nm
about 7.8 million transistors. The power supply is 2.5 V and M1 Pitch 1.2 pum
measured power dissipation at 300 MHz is 37 W. The micro- .

M2 Pitch 1.8 um

processor features two instruction units (IU’s), two fixed point
units (FXU’s), two floating point units (FPU’s), a buffer control M3 Pitch 1.8 um
element (BCE) with a unified 64-KB L1 cache, and a register unit

- . - - M4 Pitch 1.8 m
(RU). The microprocessor dispatches one instruction per cycle. #
The dual-instruction, fixed, and floating point units are used to M5 Pitch 4.8 um
check each other to increase reliability and not for improved Power Supply 25 Vv

performance. A phase-locked-loop (PLL) provides a processor
clock that runs at 2x the system bus frequency. High-frequency

operation was achieved through careful static circuit design and bl N .. . five | Is of | d
timing optimization, along with limited use of dynamic circuits for ow, N™ precision resistors, five levels of metal, and tungsten

highly critical functions, and several different clocking/latching local interconnect. The power supply is 2.5 V. A die photo is
strategies for cycle time reduction. Timing-driven synthesis and shown in Fig. 1. The chip characteristics are shown in Table II.
pl_acem_e_nt of the control Iogic provided_the maximum erxibiI_ity The chip is 17.35 mmx 17.30 mm with about 7.8 million
vc\/;\tﬂhoglr(usrr;{ucr:nMgrsr;a;(i)rtérJg Stlmethg)gﬁ?:f:\ils t'lsec;)éhsée'é}rffﬁg?% transistors. There are about 3.8 million logic transistors and
2.0-ns access time and up to 500 MHz operation. 4.0 million array transistors. The measure power dissipation at
300 MHz is 37 W. There are 1600 area C4 and 448 off-chip
signal I/O’s. Dedicated thin-oxide capacitors [3]-[5] of 102 nF
are provided for on-chip decoupling. This, combined with
the “built-in” nonswitching well-to-substrate and diffusion-to-

l. INTRODUCTION well capacitances, provides about 200-nF on-chip decoupling

HE single-chip microprocessor was designed for tHe@pacitance. The chip operated successfully in a-1D way

IBM S/390 Enterprise Server Generation-4 system. Thystem configuration, where the extra two processors served
microprocessor allowed IBM to fully replace its water-coole@s /O processors for the ten-way system. Fig. 2 shows the top
Enterprise ES/9000 system [1], implemented in bipolar techiew, front view, and side view of a 18- 2 way multichip
nology, with an air-cooled system implemented in CMOS®1dule. The module also contains eight L2 cache chips, eight
technology. The microprocessor was initially designed #us switch node chips, and four memory bus adapter chips.
IBM’s CMOS5X technology and then migrated to CMOS63 he size of the module is 127.5 mm 127.5 mm in area and
technology by shrinking the FET channel length dimensiod®.4 mm thick before planarization. It consists of four thin-
for performance but not shrinking the interconnect dimensiofin wiring layers and 68 ceramic layers and handles up to
for time to market [2]. Typical technology parameters ar@00 W (nominal) at 2.7 V with a nominal air flow rate of
shown in Table I. The technology features Qu&+-L.g, 5.5-nm 150 cubic-feet per minute (CFM). It has 3526 bottom surface
gate oxide, low resistance Ti-salicided Nind P+ polysilicon metallurgy (BSM) I/O’s, of which 1763 are signal 1/0’s. In
and diffusions, shallow trench isolation, metal fuses for lasengineering system test, a 302 way system runs at

e 2.70 ns at 2.57 V with ambient air at 35,
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Fig. 1. A 400-MHz S/390 CMOS microprocessor micrograph.

TABLE 1
CHIP CHARACTERISTICS

Transistor Count 7.8 Million

- Logic 3.8 Million

- Array 4.0 Million
Die Size 17.35mm x 17.3mm
Power 37W@2.5V 300MHz
System Bus Frequency 1/2 of Processor :
On-Chip Decoupling Cap 102 nF (b)
Area C4 1600 Fig. 2. Multichip module: (a) top view and (b) front and side views.
Off-Chip Signal 1I/0 448

of the register-register (2-byte), register-storage (4-byte), and
storage-storage (6-byte) ESA/390 instructions. Operand and
branch addresses are formed via a three-input 32-b adder.
The microprocessor is designed with fast cycle time as t@gherand controls generate fetch and store requests for fields
primary goal. High-frequency operation is achieved througkp to 256-bytes long with arbitrary byte alignment. Decoded
global focus on the timing and high-frequency circuit desigpstructions are passed to a six-deep first-in—first-out (FIFO)
methodology and techniques. At the architecture level, cygigstruction queue. The fixed-point execution unit (FXU) is
time is emphasized over cycle-per-instruction (CPI). Judicioygplemented as a 64-b dataflow stack consisting of working
use of the static, dynamic, and self-resetting circuits balan isters, a rotator, a bit-wise logic unit (BLU), an insert-
the design time and performance return. Section |l describg§$der-mask element (AIM), a 64-b binary adder, and a 32-b
the architecture features of the microprocessor. The crgp,ary_coded_decima| adder. The FXU also maintains the
floorplan and clock distribution are presented in Section llEsa/390 condition code and controls the taking of ESA/390
followed by the several different clocking/latching Strategielﬁterrupts. A single register file (five-read/one-write) imple-
used for cycle time reduction in Section 1V. The global desigfents the ESA/390 general registers (GR’s) and access reg-
style and issues are discussed in Section V. The conclusiongf,s (AR’s) used by the IU for address generation and by
the paper is given in Section VI. the FXU for execution. The floating-point execution (FPU)
contains a radix-8 Booth encoded multiplier which shares
Il ARCHITECTURE FEATURES a 120-b adder with the add function. Most floating-point
The microprocessor implements the ESA/390 instruction gastructions are pipelined one per cycle with a latency of three
architecture using five major units. The instruction unit (IUgxecution cycles. The floating point unit also executes division
handles instruction fetch, instruction decode, address genexad square root using a Goldschmidt algorithm and extended
tion, and operand fetch functions. This includes full suppoptrrecision and fixed point multiply and divide instructions.

Max Frequency (Measured) 411MHz
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Fig. 3. Pipeline for typical register-storage instruction.

The ESA/390 Floating Point Registers (FPR’s) are impléhe outputs and buffers the state updates for each hardware
mented in a two-read/one-write register file. The buffer controistruction. As each instruction is completed, those results are
element (BCE) contains a 64-Kbyte cache organized in 128oved to a checkpoint array in which the entire architected
byte lines with a four-way set-associative absolute-addrestate of the processor is maintained with ECC protection. The
directory. The BCE also includes a 256-entry translatistate updates sent to the RU from the FXU and FPU are
lookaside buffer (TLB), an eight-entry fully-associative accesdso broadcast to the BCE and IU so that local copies of
register translation lookaside buffer (ALB), an eight-deep stoegchitected facilities (e.g., certain ESA/390 control registers)
address queue, and a 64-deep 64-b-wide store data bufferarA maintained in lock step with changes to the master copy
32-Kbyte read only store (ROS) holds frequently used internial the RU. To this end, the architected processor state is
code (millicode) routines. The cache is interleaved on a doubteapped into an 8-b address space of 32-b and 64-b registers, so
word (8-byte) basis, and “continuation fetch” controls allowhat all state updates are communicated via a single address
access to multiple portions of the same cache line withoahd data bus. If an error is detected in the RU comparison
reaccessing the TLB and directory, significantly improvingf the IU, FXU, or FPU outputs, or if any other error is
cache bandwidth for sequential instruction fetching and foletected in the hardware (e.g., a parity error in the cache),
long storage operands. The BCE also includes the interfaben updates to the checkpoint array are blocked and a CPU
to the off-chip second-level cache. The register unit (RWgcovery sequence is initiated. In this sequence, completed
maintains an error correction code (ECC)-protected copy operand stores are drained to the level-2 cache; the cache,
the architectured processor state, including FR’s, AR’s, FPRdirectory, TLB, and ALB are purged; all pipeline controls in
ESA/390 control registers, millicode control registers, anthe IU, FXU, and FPU are reset; and the processor state is
ESA/390 timing facility. The RU also implements variousefreshed by reading each entry from the RU checkpoint array,
system support functions, including processor error detectipassing the data through the FXU data flow, and writing it
and recovery (to be discussed later). The pipeline for a typidsdck to the same RU address, updating all IU, FXU, FPU,
register-storage instruction is shown in Fig. 3. and BCE copies of that register in the process. This restores

In order to obtain a suitable performance level, marne processor to a consistent architected state from before the
features of the ESA/390 architecture must be implementbdrdware fault, and instruction processing can proceed from
with hardware controls, making even a “simple” microarthat point. This sequence is performed entirely by hardware
chitecture relatively complex. These features include a fudhd is transparent both to ESA/390 code and to internal code
set of register-storage and storage-storage operations, sevenilicode). This design eliminates the need for error checking
addressing modes, byte-oriented (unaligned) storage operamdthin the 1U, FXU, and FPU logic while providing almost
packed-decimal arithmetic, strong storage ordering and consif0% recoverability from all transient (soft) hardware faults.
tency (including store-in-instruction-stream), precise interrup- The robust checking and recovery mechanism is crucial
tions, and program event recording. Many hardware structuiasthe mission-critical enterprise-wide server applications of
in the processor exist solely to support these features, r&¥390 systems, where customers expect and rely on “bullet-
resenting a conscious tradeoff between simplicity of desigmoof” design to protect their data and to support continuous
and the need for high-performance execution of ESA/3%peration. On the test floor, miscompares of outputs from
functions. Where possible, the impact to mainline executidwo copies of the units have been observed during cycle
has been confined to monitoring for unusual conditions (e.¢ime stressing and in noise-induced failures. The design also
program exception conditions) and blocking execution dficludes on-chip internal error-injection logic, which forces
affected instructions. In these cases, the pipeline is purged amagious errors (including miscompares of the two copies)
the affected instruction(s) re-executed in a nonpipelined mode random and/or at controllable points in time. Well over
or with internal code (millicode). Even this design approac®9% of all such random transient errors are fully recovered
placed considerable pressure on the timing of many contwith no corruption of machine state. These random transient
logic paths. errors were either observed during cycle time stressing or

Mainframe-class reliability and availability are achieved bintentionally injected using error-injection logic on the test
a unique checking and recovery design. The 1U, FXU, arftbor. Fault data due tex-particle, electromigration, etc. are
FPU are replicated on the chip, and all outputs that directhot available at this moment. A hardware trace facility is
affect the architected processor state are sent from both copgiesvided primarily for debugging logic bugs during system test
of these units to the RU. The RU compares the copies lofit may also be used to analyze hardware errors. All errors
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are logged. When an error occurs and the CPU performs (tgven the same technology) with 30% higher CPI, yielding
refresh/retry operation, an internal interrupt is made pendirg net gain of 30% in processor performance (excluding cache
and at the next interruptible point the millicode will get controleffects). The CPI disadvantage is somewhat larger (55%) when
clean up some asynchronous interrupt controls, log out tbempared with the IBM ES/9000 model 9021 processor [1],
hardware trace array, and indicate the recovery event to thibich was a two-way S/390 super-scaler design with register
service processor, which will record it in a log. No operataenaming, out-of-sequence execution, branch target prediction,
or software action is required. There is no option to usend an internal bandwidth comparable to a four-way super-
only one side of a failing processor since some secondagalar RISC design. Even in this comparison, the frequency
data connections are not replicated, and it is not acceptabtévantage (approximately 60% given the same technology)
to customers for the machine to run for even a short timg dominant, and the added benefits in chip area and design
with no checking. The system design does support dynamicadighedule further favor the simple, high-frequency architecture.
transferring work from a failing CPU to a different CPU in
the same system, including a provision for having “hot spare”
CPU's on the module. There is no provision for using the lll. FLOORPLAN AND CLOCK DISTRIBUTION
redundant units for increased performance (super-scalar modejhe microprocessor floorplan and clock distribution is
instead of self-checking. Supporting any sort of super-scaktiown in Fig. 4. The BCE and RU are centrally located
mode would have added far more complexity and would hay the floorplan to support communication with both sets of
required doubling most RU facilities and many BCE facilitieSnstruction and execution units. The phase-locked loop (PLL)
and would not have fit on the chip. is located near the center of the chip and generates the internal
Some ESA/390 functions are too complex for hard wiregystem clocks that runs atx2the system bus frequency. It
control sequences. These functions are implemented viapgerates over the range from 36 MHz to 571 MHz with less
form of internal code known as millicode. Millicode executeghan 4.0 ps/mV of long-term phase error between the PLL
in a special mode of processor operation as a set of hightyatput and reference clock due to power supply noise and
privileged subroutines. The millicode architecture is a variafgss than 1.0 ps/mV reduction in cycle time due to noise. A
of the ESA/390 instruction set architecture and includes ingle-phase clock is distributed from the chip PLL/central
own set of GR’s and AR'’s and all of the hard-wired ESA/39@lock buffer to all the latches inside the macros in three levels
instructions. It also includes a set of special instructionsf hierarchy. The first two levels of clock distribution are in
(unique to millicode) which provide access to the processtite form of balanced H-like trees, using primarily the top two
state in the RU checkpoint array, directly exploit the executianetal layers. The first level tree routes the global clock from
hardware in the FXU, and invoke special hardware functiomise central clock buffer to the nine sector buffers. Each of
to accelerate performance-sensitive ESA/390 operations. Mil}, FXU, FPU, and RU has one sector buffer while the BCE
licode is invoked when the IU decodes an ESA/390 instructidtas two sector buffers. The sector buffers repower the clock
which is not implemented in hardware or when an interruptian all macros inside the sectors. There are 580 macro clock
condition is detected. The FXU then executes a millicode enfsyhs among all the units. The clock propagation delay along
operation, saving information about the ESA/390 instructicthe tree is balanced against macro input capacitance and RLC
in the millicode GR’s, placing the processor in millicodeharacteristics of the tree wires. Horizontal wiring of each
mode, and branching to the start of the appropriate millicodee is in low resistance Metal-5. At various places along the
routine. The millicode routine is then executed using theee, inductive coupling is reduced and return path improved
same IU, FXU, FPU, BCE, and RU controls as are usdsy using power wires for shielding. Decoupling capacitors are
for ESA/390 instruction execution. When a “millicode endincorporated into central and sector buffers to reduce delta-
instruction is executed, the processor returns to ESA/390 mddeoise. A clock wiring methodology was developed with
and branches to the updated ESA/390 instruction addresgstom routing and timing CAD tools. The detailed routing
Millicode instructions reside in a portion of main storagas well as the widths of all clock wires were optimized
which is not accessible to ESA/390 programs. A 32-Kbyt® minimize skew, mean delay, power, wiring tracks, and
ROS in the BCE contains frequently used millicode routinesensitivity to process variations. Three-dimensional modeling
to minimize cache displacement due to millicode instructiowas performed using a full-wave electromagnetic field solver
fetches. [6], and distributed RLC modeling was used for virtually every
The emphasis on cycle time has had an impact on procesaire in all the trees during the design and tuning/optimization
performance as measured in CPI. This is primarily due to tipeocess [7]. A number of cases were analyzed, and the results
lengthening of the instruction pipeline (one cycle longer thanere used to generate a combination of analytic models and
in most past S/390 processors) and the use of millicode instéadk-up tables containing distributed RLC parameters for all
of horizontal microcode for complex functions. At the samelock geometries used. Each wire segment was represented by
time, analysis of critical timing paths in this processor and ia equivalent circuit consisting of up to six RLG™segments.
other S/390 processor designs shows that this simpler desixtensive simulations and wire width tuning [8] were done
yields a frequency advantage that is substantially greaterguarantee low clock skew at macro pins. Typical simulated
than the CPI disadvantage given the same technology. WHeInC delay of the first level tree is 300 ps with 20 ps skew at
compared with the previous IBM S/390 CMOS microprocesstiie sector buffers. The sector buffer delay is 230 ps. Typical
(G3), this design achieves a cycle time improvement of 70%tmulated RLC delay within sectors is 210 ps with 30 ps skew
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Fig. 6. E-beam measured clock waveforms at macro pin locations marked
at the macros. The last level of clock distribution is local ten Fig. 4.

each macro. Fig. 5 shows clocking scheme within macros.

From the macro pin the clocks are wired to clock blocks. Thgock was run at low frequency to reduce power supply noise.
overall target skew for this wire is under 20 ps. For largeower supply noise during these measurements was measured
area macros, multiple clock pins were used to reduce wif@ be less than 100 mV. The results indicate a mean delay of
length to clock blocks. The clock block generates local clock&0 ps and less than 30 ps skew from the central clock buffer
that drive latches as will be explained in the next sectioto the macro pins.

The target skew for local clocks is under 50 ps. All macro-

level wiring is done by hand for custom macros or with a IV. CLOCK BLOCKS AND LATCHES

place and route tool for synthesized macros. For synthesized'-here are two types of latches used in the microprocessor
macros that had many latches, and therefore multiple clogksige the arrays: L2 only latch and L1-L2 pair. Both latch
blocks, a clock optimization tool was used that reassigng@thes are cycle boundary latches (i.e., there are no midcycle or
latches to clock blocks based on cell placement. This resulgqase latches). Cycle boundary is defined to occur at “CLKG”
in clock blocks driving latches that were placed closest gjing. Corresponding to the two latch types are two types of
them. Macro layouts were extracted férand C' parasitics, ¢jock blocks. The first clock block/latch combination is shown
and the extracted netlists were used to time the macros. TRiSrig. 7(a). This clock block chops the global clock on the
means that any skew in the last level of clock distribution wag|ling edge to create a short pulse “CLKL” that triggers the
captured in that macro’s timing abstraction. latch [10]. By using either a dynamic multiplexer [Fig. 7(a)] or
Fig. 6 shows the measured waveforms of the central clogkreset static multiplexer [Fig. 7(b)] in front of the latch, a fast
buffer output and clocks at ten points of the 580 macro pitch delay is achieved. This mux/latch combination interfaces
locations (marked on Fig. 4) driven by the second level clognoothly with the static circuits and yet allows fast delays
tree. The measurement was performed using a novel electrst- multi-input high-fanout registers typical of the data flow.
beam prober with a 20-ps time resolution on the top wiring/hile “CLKL” is inactive (high), the dynamic multiplexer
layer [9]. No special pads or test structures were requiredifin the precharge state while the latch is holding its state.
enable the electron-beam probing, since the clock distributigimilarly, the static multiplexer is preset high (node mixs
used top metal layer for most horizontal wiring, and the spatigigh) while the latch is holding its state. When “CLKL” low
resolution of the probe (2.0m) allowed probing of minimum going pulse arrives, the latch node “LAT” begins to discharge.
width wires. The only chip preparation needed was the removfilmultiplexers’ data/selects are such that the multiplexers
of areaC4 solder balls and all passivation above the togemain in their precharged/preset state, node “LAT” fully
wiring level. Because the chip was powered using a standalidcharges. If, however, the multiplexers evaluate, then node
cantilever probe card in the electron-beam prober, the cHipAT” is driven high. The n/p transistors in the multiplexers
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Fig. 7. Clock block/latch combination: (a) generation of local clock “CLKL" and latch with dynamic multiplexer and (b) latch with preset stapterauilti

are skewed to favor the transition launched by the arrival of theost prevalent in dataflow macros with complicated logic
“CLKL”" pulse. Strength ratios in the preset static multiplexefunctions (e.g., multipliers). To eliminate the latch adjacency
are limited to 2.5:1 to maintain reasonable noise margin apebblems, nonfunctional scan-only latches were inserted into
allow adequate time for presetting all gates at the end of tseme macros for every register bit. With this addition91%
clock pulse. The seven-input preset static multiplexer evaluatgs transition test coverage was achieved.

in about 225 ps compared to about 400 ps for a standard stati§pecial circuitry was added to all clock blocks to allow

multiplexer with the same input capacitance and area. Whgfige-shifting at the cycle boundary. Taking the clock splitter
“CLKL” iS aCtiVe the IatCh iS in the transparent mOde. as an examp|e, we are ab'e to do the fo”owing_

The second clock block/latch combination is shown in
Fig. 8. This clock block splits the global clock on the falling
edge to create C1/C2 clocks. C1-C2 clock-overlap at the
cycle boundary is set close to 0 ps. Having a positive overlap,
would reduce the latch propagation delay but it would also
require more early-mode padding. These latches are used in
nontiming-critical data flow macros and in control macros
where all latches are single input and the speed advantage
of an L2-only latch is reduced.

All latches used in the design are fully scannable and level CYCle-
sensitive scan design (LSSD) compatible. The overall chigie last feature was found to be extremely useful in debugging
area penalty is less than 5%. Having an LSSD-compatidgie-mode problems. To facilitate clock stressing and late-
design increased productivity during test vector generation amgde debugging, each macro contains a 3-b scan-only register,
allowed > 99.5% dc (stuck at fault) test coverage. AC teswvhich controls all the clock stressing functions in the clock
coverage often suffers from the inability to create appropriatdocks located in the macro. Since the clock stressing is local
transitions due to latch adjacency in the scan chain. Thisteseach macro, when the first late-mode path was found, more

e Completely unoverlap C1 falling and C2 rising edges by
large amount. This provides a work-around for potential
early-mode problems.

Delay C1 falling from its nominal value. This allows
stressing of early-mode and provides a determination of
how much margin exists in the design.

Delay C1 falling and C2 rising together from their nom-
inal values. This allows cycle-stealing from the previous
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time was given to the failing cycle through cycle-stealing. This The power distribution supports an average dc voltage
usually did not create late-mode problems in the followindrop of 23 mV. The Delta-l current transients were managed
cycle for the stressed macro. With the worst late-mode pdtl including additional on-chip decoupling capacitors around
now masked, work could continue in finding the next latdarge noise sources such as the off-chip drivers, clock buffers,
mode path that failed. Fig. 9 shows how clock-splitter/clocknd on-chip drivers with large loads. Since a large amount
block was modified to cause unoverlap between C1 fallirgf switching capacitance occurs in the dataflow stacks, de-
and C2 rising edges. coupling capacitors were also placed under the wiring tracks.
Dedicated thin-oxide capacitors of 102 nF are provided for on-
chip decoupling [3]-[5]. This, combined with the “built-in”
The most fundamental strategy was to design the dataflowtonswitching well-to-substrate and diffusion-to-well capaci-
the most aggressive cycle time achievable and then match theces, provides about 200 nF on-chip decoupling capacitance.
control portion to the dataflow cycle time. In cases where tfghe thin-oxide capacitor features a “built-in” fuse mechanism
control paths lag the dataflow cycle time after all possible logehere “weak” spots between M1 and contact are used to blow
optimization, the CPI was sacrificed for cycle time. A concuconnections td/pp and GND in the presence of large current
rent bottom-up and top-down design approach was adoptegulting from oxide defects. Each capacitor also has a gated
for achieving high-frequency operation as well as for timeNFET control device with an external “decap_enable” pin for
to-market. The dataflow are full-custom bottom-up desigrieakage current measurement during test. A special decoupling
with mostly static circuits except the dynamic multiplexercapacitor cell (Fig. 10) is designed to fit under the dataflow
The control portions are synthesized with top-down macwmiring tracks. The cell is double bit-pitch wide (43.2n) and
aspect-ratio and pin placement and placed/routed using stddctracks tall (25.2:m). Two out of the 14 horizontal wiring
books with fine power level granularity. Two carefully tunedracks are specifically blocked for the decoupling capacitor
standard cell booksets were developed for use with synthesifring so the capacitor can fit right under the wiring tracks.
One of these booksets contained fixed schematics and laycdteow-resistance layout of the capacitor cell provides a fast
and the other bookset was parameterizable with capabilititme constant of about 85 ps.
for automatic layout generation. Both bookset's designs wereThe 64-kbyte unified cache features a 33182 planar six-
limited to relatively simple functions. The unit and macrdransistor cell. Fast signal conversion between static CMOS
interconnect were implemented in parallel to the macro layoaind self-resetting CMOS (SRCMOS) circuits, and extensive

V. GLOBAL DESIGN STYLE AND ISSUES
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Fig. 10. Decoupling capacitor layout.

use of SRCMOS circuit techniques, achieve 2.0 ns access and
up to 500 MHz operation in the cache [11]. An “array-build-in- 7]
self-test” (ABIST) macro is included for extensive test pattern

coverage and access time evaluation at cycle speed. (8]

VI. CONCLUSION
[9]

We have described a microprocessor implementing I1BM
S/390 architecture in a 0.2m L.z CMOS technology. The [10]
microprocessor features dual instruction and execution units
for reliability and layered millicode architecture. Judicious
choice and tailoring of the process technology and concurréht!
bottom-up and top-down design approach improved the design
time and time-to-market. Clock distribution skew was mini-
mized using extensive three-dimensional modeling and tuning.
Custom design, synthesis, and placement methodologies were
developed with timing as the top priority. High-frequency
operation was achieved through careful static circuit desi
and timing optimization, along with the limited use of dynamit
circuits for highly critical functions, and several different
clocking/latching strategies for cycle time reduction. The m
croprocessor operated in a #02 way system at frequencies
up to 411 MHz.
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