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Abstract—A 64-bit dual-core RISC-V processor with vector
accelerators has been fabricated in a 45 nm SOI process. This
is the first dual-core processor to implement the open-source
RISC-V ISA designed at the University of California, Berkeley.
In a standard 40 nm process, the RISC-V scalar core scores 10%
higher in DMIPS/MHz than the Cortex-A5, ARM’s comparable
single-issue in-order scalar core, and is 49% more area-efficient.
To demonstrate the extensibility of the RISC-V ISA, we integrate
a custom vector accelerator alongside each single-issue in-order
scalar core. The vector accelerator is 1.8× more energy-efficient
than the IBM Blue Gene/Q processor, and 2.6× more than the
IBM Cell processor, both fabricated in the same process. The
dual-core RISC-V processor achieves maximum clock frequency
of 1.3 GHz at 1.2 V and peak energy efficiency of 16.7 double-
precision GFLOPS/W at 0.65 V with an area of 3 mm2.

I. INTRODUCTION

As we approach the end of conventional transistor scaling,
computer architects are forced to incorporate specialized and
heterogeneous accelerators into general-purpose processors for
greater energy efficiency. Many proposed accelerators, such as
those based on GPU architectures, require a drastic reworking
of application software to make use of separate ISAs operating
in memory spaces disjoint from the demand-paged virtual
memory of the host CPU. RISC-V [1] is a new completely
open general-purpose instruction set architecture (ISA) de-
veloped at the University of California, Berkeley, which is
designed to be flexible and extensible to better integrate new
efficient accelerators close to the host cores. The open-source
RISC-V software toolchain includes a GCC cross-compiler,
an LLVM cross-compiler, a software ISA simulator, an ISA
verification suite, a Linux port, and additional documentation,
and is available at www.riscv.org.

In this paper, we present a 64-bit dual-core RISC-V
processor with custom vector accelerators in a 45 nm SOI
process. Our RISC-V scalar core achieves 1.72 DMIPS/MHz,
outperforming ARM’s Cortex-A5 score of 1.57 DMIPS/MHz
by 10% in a smaller footprint. Our custom vector accelerator
is 1.8× more energy-efficient than the IBM Blue Gene/Q
processor and 2.6× more than the IBM Cell processor for
double-precision floating-point operations, demonstrating that
high efficiency can be obtained without sacrificing a unified
demand-paged virtual memory environment.

II. CHIP ARCHITECTURE

Figure 1 shows the block diagram of the dual-core pro-
cessor. Each core incorporates a 64-bit single-issue in-order
Rocket scalar core, a 64-bit Hwacha vector accelerator, and
their associated instruction and data caches, as described
below.
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Fig. 1. Backside chip micrograph (taken with a removed silicon handle) and
processor block diagram.

A. Rocket Scalar Core

Rocket is a 6-stage single-issue in-order pipeline that
executes the 64-bit scalar RISC-V ISA (see Figure 2). The
scalar datapath is fully bypassed but carefully designed to min-
imize the impact of long clock-to-output delays of compiler-
generated SRAMs in the caches. A 64-entry branch target
buffer, 256-entry two-level branch predictor, and return address
stack together mitigate the performance impact of control
hazards. Rocket implements an MMU that supports page-
based virtual memory and is able to boot modern operating
systems, including Linux. Both caches are virtually indexed
physically tagged with parallel TLB lookups. The data cache
is non-blocking, allowing the core to exploit memory-level
parallelism.

Rocket has an optional IEEE 754-2008-compliant FPU,
which can execute single- and double-precision floating-point
operations, including fused multiply-add (FMA), with hard-
ware support for denormals and other exceptional values. The
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Fig. 2. Rocket scalar plus Hwacha vector pipeline diagram.



TABLE I. ARM CORTEX-A5 VS. RISC-V ROCKET

ARM Cortex-A5 [2] RISC-V Rocket
Process TSMC40GPLUS
Dhrystone Performance 1.57 DMIPS/MHz 1.72 DMIPS/MHz
ISA Register Width 32 bits 64 bits
Frequency >1 GHz >1 GHz
Area excluding caches 0.27 mm2 0.14 mm2

Area with 16 KB caches 0.53 mm2 0.39 mm2

Area Efficiency 2.96 DMIPS/MHz/mm2 4.41 DMIPS/MHz/mm2

Dynamic Power <0.08 mW/MHz 0.034 mW/MHz

fully-pipelined double-precision FMA unit has a latency of
three clock cycles.

To compare against published numbers for a 32-bit
ARM Cortex-A5, we implemented a similarly configured
64-bit Rocket core and evaluated it with the same Dhry-
stone benchmark and the same TSMC40GPLUS process
corner that ARM used to evaluate the Cortex-A5 [2]. As
shown in Table I, Rocket attains greater performance (1.72
vs. 1.57 DMIPS/MHz) in substantially less area (0.39 vs.
0.53 mm2 including caches) and dynamic power (0.034 vs.
0.08 mW/MHz).

B. Hwacha Vector Accelerator

Hwacha is a single-lane decoupled vector pipeline opti-
mized for an ASIC process. Hwacha more closely resembles
traditional Cray vector pipelines [3] than the SIMD units in
SSE, AVX, or NEON. For greater efficiency than traditional
vector architectures, vector arithmetic instructions are packed
into separate blocks of instructions that are queued to be
fetched and decoded only after vector memory instructions
have run ahead to prefetch the needed data [4].

Figure 3 shows the microarchitecture of the Hwacha vector
accelerator. Rocket sends Hwacha a vector instruction at the
scalar commit stage once all exceptions are cleared. The
Hwacha issue unit fetches and decodes a vector instruction, and
waits until all hazards (e.g., data hazards, structural hazards,
bank conflicts) are cleared. Once all hazards are cleared, the
vector instruction is issued to the sequencer. The sequencer
holds a decoded vector instruction until all elements in a
vector are executed. The expander breaks vector instructions
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Fig. 3. Hwacha Vector Accelerator Microarchitecture. Replicated structures
of bank 2 to 6 are omitted in the diagram.
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Fig. 4. Banked VRF execution example showing how a banked VRF is
effectively able to read out 2 operands/cycle from each bank after a 2-cycle
initial startup latency. Each square represents a 1R1W SRAM macro (same
1R1W SRAM also shown in Figure 3), and small rectangles represent operand
registers (two registers below the 1R1W SRAM in Figure 3). For simplicity,
the example depicts only 4 banks.

into bank micro-ops, which are the unit of execution on the
lane. Each bank micro-op executes on each bank and is then
passed systolically to the next bank as shown in Figure 3. To
improve area efficiency, we split the vector register file (VRF)
into 8 banks of 1R1W SRAM macros, avoiding expensive flop-
based multiport register files. By exploiting the regular operand
access pattern (Figure 4), we reduce the impact of banking on
performance. Per-bank integer ALUs are directly connected to
the read and write ports of each bank to eliminate structural
hazards on integer execution units, to reduce operand energy,
and to increase integer performance. Larger functional units,
such as the 64-bit integer multiplier and single- and double-
precision floating-point units, are shared across all banks.
To further reduce area, the floating-point functional units are
shared with Rocket [4]. The memory unit supports unit-strided
and strided vector memory accesses, as well as vector gathers
and scatters. Virtual memory with restartable exceptions [5] is
also supported in the Hwacha vector accelerator.

C. Memory System

Each Rocket core is attached to a 2-way set-associative
16 KB instruction cache, and each Hwacha vector accelerator
is likewise attached to its own direct-mapped 8 KB instruction
cache. A 4-way set-associative 32 KB non-blocking data cache
is shared between the scalar core and the vector accelerator.
These private L1 data caches are kept coherent via a broadcast-
based MESI cache coherence protocol. The protocol also keeps
the caches coherent with respect to memory requests from the
host-target interface block (HTIF). The coherence protocol is
implemented by a hub controller, which tracks outstanding
coherence transactions, and a set of crossbar networks, one
for each coherence protocol message type.

In high-performance testing mode, the 1 MB SRAM array,
which emulates DRAM timing, is used as the only backing
memory. In basic testing mode, main memory traffic tra-
verses the FPGA FSB, which uses a low-bandwidth source-
synchronous protocol to communicate with an external FPGA
that supports up to 4 GB of backing memory over the chip I/O.

D. System Interface

The host-target interface block (HTIF) uses the same
protocol and physically shares the same chip I/O as the FPGA



FSB to allow the host to read and write target memory and
control registers. We use this interface to download and run
programs and to service OS system calls such as file I/O.

III. CHIP IMPLEMENTATION

A. RTL Development and Verification

The processor RTL is written in Chisel [6], a new hardware
construction language that lets designers express hardware as
highly parameterized generators to aid design tuning under
different area, performance, power, and process constraints.
Processor parameters such as the number of cores, cache sizes,
associativity, number of TLB entries, number of floating-point
pipeline stages, cache-coherence protocol, and width of off-
chip I/O are selected during elaboration via a configuration
object. Chisel generates both a C++ cycle-accurate software
simulator and low-level synthesizable Verilog that maps to
standard FPGA or ASIC flows. We develop and verify the
RTL using the C++ cycle simulator through both directed and
randomly generated test programs. The RTL is also mapped
to an FPGA for validation on longer programs, such as the
Linux kernel.

B. Physical Design Flow

The Synopsys ASIC CAD toolflow (Design Compiler, IC
Compiler) is used to map the Chisel-generated Verilog to a
multi-Vt standard cell library and memory-compiler-generated
SRAMs in a 45 nm SOI technology. Hierarchical mapping is
used: the core processor module is synthesized and placed-
and-routed independently, and two instances of this module
are instantiated at the top level of the design. This bottom-up
approach significantly reduces overall CAD tool runtime and
should scale well to designs that incorporate larger numbers
of cores. The final signoff steps are also performed using
Synopsys tools, and include static timing analysis (PrimeTime)
with extracted RC (StarRC), formal verification (Formality)
comparing the gate-level netlist against the RTL, post place-
and-route gate-level simulation (VCS) with all nets back-
annotated with delay calculated with extracted RC. The flow is
highly automated, which enables us to quickly iterate through
physical design variations and arrive at an acceptable QoR.
The chip utilizes C4 area I/O and is flip-chip bonded to a
PCB for testing.

IV. CHIP RESULTS AND MEASUREMENTS

Figure 5 shows the measurement setup. The processor talks
to a Virtex 6 FPGA over a custom front-side bus at a maximum
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Fig. 5. Measurement setup.

Fig. 6. Photo of measurement setup. The processor is flip-chip mounted on
the board as shown in the inset.

TABLE II. CHIP PARAMETERS

Process 45 nm SOI CMOS, 11 metal layers
Size Processor 2.8 mm (W) × 1.1 mm (H)

1 Core 1.37 mm (W) × 1.06 mm (H)
SRAM Array 1.1 mm (W) × 4 mm (H)

Std. Cells Processor 425K (85K flip-flops)
1 Core 192K (36K flip-flops)

SRAM Bits Processor 1246K
1 Core 621K

Frequency 1 GHz (Nominal), 250 MHz-1.3 GHz
Voltage 1 V (Nominal), 0.65 V-1.2 V
Power 300 mW-430 mW (Nominal), 40 mW-960 mW

speed of 150 MHz. The 512 MB DRAM connected to the
FPGA serves as main memory when the processor is used
in basic testing mode. The on-chip 1 MB SRAM array acts
as main memory in high-performance testing mode. A laptop
can read and write target memory and per-core control registers
via an Ethernet link connected to the FPGA, and is used to
download and run programs. A photo of the measurement setup
is shown in Figure 6. Table II summarizes the resulting chip
parameters.

A. Area, Frequency, and Power

The dual-core RISC-V processor’s area is approximately
3 mm2. Each core occupies about 1.45 mm2, and the remainder
is occupied by the uncore logic. At the nominal supply voltage
of 1 V, the processor operates at a nominal frequency of 1 GHz.
The voltage can be scaled down to 0.65 V, at which point the
chip runs at 250 MHz. The processor runs at a maximum clock
frequency of 1.3 GHz at 1.2 V, at which point the SRAM array
becomes the speed-limiting factor. The power consumption
varies from 300 mW to 430 mW at 1 V depending on the
processor activity, and scales from 40 mW at 0.65 V up to
960 mW at 1.2 V.

B. Energy Efficiency

To measure the resulting energy efficiency, we use a
double-precision floating-point matrix-multiplication kernel
that runs on Hwacha at 78% of peak. Using the high-
performance testing mode, we measure power consumption
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Fig. 7. Shmoo plot of double-precision GFLOPS/W.

from the processor power supply, which includes the IR drop
due to the non-ideal power delivery. The resulting shmoo
plot of double-precision GFLOPS/W running the matrix-
multiplication kernel is shown in Figure 7. Through sup-
ply scaling, we achieve a peak energy efficiency of 16.7
double-precision GFLOPS/W at 0.65 V and 250 MHz. At
0.8 V and 1 V, we achieve 12.5 GFLOPS/W at 550 MHz and
7.3 GFLOPS/W at 1 GHz respectively.

Detailed power breakdowns of commercial processors are
rarely available, and so comparing processor power consump-
tion is challenging. With that caveat, Table III compares
our energy efficiency with the Blue Gene/Q and IBM Cell
processors, both fabricated in the same 45 nm SOI pro-
cess. Blue Gene/Q can compute 204.8 GFLOPS in 55 W at
0.8 V [7][8]. Its cores dissipate 54% of the total power [9].
Conservatively assuming that a double-precision floating-
point matrix-multiplication kernel can achieve peak floating-
point performance of 204.8 GFLOPS, Blue Gene/Q achieves
6.9 GFLOPS/W—55% of our energy efficiency at 0.8 V. The
Cell processor [10] optimized for double-precision achieves
108.8 GFLOPS while dissipating 75 W in 65 nm SOI [11].
The single-precision optimized Cell processor reported a 40%
power reduction from 65 nm to 45 nm [12]. Conservatively
assuming peak floating-point performance and half of the
power going to the cores, the Cell processor would achieve
4.8 GFLOPS/W at 0.8 V in 45 nm SOI—38% of our energy
efficiency at the same voltage.

TABLE III. ENERGY EFFICIENCY COMPARISON AT 0.8 V IN 45NM SOI

Frequency 64-bit Power Efficiency
(GHz) GFLOPS (W) (GFLOPS/W)

Blue Gene/Q [7][8][9] 1.60 204.8 29.7 6.9
Cell [10][11][12] 3.20 108.8 22.5 4.8
This Work 0.55 1.72 0.138 12.5

V. CONCLUSION

The dual-core RISC-V processor demonstrates that vector
accelerators can be integrated in a demand-paged virtual mem-
ory environment with high energy efficiency. This dual-core
chip achieves a peak energy efficiency of 16.7 double-precision
GFLOPS/W with a processor area of 3 mm2 in a 45 nm SOI
process, and runs at a maximum clock frequency of 1.3 GHz.
We also show that the open-source RISC-V ISA can serve as a
competitive base ISA for integrating specialized heterogeneous
accelerators. We plan to open-source our RISC-V processor
implementations at www.riscv.org.
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