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Abstract: This paper presents a 5.7~6.0 GHz Phase-Locked Loop (PLL) design 

using a 130nm 2P6M CMOS process. We propose to suppress reference spur 

through reducing the current mismatch in charge pump (CP), controlling the 

delay time in phase frequency detector (PFD), and using a smaller VCO gain 

(KVCO). With a reference frequency of 32.768 MHz, chip measurement results 

show that the frequency tuning range is 5.7~6.0 GHz, the reference spur is 

-68dBc, the phase noise levels are -109dBc/Hz and -135dBc/Hz at 1MHz and 

10MHz offset respectively for 5.835 GHz. Compared with existing designs in the 

literature, this work’s reference spur is improved by at least 17% and its phase 

noise is the lowest. Under a 1.5V supply voltage, the power dissipation with an 

output buffer of the PLL is 12mW. 

Keywords—PLL, reference spur, current mismatch, low phase noise 

I. Introduction 

Modern system-on-chip applications rely on PLLs to provide high-precision carrier 

signals. The quality of carrier signals significantly impacts the performance of 

transceivers such as the sensitivity of receivers and the spectrum of transmitted 

signals. With the emergence of new wireless communication standards, PLLs require 

to improve phase noise and suppress reference spur. As key performance parameters 

in PLLs (i.e., phase noise, reference spur level, power consumption, frequency range, 

and chip area) are interactive, it is a challenging task to consider design tradeoffs and 

optimize PLL designs [1].  

Phase noise represents random frequency instability, and reference spurs are 

undesired frequency content in a VCO output spectrum [2]. The objective of this work 

is to reduce phase noise and reference spur in PLLs. We first analyze the underlying 



factors that determine reference spur levels, and then apply three techniques (i.e., a 

low current mismatch in CP, delay controllable PFD, and a lower VCO gain) in a PLL 

to minimize reference spurs.  

The mismatch between charging and discharging currents in a charge pump (CP) 

causes PLL phase offset and increases reference spurs. So far, a few techniques have 

been presented to address the current mismatch issue in CP. In [3], a symmetrical 

layout was used to reduce the CP current mismatch. In [4], an active loop filter was 

used to isolate VCTR and VCP (CP output node). Yet, the match between VCP and an 

extra VREF is highly dependent on the layout. In [5], a digital calibration technique was 

proposed to reduce the current mismatch in CP. Yet, this technique relies on accurate 

current sources and requires extra calibration time. In [6], in order to mitigate current 

mismatch in CP, an adaptive gate bias technique was presented to enhance output 

impedance of CP. Yet, the effect of channel length modulation affects the current 

mismatch. In [7], a high gain amplifier was used in CP to reduce current mismatch. 

Simulation results show the current mismatch is only 0.5%. Therefore, instead of 

developing new circuits to tackle current mismatch in CP, we adopt the existing 

approach in [7] to our PLL system. 

In addition to minimizing current mismatch in CP, we also explore other building 

blocks in PLLs that may contribute to reference spurs. We propose a delay time 

controllable PFD, and adopt a lower gain VCO which also reduces phase noise. In 

addition, a 5-bit register enables 32 tuning points for a switched capacitor array, 

which ensures accurate PLL frequency locking between 5.7 and 6 GHz. We have 

implemented and fabricated the proposed PLL design in a standard 0.13µm CMOS 

technology. Measurement results show that the reference spur is -68dBc, and the 

phase noise levels are -109dBc/Hz and -135dBc/Hz at 1MHz and 10MHz offset 

respectively for 5.835 GHz. Compared with existing designs in the literature, the 

measured reference spur is improved by at least 17%, and our PLL achieves the 

lowest phase noise.   

The rest of this paper is organized as follows. Section II introduces the proposed 

PLL architecture. Section III analyzes potential factors that determine reference spur, 

and describes the design details of CP, PFD, and VCO blocks. Chip measurement 

results are discussed and compared with the state-of-the-art designs in the literature in 

Section IV. Finally, Section V concludes this paper.  

II. Proposed PLL Architecture 

Fig. 1 depicts the architecture of our proposed PLL, which mainly includes a phase 

frequency detector (PFD), a charge pump (CP), a low-pass filter (LPF), a voltage 

controlled oscillator (VCO), a frequency divider (DIV), and an auto frequency 

calibration (AFC) circuit. The PLL output is given to receiver (RX) and transmitter 

(TX) in an RF communication system. In order to cover the frequency range of 5.7 ~ 

6.0 GHz, a switched capacitor module is implemented to adjust the capacitance value 

in the VCO. A 5-bit register SW<4:0> enables 32 coarse points for tuning PLL 



frequency. The AFC circuit consists of a calibration module (CAL) and a preset 

voltage module (PVM). The CAL determines the appropriate value for register 

SW<4:0>, while the PVM provides a preset DC voltage (VPRE) as the initial VCO 

control voltage.  

 

Fig. 1. Proposed PLL architecture and building blocks  

III. PLL Circuit Design and Implementation 

A.  Reference spur analysis 

First, let us analyze the underlying factors that deteriorate the reference-spur. Fig. 

2(a) shows schematic of a charge pump, where the charge and pump tube source-drain 

voltages oppositely change when VCTR varies. As a result, Icharge and Ipump show a 

significant mismatch when VCTR is away from VDD/2, as plotted in Fig. 2. Two 

currents match each other at 910µA when VCTR is equal to VDD/2. The current 

mismatch is more severe when VCTR moves away from this matching point. As 

illustrated in Fig. 2(b), current mismatch can be mitigated but not completely 

eliminated when using long-channel transistors (dashed lines). 
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Fig. 2. Simulated CP output currents against its control voltage (VCTR) 

 
Fig. 3. PLL locking behaviors without and with current mismatch in CP 

Fig. 3 show PLL locking behaviors for matched or mismatched CP currents. In 

order to eliminate dead zone, the PFD output has a common turn-on time (TON) for UP 

and DW. In Fig. 3(a) current match prevents a phase error after locking PLLs, while 

in Fig. 3(b) an additional phase error is produced when Ipump is greater than Icharge. 

According to [8], this additional phase error |φS| and average current in CP are 

modeled as 
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|𝜑𝑆| = 2𝜋 ×
𝑇𝑂𝑁

𝑇𝑅𝐸𝐹
×

𝐼𝑀𝐼𝑆

𝐼𝐶𝑃
  (1) 

𝐼𝐶𝑃 =
𝐼𝑐ℎ𝑎𝑟𝑔𝑒+𝐼𝑝𝑢𝑚𝑝

2
  (2) 

Here IMIS, ICP, TREF, and TON are the mismatch current in CP, the average current in 

CP, the reference clock cycle, and the common effective time in a PFD, respectively. 

Then, based on [8], FBW is used to approximate the PLL loop bandwidth in the 

equation (3). Here R, KVCO, and N represent the resistance of 1-order loop filter, the 

gain of VCO, and the division ratio of a divider, respectively. Finally, the power of 

PLL reference spur is expressed as equation (4). 

𝐹𝐵𝑊 ≈
𝐼𝐶𝑃×𝑅×𝐾𝑉𝐶𝑂

2𝜋×𝑁
  (3) 

𝑃𝑆𝑃𝑈𝑅 ≈ 20 log (
𝐼𝐶𝑃×𝑅×|𝜑𝑆|×𝐾𝑉𝐶𝑂

2𝜋×𝐹𝑅𝐸𝐹
) ≈ 20 log (𝑅 × 𝐾𝑉𝐶𝑂 × 𝑇𝑂𝑁 × 𝐼𝑀𝐼𝑆) (4) 

Observing the equations (3) and (4), we find that in order to diminish PSPUR and 

maintain a desired loop bandwidth FBW, a good choice is to use a smaller KVCO and a 

higher ICP. Meanwhile, smaller IMIS and TON are utilized to effectively suppress PSPUR. 

This is the design methodology of our proposed PLL.  

B. TON controllable PFD for improving reference spur 

Due to the limited setup time, a typical PFD circuit cannot turn on charge pump 

switches instantly when FREF and FDIV are very close. As shown in Fig. 4, a 

controllable delay module enables a proper pulse in zero phase error to eliminate the 

risk of dead zone. The delay module extends the reset signal of D flip-flops to achieve 

common effective time (TON) of UP and DN. Yet, due to the current mismatch and 

excessive power dissipation in CP, delay time should be properly controlled. 

Assuming a given current mismatch in CP, the equation (1) indicates that an increase 

of TON leads to a larger phase error. The design uses D<1:0> to make minor changes 

to the TON and we can choose the best setting after the test. The simulation results of 

TON values are listed in Table I. 

 

Fig. 4. Proposed PFD circuit with a controllable delay 
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TABLE I. Simulation results of TON value with respect to different D<1:0> 

D<1:0> 00 01 10 11 

TON (ns) 0.67 1.09 1.39 1.82 

C. Low current mismatch charge pump 

 

Fig. 5. Proposed CP circuit with an amplifier to improve current mismatch 

The CP circuit in Fig. 5 adopts an amplifier to resolve mismatch issue. When VCTR 

is equal to VF, the bias voltages and each node of two branches are exactly the same. 

Negative feedback effect forces VF always close to VCTR. For example, if VCTR is 

larger than VF, VO, I1 and I3 will decrease to force VF to increase until VF = VCTR.  

 

Fig. 6. Simulation results of current mismatch in the proposed CP 
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Regarding CP design requirements, both mismatch current and overall current 

variation need to be small [7, 9-10]. The current mismatch ratio is calculated by the 

equation (5). Assuming IMAX (or IMIN) is the maximum (or minimum) current in CP 

with respect to the maximum (or minimum) VCO control voltage VCTR, equation (6) 

defines the current variation ratio in CP. When VCTR varies from 0.2V to 1.2V, the 

current mismatch ratio (IMIS/ICP) is less than 0.5%, and the current variation ratio (IX) 

is 11%. In order to ensure proper loop gain and bandwidth, VCTR is chosen in the range 

of 0.4~1.1V in this design. As a result, according to the results in Fig. 6 and the 

equations (5)-(6), the current mismatch ratio is less than 0.1% and IX is less than 5%.  

𝐼𝑀𝐼𝑆

𝐼𝐶𝑃
= 2 ×

|𝐼𝑐ℎ𝑎𝑟𝑔𝑒−𝐼𝑝𝑢𝑚𝑝|

𝐼𝑐ℎ𝑎𝑟𝑔𝑒+𝐼𝑝𝑢𝑚𝑝
  (5) 

𝐼𝑋 = 2 ×
𝐼𝑀𝐴𝑋−𝐼𝑀𝐼𝑁

𝐼𝑀𝐴𝑋+𝐼𝑀𝐼𝑁
    (6) 

D. A wide tuning range VCO with low KVCO 

Since a larger VCO gain (KVCO) deteriorates its phase noise, it makes sense to 

choose a smaller KVCO for low phase noise. Fig. 7 shows the proposed LC-VCO 

circuit, where an on-chip inductor (L = 1.2nH) is used to build a resonant circuit. A 

switched capacitor array tunes the oscillation frequency. This capacitor array consists 

of a variety of switched capacitor units, and a 5-bit digital signal SW<4:0> controls 

on/off states in all capacitor units.  

 

Fig. 7. A LC-VCO circuit with a digital controlled capacitor array 

The total capacitance of the resonant circuit is expressed as 
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𝑖=0 {𝑆𝑊〈𝑖〉 × 𝐶𝑀𝐼𝑁 + 𝑆𝑊𝑁〈𝑖〉 × 𝐶𝑀𝐴𝑋}  (7) 
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Here CVAR, CMIN, and CMAX represent the voltage control capacitor value, the digital 

controlled capacitor values when a switch is on and off, respectively. The capacitor 

switches in Fig. 7 are turned on when SW<i> = 1 and SWN<i> = 0. Equation (8) 

models how the minimum and maximum VCO frequencies (FMIN and FMAX) vary with 

the total capacitance.  

{
𝐹𝑀𝐼𝑁 =

1

2×𝜋×√𝐿×𝐶𝑇𝑂𝑇𝐴𝐿,𝑀𝐴𝑋

𝐹𝑀𝐴𝑋 =
1

2×𝜋×√𝐿×𝐶𝑇𝑂𝑇𝐴𝐿,𝑀𝐼𝑁

  (8) 

Due to process, voltage and temperature (PVT) variations, the capacitance range 

needs to be wider to compensate the impact of PVT variations. In this design, 32 

resonant points are sufficient to cover the entire frequency range (5.7~6.0 GHz). 

Therefore, the frequency interval between two adjacent points is about 10MHz. when 

VCTR is between 0.4V and 1.1V, KVCO is expected to be at least 15MHz/V. In order to 

ensure a low reference spur and continuous VCO frequency range, KVCO was designed 

as 30MHz/V and 45MHz/V for SW<4:0> = 00000 and 11111, respectively. 

E. Automatic frequency calibration (AFC) 

 

Fig. 8. PLL’s aim frequency (FAIM) versus the VCO control voltage (VCTR) 

As illustrated in Fig. 8, due to the use of smaller KVCO, adjacent VCO tuning points 

are very close. For a targeted frequency (FAIM), a PLL has four possible locking 

points, which correspond to four switch capacitors and four VCTR values. V1 or V4 is 

not a good choice to minimize current mismatch in CP. In this design, an AFC is used 

to determine the proper operating point in a PLL with a wide frequency range [11-14]. 

Frequency locking may be random without a specific AFC algorithm, especially when 

adjacent tuning points are very close. 

Fig. 9 shows a PVM circuit, which provides a voltage (VPRE) to VCO in an AFC 

process. When AFC begins, the PVM is firstly enabled. Hence, VCTR is initially set as 

VPRE, which is usually the middle voltage of whole VCTR range. Later, when the charge 

pump is activated, the PVM will be disabled for low power purpose. The AFC process 

described in Fig. 10 is responsible for finding appropriate tuning parameter SW<4:0> 

and VCO control voltage VCTR.  
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Fig. 9. The structure of PVM circuit and its connection to VCO 

 

Fig. 10. Proposed flow chart of AFC algorithm 

An AFC process starts after the signal (CAL_EN) is asserted and the division ratio 

is given. The main function in step 1 is initialization, where the CAL circuit has not 

enabled the PFD and CP. The PVM circuit forces VCTR to VDD/2 and the SW<4:0> is 

set as 10000. Step 2 is the essential algorithm for calibration, which takes 7 cycles. In 

the first 4 cycles, a relatively accurate SW<4:0> is obtained through successive 

approximation. Then, in the next 3 cycles, the best configuration of switched 

capacitor units is determined. In step 3, the CAL circuit enables PFD and CP blocks. 

The PVM circuit is disabled. The obtained SW<4:0> will not change.  
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IV. Measurement Results and Discussion 

Our PLL chip was fabricated with a standard 130nm CMOS technology, and was 

encapsulated in a QFN package. This package was mounted on a custom PCB for 

chip test. The measurement environment and the die micrograph are shown in Fig. 11. 

The total die area of this synthesizer is 0.56mm2. Phase noise and reference spur were 

captured using an E4407B spectrum analyzer. Chip measurement results show that 

under a 1.5V supply voltage, the power dissipation with an output buffer of the PLL is 

12mW.   

This PLL is a part of a wireless transceiver chip. In order to better utilize chip area, 

there is no dedicated pad in the layout to enable direct measurement of PLL output. 

Instead, in this work, the PLL was configured to be directly connected to the 

transmitter. Then, without signal modulation, we measured the output of power 

amplifier (PA) using a spectrum analyzer. The existence of a PA in the signal path 

may slightly deteriorate the noise floor, but its contribution to phase noise is 

negligible. The phase noise of a PLL depends on loop bandwidth and noise of each 

circuit component. Since the delay time of PFD does not affect loop bandwidth nor 

contribute noise, during phase noise measurement, the delay time of PFD (i.e., TON) 

was configured to be minimum. Fig. 12(a) plots the measured phase noise of our PLL 

system when an amplifier in CP. The phase noise is -65dBc/Hz at 10 KHz offset, 

-71dBc/Hz at 100 KHz offset, -109dBc/Hz at 1 MHz offset, and -135dBc/Hz at 10 

MHz offset for 5.835 GHz output. Later, when this amplifier in CP was broken using 

Focused Ion Beam technology, the measured phase noise was shown in Fig. 12(b), 

where the phase noise is -66dBc/Hz at 10 KHz offset, -73dBc/Hz at 100 KHz offset, 

-108dBc/Hz at 1 MHz offset, and -133dBc/Hz at 10 MHz offset for 5.835 GHz output. 

Comparing Fig. 12(a) and (b), we can see that the mismatch current in CP is not very 

sensitive to phase noise. 

 Reference spur was measured and studied. When the delay time of PFD (i.e., TON) 

was set to its minimum value (i.e., 0.67ns), the measured reference spur is -68dBc as 

shown in Fig. 13(a). When the delay time of PFD (i.e., TON) was reconfigured to its 

max value (i.e., 1.82ns), according to the equation (4), reference spur is supposed to 

increase. This prediction was validated in the captured waveform of Fig. 13(b), where 

the measured reference spur is -64dBc. Next, the amplifier node VO in the proposed 

charge pump was broken using focused ion beam technology. Consequently, the 

negative feedback loop was disconnected, and severe current mismatch occurred in 

the test chip. The captured output spectrum of this synthesizer in Fig. 13(c) shows that 

the reference spur is -50dBc, which is 14~19dB higher than our prior measurements. 

The above measurements successfully validate our proposed design methodology that 

a larger delay time of PFD and a less current mismatch lead to a reduction of 

reference spur.      

Fig. 14 plots the measured VCO tuning range with a 5-bit control register 

SW<4:0>, which corresponds to 32 coarse tuning curves. If SW<4:0> was set to 

00000, the measured VCO gain (KVCO) was about 30MHz/V. If SW<4:0> was set to 



11111, the measured VCO gain (KVCO) was about 45MHz/V. The minimum frequency 

spacing between two adjacent curves is 11MHz. When the voltage lock range is 

within 0.4~1.1V, the covered frequency range is 5.7~6 GHz.  

 

Fig. 11. Measurement environment and die microphotograph. 



 

(a) 

 

(b) 

Fig. 12. (a) Measured PLL phase noise at 5.835 GHz with an amplifier in CP, (b) 

measured PLL phase noise at 5.835 GHz without an amplifier, where Focused Ion 

Beam (FIB) was used to break the amplifier in CP  
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(b) 

-68dBc when TON is min  

-64dBc when TON is max 



 

(c) 

Fig. 13. (a) Measured output spectrum of the synthesizer with an amplifier in CP and 

TON is minimum, (b) measured output spectrum of the synthesizer with an amplifier in 

CP and TON is maximum, and (c) measured output spectrum of the synthesizer without 

an amplifier, where Focused Ion Beam (FIB) was used to break the amplifier in CP  

 

Fig. 14. Measured VCO tuning range with a 5-bit control register 

-50dBc 



Table II summarizes the measured performance results of this proposed PLL and 

compares with existing PLL designs [9, 15-22] in the literature. The fabrication 

technology, supply voltage, frequency range, power consumption, chip area, phase 

noise, and reference spur are listed in Table II. Regarding the phase noise, our 

proposed design achieves the lowest phase noise. Meanwhile, the reference spur (i.e., 

-68dBc) is at least 17% lower than these state-of-the-art designs in [9, 15-20]. In 

addition, our proposed design has advantages in chip area and phase noise over the 

design [21], while the reference spur is very close to each other. In contrast with [22], 

the measurement results of phase noise are very close. Yet, our proposed design 

outperforms in power consumption, chip area, and reference spur. 

TABLE II. Summary of comparison with other state-of-the-art PLL designs

Reference [9] [15] [16] [17] [18] [19] [20] [21] [22] 
This 

work 

Fabrication 

Technology 

0.13µm 

CMOS 

0.18µm 

CMOS 

0.18µm 

CMOS 

65nm 

CMOS 

0.18µm 

CMOS 

0.13µm 

CMOS 

0.18µm 

CMOS 

65nm 

CMOS 

65nm 

CMOS 

0.13µm 

CMOS 

Supply  

Voltage (V) 
1.3 N/A 1.8 N/A 0.6 0.5/0.8 1.8 0.5 0.85 1.5 

Frequency  

Range 

(GHz) 

2.4 5.4~5.56 5.7~6.0 5.8 2.4~2.64 8.8~9.2 
5.15~5.

35 
5.95 1.152 5.7~6.0 

Power 

Consumptio

n (mW) 

10.7 9.23 36 11 14.4 12 18 0.69 19.8 12 

PLL Chip 

Area (mm2) 
0.31 0.399 N/A 0.133 1.68 1.21 1.045 0.74 0.6 0.56 

Phase Noise 

@1MHz 

(dBc/Hz) 

-96 -85 N/A -110 -104 -104.5 -104 -98 -109.8 -109 

Phase Noise 

@10MHz 

(dBc/Hz) 

N/A -117 N/A -122 -130 N/A N/A -129 -134.8 -135 

Reference 

Spur (dBc) 
-31.5 -51 N/A -45 -39.8 -58 -40 -71 >-57 -68 

 

V. CONCLUSION 

This paper presents a PLL for a low phase noise and reference spur. Reference spur 

is suppressed through reducing the current mismatch in charge pump, introducing a 

delay time controllable PFD, and adopting a low gain VCO. The PLL frequency is 

5.7~6.0 GHz. The measured power consumption is 12mW, the reference spur is 



-68dBc, and the phase noise is -109dBc/Hz and -135dBc/Hz at 1MHz and 10MHz 

offset respectively for 5.835 GHz output. In addition, a 5-bit register enables 32 

tuning points for a switched capacitor array, which ensures accurate PLL frequency 

locking. Compared with existing designs in the literature, the measured reference spur 

is improved by at least 17%, and the PLL achieves the lowest phase noise.  
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