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Abstract

This paper introduces a new five-dimensional localization method for an untethered meso-scale 

magnetic robot, which is manipulated by a computer-controlled electromagnetic system. The 

developed magnetic localization setup is a two-dimensional array of mono-axial Hall-effect 

sensors, which measure the perpendicular magnetic fields at their given positions. We introduce 

two steps for localizing a magnetic robot more accurately. First, the dipole modeled magnetic field 

of the electromagnet is subtracted from the measured data in order to determine the robot’s 

magnetic field. Secondly, the subtracted magnetic field is twice differentiated in the perpendicular 

direction of the array, so that the effect of the electromagnetic field in the localization process is 

minimized. Five variables regarding the position and orientation of the robot are determined by 

minimizing the error between the measured magnetic field and the modeled magnetic field in an 

optimization method. The resulting position error is 2.1±0.8 mm and angular error is 6.7±4.3° 

within the applicable range (5 cm) of magnetic field sensors at 200 Hz. The proposed localization 

method would be used for the position feedback control of untethered magnetic devices or robots 

for medical applications in the future.
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 I. Introduction

Magnetically actuated capsule endoscopes (MACEs) provide a promising medical 

technology for minimally invasive diagnosis on gastrointestinal organs [1]–[7]. Hong et al. 

showed the feasibility of a MACE in a pig’s esophagus, stomach and large intestine using a 

multi degrees of freedom (DOF) robotic manipulator [8]. Recently, Carpi et al. conducted 

animal experiments using a commercial permanent magnet-based actuation system (Niobe, 

Stereotaxis, Inc, USA), which is mainly used for the magnetic navigation of cardiovascular 

active catheters [9]. In our previous study, we proposed a new multi-functional endoscopic 

capsule robot and an original magnetic manipulation method [10]–[13]. Recently, Petrusuka 

et al. introduced an electromagnet system constructed for a MACE with direct and rapid 

magnetic field control without moving any parts of the setup [14].

Magnetic manipulation of MACEs assumes that their positions and orientations are well-

estimated in real-time. If magnetic interactions such as magnetic force and torque are not 

estimated accurately, the motion of the MACE is not controlled as desired. Poor motion 

control of the MACE results in an imperfect stomach diagnosis.

One general localization method for magnetic capsules is to detect the magnetic field from a 

small permanent magnet inside the capsule using an external magnetic sensor array [15]–

[18]. However, these methods are not applicable to MACEs because the strong magnetic 

field from the magnetic actuation system interferes with sensor array(s), which results in 

decreased accuracy or failure. Recently, Hashi et al. proposed the idea of superimposing 

high frequency alternating magnetic field on a low frequency manipulating magnetic field. 

This magnetic localization method is compatible with the external magnetic field, and shows 

sub-millimeter position accuracy. However, it is limited to three-dimensional (3-D) 

localization, and cannot determine the capsule’s orientation [19]–[21].

A different strategy for localization is to use the onboard magnetic sensor(s) to calculate 

relative position and orientation to the external magnetic field source. By using onboard 

sensors, the magnetic field from the MACE’s magnet is considered as a DC offset, which 

can be easily calibrated. Kim et al. proposed a localization method utilizing a rotating 

external magnetic field with onboard magnetic sensors, which gave 15 mm position error 

and 15° orientation error [22]. Similarly, Popek et al. utilized a rotating magnetic field with 

11 mm position error and 11° orientation error by using onboard magnetic sensors [23]. 

However, these methods are only applicable for a rotating external magnetic field that limits 

locomotion of the MACE to only rotation. Natali et al. introduced a localization method that 

compares the measured sensory data with pre-calculated data of the external magnetic field. 

The method requires multiple magnetic sensors and an inertial sensor inside the system. 

Their method gave 3.4 ± 3.2 mm position error and 19 ± 50° angular error within a 15 cm 

radius workspace [24]. However, the angular accuracy is not sufficient for a disease 

diagnosis.

Previously, we proposed a 3-D localization method using an internal magnetic sensor [25], 

which consists of three steps: the coaxial alignment stage between the MACE and the 

external magnet, the MACE deformation stage, and the MACE shape recovery stage. The 
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proposed method showed 2.1 mm resulting position error in the experiment. However, the 

coaxial alignment stage required careful adjusting of the external magnet. Even a small 

direction error could cause a large localization error as the MACE moves farther from the 

external magnet. Furthermore, this method required specific motions of the external magnet, 

which could not enable continuous real-time MACE localization. For a continuous real-time 

localization, a different working principle is required.

Even though most of the methods utilize the on-board magnetic sensor system, employing 

an external sensor system has considerable benefits. If an external sensor system is used, the 

number of electrical components inside the MACE is reduced. Thus, its volume and energy 

consumption is minimized. Furthermore, the external sensor system allows us to utilize the 

abundant amount of sensors without much spatial and energy restriction, which leads to 

better accuracy with the increased number of the sensors than the onboard sensory system.

This paper introduces a new real-time 5-D localization method for a MACE using an 

external Hall-effect sensor array and an external omnidirectional electromagnet [14]. The 

key point of the developed 5-D localization method is to separate the MACE’s magnetic 

field from the actuator’s magnetic field. By subtracting the electromagnet’s field from the 

measured data, we can obtain the pure magnetic field of the MACE within the coupled 

magnetic fields. Additionally, the error is reduced with the second order directional 

differentiation by taking the advantage of the Laplacian of the magnetic field. Note that a 

low pass filter was applied to the magnetic field before the differentiation to prevent a 

significant noise increase. The proposed method is compatible with any magnetic capsule 

robots or magnetic microrobots, which are actuated by an external magnetic field.

This paper is organized as follows. Section II introduces the localization setup, the working 

principle, and the algorithms. In Section III, the proposed method is verified in experiments. 

Section IV discusses the effect of the inherent sensor noise on the accuracy of the method.

 II. 5-D Localization Method

 A. Setup

Figure 1(a) shows the experimental setup that consists of four main parts. The first part is the 

2-D Hall-effect sensor array board. Sixty-four Hall-effect sensors on the board measure the 

magnetic field in the direction perpendicular to the array (z-direction in Fig. 1(b)) at their 

positions. Increasing the number of sensors improves the accuracy of the localization results. 

In our setup, however, the number of analog input channels (8) of the data-acquisition 

(DAQ) board and the multiplexers (3 bit) limited the number of sensors that could be used. 

The second part is the omnidirectional electromagnet made of three box-shaped orthogonal 

coils and a soft iron core [14]. The third part is the multiplexer board connecting the Hall-

effect sensor outputs with the computer. Eight multiplexers on the board distribute the sensor 

signals to the DAQ board. The last part is the desktop computer with the DAQ board. The 

main algorithm and graphical user interface are implemented in Labview (National 

Instruments co.) with an operation frequency of 200 Hz; the sampling rates of the data 

acquisition loop and the optimization algorithm loop are 1 kHz and 200 Hz, respectively. 

The specifications of the localization setup are presented in Table I.
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 B. Working Principle

Figure 2 shows the application scenario of the developed 5-D localization method. Each 

dimension can be localized except the rotation axis of a magnetic moment of the robot. The 

goal is to estimate the position and orientation of the MACE while it is manipulated by the 

external magnet. We propose following two steps to decouple the effect of the external 

magnet at a point of interest (sensor position): 1) subtraction of a modeled magnetic field of 

the external magnet from measured data, and 2) second order directional differentiation to 

reduce the B-field error.

The magnetic sensors experience magnetic fields both from the MACE and the external 

magnet. Those magnetic fields are expressed as B-fields in (1):

(1)

where Bs is the measured B-field at a sensor, Bc is the B-field of the MACE, and Be is the B-

field of the external magnet. A simple way to estimate a pure Bc is to subtract Be from Bs. 

To subtract, we should model Be, and the general way to model a magnetic field is to use the 

magnetic dipole equation in a coordinate-free form,

(2)

where μ0 is the permeability of free space, r is the position vector (with associated unit 

vector r ̂) from the magnetic source to the point of interest, m is the magnetic moment vector 

of the magnetic source, and I is a 3×3 identity matrix. Thus, Be can be expressed using (2) 

as

(3)

where re is the position vector from the external magnet to the sensor position and me is the 

magnetic moment vector of the external magnet. However, in actuality, we cannot measure 

the exact re and me, which results in the B-field error. Also the real magnetic field includes 

multi-pole magnetic fields, which are not modeled in (2). Thus, (1) can be rewritten as

(4)

Here the B-field error, Berr, is specified as
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(5)

where rerr and merr are a positioning error and a magnetic moment measurement error of the 

external magnet, respectively. In (5), those two dipole terms scale with ||re||
−3 as described in 

(2), and the quadrupole and hexapole terms scale with ||re||
−5 and||re||

−7, respectively [26].

Because the error terms in (5) are inversely proportional to the distance, they reduce as the 

external magnet moves farther from the sensor array. Conversely, the B-field from the 

MACE increases as the MACE gets closer to the sensor array. To express this relationship, 

we define a new parameter, Signal Quality Ratio (SQR) in B-field, as

(6)

where rc is a position vector from the sensor array to the MACE and Ns is a noise level of 

the sensor. The magnetic field error due to multi-pole terms in (5) is negligible as they are 

much smaller than the dipole term in (6). Note that, assuming that Ns is negligible, SQRB is 

inversely proportional to the third order of the distance.

The directional differentiation of the analytical model (2) results in

(7)

The SQR in the second order differentiated B-field is expressed as

(8)

Assuming that Ns is negligible, SQRL is inversely proportional to the fifth order of the 

distance ratio. Because the ||re|| is larger than ||rc||, SQRL is always higher than SQRB. The 

more the B-field is differentiated, the better SQR is achieved because of the scaling law. 

However, the number of the differentiation is limited by the number of the sensor elements, 

and the noise is magnified by the differentiation. In this paper, the second order 

differentiation was sufficient for the given number of the sensors and the noise level of the 

sensors.
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Another advantage of using the second order directional differentiation is that we can 

calculate the vertical directional differentiation using a lateral 2-D array of mono-axial Hall-

effect sensors. Equation (9) is always valid at all positions based on Maxwell’s equations in 

the absence of current or a changing electric field,

(9)

Equation (9) shows that the second order derivative in the z-direction equals a negative sum 

of those in the x- and y-directions. Though Hall-effect sensors in the XY-plane measure the 

magnetic fields in the z-direction, the second order derivative in the z-direction can be 

calculated without using multiple layers in the z-direction based on the above property. 

Here, we define the second order z-directional derivative K as

(10)

where Bz is a z-directional component of B. In the two-dimensional sensor array, K is 

calculated by using the magnetic field of the neighboring sensors. Using the five-point 

stencil finite difference method, K at the sensor node (i, j), or Ki,j, is expressed as

(11)

where Bi,j is the z-directional component of the B-field measured by the sensor at the node 

(i, j), and h is the nodal distance between neighboring sensors.

We conducted experiments to compare SQRL with SQRB in order to verify the analysis 

performed in (6) and (8). Because our setup measures only the z-directional components of 

the B-field, we defined two new terms, SQRz,B and SQRz,L as (12) and (13).

(12)

where n is the number of sensors,  is the z-directional magnetic field from the 

MACE, and  is the z-directional magnetic field from the electromagnet; each is 

measured by the sensor at node (i, j) in the absence of the other’s magnetic field. 

 is the z-directional magnetic field of the electromagnet assuming the dipole 

model.
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(13)

where  and  are the second derivatives of the z-directional magnetic 

fields from the MACE and the external magnet, respectively. Both of these are calculated 

using (11).  is the second derivative of the z-directional magnetic field of the 

external magnet assuming the dipole model, which is calculated using (7).

Although SQRz represents only the z-directional components of SQR, the comparison of 

SQRz,L and SQRz,B indirectly represents the effect of the scaling law in (6) and (8) on the 

signal quality. In the experiments, we set mc to (0, 0, 0.45) A·m2 and me to (0, 0, 30.0) 

A·m2, and both SQRz,B and SQRz,L are measured for 10 seconds, then averaged.

Figure 3 shows that SQRL is higher than SQRB where the distance ratio (||re||/||rc||) is larger 

than 1. This means that SQRL becomes a clearer standard than SQRB does. Especially, as rc 

becomes smaller and re becomes larger, SQRL increases exponentially, whereas SQRB stays 

in low level. These experimental results show that the proposed method gives better signal 

information than the B-field subtraction method.

 C. Algorithm

The developed algorithm finds the optimal rc and mc by minimizing a cost function using 

the Levenberg-Marquardt Algorithm (LMA). LMA is a trust region based optimization 

method that uses the steepest descent method for global convergence and Newton’s method 

(quadratic method) for local convergence in a way that gives smooth transition between 

them [27]. This optimization solver is known as the efficient and effective solution for a 

magnetic marker localization problem [28]. The cost function is defined as

(14)

where Ki,j is the second z-directional derivative of the B-field based on the measured data at 

the sensor node number (i, j) and  is the MACE’s modeled second z-

directional derivative of the B-field at the sensor node number (i, j).  and  are 

computed by using the following analytical equation, which is derived from (2),

(15)

where mz is the z-directional component of m and rz is the z-directional component of r.
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Fig. 4 shows a flow chart of the developed algorithm, and describes how each term of the 

cost function is calculated. The goal of the algorithm is to estimate the optimal rc and mc 

minimizing the cost function, (14). First, the measured magnetic field (Bi,j) is transformed to 

the second derivative (Ki,j) by using (11). Second, the electromagnet’s input current (Ie) 

gives the estimate of its magnetic moment (me). Using the calculated re, me, and (15), we 

can obtain the second derivative of the electromagnet’s B-field ( ). The key of 

the cost function is the last term ( ). The optimal rc and mc of the previous 

iteration become the initial conditions for the current rc and mc. The terms are calculated by 

(15), and iteratively updated by the optimization. The new optimal rc and mc that minimize 

the cost function become the current position and orientation of the capsule.

 III. Experiments

We conducted experiments to evaluate the accuracy and reliability of the developed 

localization methods. Since water and biological tissue do not affect the low frequency 

magnetic field, our simple and magnetically transparent experimental setup is applicable to 

the magnetic capsule endoscopy. As a single magnet works as a magnetic source for both 

actuation and localization in the proposed method, The MACE was represented by a box 

shaped (6.4×6.4×12.8 mm3) NeFeB magnet with 0.45 A·m2 magnetic moment. The work 

space for the MACE was given as 70(w)×70(d)×50(h) mm3 below the sensor array. A plane 

with a slope was used for the working surface in the experiment (Fig. 5(b)). The external 

magnet, which was positioned 20 cm below the array, generated a 2.5 mT rotating magnetic 

field at the center of the MACE for climbing rolling locomotion. While it is rolling from the 

initial position, (20, −20, −35) mm, to the final position, (−18, 18, −20) mm, the proposed 

method ran in real-time at 200 Hz (limited by LMA loop speed) to track the position and 

orientation of the MACE. The B-field subtraction method ran in parallel with the proposed 

method for comparison. For the ground truth position and orientation, two video cameras 

recorded the MACE with visual markers (Fig. 5(a)). 5-D visual reference data was extracted 

using an image processing software [29].

A total of 10 experiments were conducted, and each experiment took approximately 6 

seconds for the MACE to traverse the surface. Each trial had the same initial condition and 

planned trajectory. All the manipulation and localization were done autonomously by the 

pre-programmed codes in LabView (National Instruments co.). Distance errors were 

measured by Euclidean distance and angular errors were measured by orientation vector 

difference using visual reference data.

Table II shows the summarized experimental results. Overall, the proposed method is more 

accurate than the B-field subtraction method. Its total average errors were 2.1±0.8 mm 

(distance) and 6.7±4.3° (angular), respectively, while the errors of the B-field subtraction 

method were 2.6±1.3 mm and 8.3±6.5°, respectively. The fact that its maximum errors (4.7 

mm and 30°) were much smaller than the others (10.5 mm and 50.3°) means that the 

proposed method is more stable. Figure 6(a)–(c) show the worst case error of the 

experimental trials. The proposed method more closely and more stably tracked the ground 
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truth position than the B-field subtraction method did (see the abruptly increasing position 

errors near the initial position in Fig. 6(a)).

Error reduction by the differentiation explains the improved accuracy. In the B-field 

subtraction method, the position and orientation of the MACE fluctuate because of the 

rotating external magnetic field. This error is due to the magnetic field error in the analytical 

magnetic model in (5). This factor is still non-negligible and results in poor accuracy. 

However, by taking the proposed second order differentiation, those fluctuations are 

significantly reduced as shown in the plot. This method improves z-directional localization 

accuracy significantly, although it does not impact the x- and y-position accuracy (Fig. 6(b)) 

as it is applied in z-direction.

The distance ratio, ||re||/||rc||, is critial to localization accuracy. Although our nonlinear 

optimization method does not show an explicit relationship between SQR values and 

localization error, Fig. 6(c) shows that larger distance ratios correspond to smaller 

localization errors, and that the second derivative method yields smaller errors. These results 

are consistent with the theoretical analysis in (6) and (8).

 IV. Discussion

The developed real-time localization method gives accurate estimations of the position and 

orientation of a magnetically manipulated robot. This method does not require internal 

sensors, and allows to remain the mechanical and electrical configuration of the robot 

simple, which is useful for an untethered magnetic robot for medical applications where 

optical tracking is not possible. Table III shows the detailed comparison with other magnetic 

localization methods. Even though the effective distances in the experiments are different, 

the proposed localization method shows the smallest position error and the fastest speed for 

controlling a capsule robot in real-time compared to the other magnetic localization 

methods.

However, the proposed localization method would have a limited clinical application 

because of the short effective distance (< 50 mm). Beyond 50 mm, SQR values drop below 5 

dB (see Fig. 3) even with the second derivative method. This means the noise and error 

terms occupy more than 36% of the whole measured signal. With such poor signal 

conditioning, the nonlinear optimization algorithm tends to either diverge or give 

unreasonable estimations.

The effective distance can be increased by using lower noise Hall-effect sensors and a bigger 

magnet. In the experiments, we used a small magnet (6.4×6.4×12.8=524.3 mm3, NdFeB, 

0.45 A · m2), but doubling the volume of a cylindrical shape, (ϕ11×11=1,045 mm3, NdFeB, 

0.90 A·m2), would still be within the limits for a swallowable capsule endoscope 

(diameter<12 mm, length<30 mm). We simulated the effective distance as a function of the 

inherent sensor noise. We assumed that 20 dB is the minimum SQR level for quality 

localization (same as 10% error) to determine the effective distance, Seff. In the simulation, 

the original equations, including noise terms from (6) and (8), were used. Figure 7 shows the 

relationship between the inherent sensor noise and Seff. Both the B-field subtraction method 
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and the proposed method have increased effective distances as the inherent sensor noise 

decreases. While the B-field subtraction method saturates at 13 cm, the second derivative 

method shows a maximum of 23 cm effective distance without saturation using currently 

existing sensors (e.g., MMC3316xMT, MESMIC co, RMS noise: 0.2 μT). Additionally, an 

extremely low inherent noise sensor, such as 0.02 μT RMS noise level sensors, would give 

nearly 30 cm of Seff, which satisfies the effective range guideline of magnetic capsule 

endoscopy.

 V. Conclusion

In this paper, we introduced a new real-time 5-D localization method for an untethered 

meso-scale magnetic robot, which is manipulated by a computer-controlled external 

electromagnetic system. The developed magnetic localization setup is a 2-D array of mono-

axial Hall-effect sensors, which measure the perpendicular magnetic fields at their positions. 

We propose two steps for localizing the magnetic robot more accurately. First, the dipole 

modeled magnetic field of the electromagnet is subtracted from the measured data in order 

to determine the pure magnetic field from the magnetic robot. Next, the subtracted magnetic 

field is twice differentiated in the perpendicular direction of the array, so that the effect of 

the electromagnetic field in the localization process is minimized. Five variables regarding 

the position and orientation of the magnetic robot are determined by minimizing the error 

between the measured magnetic field and the modeled magnetic field in an optimization 

method. The resulting position error is 2.1±0.8 mm and angular error is 6.7±4.3° within the 

applicable range (5 cm) of magnetic field sensors at 200 Hz. The proposed localization 

method would be used for the position feedback control of untethered magnetic devices or 

robots for medical applications in the future.
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Fig. 1. 

Photographs of the five-dimensional magnetic localization setup. (a) Overview; A: 

Omnidirectional electromagnet; B: Arena of the MACE; C: Two-dimensional mono-axial 

Hall-effect sensor array; D: Multiplexer board; E: Current sensors and current amplifier; F: 

Data-acquisition (DAQ) board; G: Desktop computer, its monitor and Labview-based 

graphical user interface. (b) Close-up view of the Hall-effect sensor array. The z-directional 

Hall-effect sensors are located in the two-dimensional array with a nodal distance of 10 mm. 

H: MACE with visual markers on its surface. The size of the MACE is 6.4×6.4×12.8 mm3, 

its material is NdFeB, and its magnetic moment is 0.45 A·m2. (c) Overall signal flow of the 

system. Measured sensory data from Hall-effect sensor array and current sensors are fed to 

the computer through the DAQ board. The omnidirectional electromagnet is driven by 

current drivers. The multiplexer board is omitted in the diagram.
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Fig. 2. 

Schematic drawing of the application scenario. A MACE is manipulated by an external 

magnet in the 3-D space. The objective of this paper is to estimate the position (rc) and 

orientation (mc) of the MACE under the effect of the external magnetic field.
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Fig. 3. 

Experimental comparison of SQRz,B and SQRz,L. SQRz,L is higher than SQRz,B in all 

regions. The z-directional distance from the MACE and the external magnet were set from 

30 mm to 75 mm and 160 mm to 230 mm with 5 mm increments, respectively. The 

electromagnet generated 1 mT B-field at the center of the array in the +z-direction. The 

measurement was done for 10 seconds.
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Fig. 4. 

Block diagram of the main localization algorithm. The proposed algorithm minimizes the 

cost function to find the position (rc) and orientation (mc) of the MACE. Initial position and 

orientation of the MACE are continuously updated by the algorithm for the real-time 

tracking. Measured B-field’s second derivative is calculated using Laplacian of the B-field, 

and the estimated second derivative of the B-field is calculated using the second derivative 

form of the dipole equation.
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Fig. 5. 

Experimental setup and the dynamic motion of the MACE. (a) The MACE has markers on 

its surface. We reconstructed the position and orientation of the moving robot using the 

markers in images. (b) The MACE traversed the slope with the external magnetic actuation 

that gave rolling locomotion to the MACE.
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Fig. 6. 

Result of the dynamic motion tracking experiment (the worst case). (a) The proposed 

method tracked the MACE in real-time with the external magnetic actuation. (b) While the 

B-field subtraction method had a significant loss of track near the starting point and errors in 

the middle of the track, the proposed method tracked the MACE’s motion through the whole 

path with the minor error. (c) As the distance ratio, ||re||/||rc||, increases, the localization error 

shows a decreasing trend. The proposed method shows less positioning error than the B-field 

subtraction method in almost all ranges. The error fluctuates because of the rotating 

magnetic field of the MACE.
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Fig. 7. 

Simulated effective localization range (Seff) as a function of the inherent sensor noise. With 

the (1, 1, 1) mm position misalignment and 1 A·m2 magnetic moment error from the 

external magnet, it is shown that the Seff can be extended to 23 cm with the currently 

existing sensors. As inherent sensor noise gets smaller, it is preferable to use the second 

order derivative for better accuracy and long effective localization distance. The external 

magnetic field on the MACE was (0, 0, 3) mT.
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TABLE I

Specification of the Localization Setup

Value

Hall-effect sensors, A1389 (Allegro) 64 counts

- Nodal distance (x- and y-direction) 10 mm

- Sensitivity 9 mV/G

- Noise level 15 mV (=1.667 G)

- Measurement range ±278 G

The omnidirectional electromagnet

- Size 193 × 200 × 200 mm3

- Magnetic moment (x-, y-, z-direction) 30.31, 30.22, 34.12 A·m2/A

MACE

- Dimensions 6.4 × 6.4 × 12.8 mm3

- Magnetic moment 0.45 A·m2

3-bit multiplexer (74HC/HCT4051, Phillips Semiconductors)

Data-acquisition-board (NI USB 6343, National Instruments)

Current driver (SyRen 25, Dimension Engineering)

Current sensor (ACS714, Pololu Corporation)
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