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Abstract—A CMOS transceiver fully compliant with IEEE
802.11a in the unlicensed national information infrastructure
(UNII) band (5.15–5.35 GHz) achieves a receiver sensitivity of

5 dBm for 64-QAM (quadrature amplitude modulation) with
an error vector magnitude (EVM) of 29.3 dB. A single-sideband
mixing technique for local-oscillator signal generation avoids
frequency pulling. Realized in 0.18- m CMOS and operating
from 1.8-V power supply, the design consumes 171 mW in receive
mode and 135 mW in transmit mode while occupying less than
13 mm2.

Index Terms—CMOS transceiver, IEEE 802.11a, orthogonal
frequency division multiplexing (OFDM), wireless local-area
network (WLAN).

I. INTRODUCTION

W IRELESS local-area network (WLAN) is a fast
growing market driven by the insatiable demand for

high-speed wireless connectivity and increasing availability of
cost-effective standards-based interoperable products. WLAN
applications include: 1) the extension of the wired Ethernet to
wireless mobile devices in the enterprise; 2) the seamless con-
nectivity of networks inside the home for broadband internet
sharing; and 3) the increasing deployment of wireless accesses
in the public areas such as airports and hotels. Furthermore,
the core technology also has applications in the fixed wireless
space enabling cost-effective wireless broad-band network
between buildings and into the homes. With the Federal
Communications Commission (FCC) allocation of 300-MHz
bandwidth in the 5-GHz frequency band for the unlicensed
national information infrastructure (UNII), high-data-rate
(up to 54 Mb/s) WLANs become increasingly popular and
important for mobile connectivity. To meet the projected
high demand of such WLAN products, the integrated CMOS
transceiver is highly desirable for its low cost and high volume
manufacturability [1], [2].

The IEEE 802.11a standard [3] incorporates orthogonal fre-
quency division multiplexing (OFDM) modulation, a technique
that uses multiple carriers to mitigate the effect of multipath.
IEEE 802.11a standard provides for OFDM with 52 subcarriers
in a 16.6-MHz bandwidth (channel spacing of 20 MHz); 48 sub-
carriers are for data, the rest are for pilot signals. Information
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data rates of 6–54 Mb/s are supported. The 802.11a standard
requires a data-rate-dependent minimum receive sensitivity at

65 dBm for 54 Mb/s and 82 dBm for 6 Mb/s. The stan-
dard further requires a maximum transmit constellation error
at 25 dB for 64-QAM modulated OFDM signal, whereas the
output power cannot exceed 16 dBm for channels from 5.15 to
5.25 GHz or 23 dBm for channels from 5.25 to 5.35 GHz.

This paper describes a CMOS direct-conversion transceiver
designed for IEEE 802.11a standard for the UNII band from
5.15 to 5.35 GHz. Fabricated in a 0.18-m CMOS process and
operating from a power supply of 1.8 V, the design consumes
low power (171 mW in the receive mode, 138 mW in the
transmit mode) and occupies a small die area (13 mm).

II. TRANSCEIVERARCHITECTURE

We first made the observation that the superheterodyne
architecture requires off-chip surface acoustic wave (SAW)
filters and is not a preferred solution. Between direct conversion
and low intermediate-frequency (IF) conversion, we realized
that direct conversion suffers impairments of flicker noise, dc
offset, even-order distortion, local-oscillator (LO) pulling and
LO leakage, while low-IF conversion is less susceptible to
flicker noise and dc offset. However, low-IF conversion does
also suffer impairments of even-order distortion, LO pulling,
and LO leakage. Additionally, low-IF conversion requires
stringent image rejection as an adjacent channel becomes
its image, whereas direct conversion is often referred to as
“no image.” Furthermore, the signal bandwidth in low-IF
conversion is twice that in direct conversion, therefore requires
doubling the analog-to-digital converter (ADC) sampling rate,
and results in higher power consumption. Finally, the double
signal bandwidth in low-IF conversion mandates to double
the baseband filter bandwidth, which further increases design
complexity and power consumption.

Direct-conversion architecture is therefore chosen, as indi-
cated in Fig. 1. Integrated on a single chip, the transceiver con-
tains a direct-conversion receiver, where the received radio fre-
quency (RF) signal is first amplified by a single-ended low-noise
amplifier (LNA), then directly downconverted to baseband sig-
nals through a pair of mixers. The baseband section consists of
an automatic gain control (AGC) stage and a channel selection
low-pass filter (LPF).

The transceiver further contains a direct-conversion trans-
mitter, where the baseband signal from the digital-to-analog
converter (DAC), which is on a companion baseband chip, is
low-pass filtered and upconverted to RF through a single-side-
band doubly balanced mixer. Differential-to-single-ended
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Fig. 1. Transceiver architecture.

(D/S) conversion is performed on chip, so that users do not
have to design an off-chip balun. Programmable output power
is achieved with the power amplifier driver design.

III. FREQUENCYPLANNING

Ref. [6] reported an LO generation scheme that consists of
voltage-controlled oscillator (VCO) operating at two-thirds
of the LO frequency and a divide-by-2 circuit producing
quadrature outputs at one-third LO frequency. Two mixers
subsequently mixing the VCO signal and the divide-by-2 signal
generate both in-phase and quadrature LO signals. As the
VCO operates at two-thirds of the LO frequency, this scheme
can effectively avoid pulling and reduce LO–RF interaction.
However, the generated LO signal has strong sideband at
one-third of LO frequency (Fig. 2). In our case, this is roughly
1.8 GHz, a highly populated frequency band where high-power
transmitters exist. This technique, therefore, generates an image
problem in receive mode and degrades efficiency in transmit
mode. This also makes it more challenging to meet the FCC
spurious emission requirements.

In this work, we used a quadrature VCO based on crosscou-
pledLC resonators to generate both in-phase and quadrature sig-
nals at two-thirds of LO frequency. We further used single-side-
band mixers in LO generation, which suppressed the unwanted
sideband around 1.8 GHz (Fig. 3). The generated LO signal thus
has a cleaner frequency content at the LO frequency, minimizing
the adverse effect of the unwanted sideband.

IV. CIRCUIT DESIGN

A. Receiver

In the receiver chain (Fig. 4), a single-ended LNA employs a
cascode topology [7] with inductive load (9-nH stacked spiral
inductor [8]), achieving a voltage gain of 32 dB. It can be
programmed to low-gain mode (12 dB) by lowering the gate
bias voltage of the cascode device. Direct downconversion is
performed by the voltage-to-current ( ) converter and mixer
stage. A notch filter provides partial channel selection filtering
to relax the linearity requirement of the baseband stages. The
baseband section consists of an AGC stage and a channel selec-
tion LPF, which is designed to have a seventh-order Chebyshev
response with a nominal cutoff frequency of 8.7 MHz and a
stop-band attenuation of 60 dB.

Fig. 2. Example of frequency planning [6].

Fig. 3. Frequency planning proposed in this work.

Fig. 4. Receiver architecture.

As direct conversion is more susceptible to second-order non-
linearity [4], [5], [9], ac coupling is used throughout the RF
front-end and the baseband section blocks are fully differen-
tial, so as to achieve a high second-order intercept point (IP2).
Note that dc coupling is employed in the entire baseband sec-
tion starting from the mixer outputs. This avoids having to trade
off between a degradation of signal-to-noise ratio (SNR) with a
high cutoff frequency (especially when a frequency offset exits
between the receiver and the transmitter) and a slow transient
related to a low cutoff frequency if ac coupling were to be used.

DC offset compensation is achieved with two 7-bit DACs.
Since the offset changes with the LNA gain setting, a lookup
table (LUT) is incorporated in the transceiver chip and precali-
brated compensation values can be selected based on gain con-
trol. An algorithm has been implemented in the baseband chip
to automatically calibrate the LUT whenever the receiver (RX)
is in the idle mode and no signal is detected, which is adequate
since WLAN applications are mostly stationary or in slow mo-
tion. In addition, 10-bit 40-MHz ADCs are used for the receive
channels to accommodate the residual dc offset, which is sub-
sequently removed in the digital domain.
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Fig. 5. Mixer design.

Fig. 6. Digital gain control: R-2R ladder.

1) Mixer: The mixer is the most critical stage in the receiver
chain in combating the flicker noise. In a conventional single
balanced mixer [Fig. 5(a)], one faces a difficult tradeoff in
choosing the proper biasing of I1. The switching quad M2,
M3 exhibits lower flicker noise if I1 can be reduced, while the

converter M1 requires a high biasing current to achieve a
decent conversion gain and good linearity.

In this work, a two-stage mixer is used [Fig. 5(b)] where the
converter and the switching quad biasing currents can be

independently optimized [10]. Simulation shows that the two-
stage mixer achieves 10 dB higher IIP3 and 5 dB lower noise
figure while maintaining the same conversion gain. This perfor-
mance improvement readily justifies the extra biasing current (2
mA) for the stage.

Note also that the output is ac coupled to the switching
quad, which further improves the IP2 of the mixer stage.

2) R-2R Ladder Gain Control:The mixer load resistor is de-
signed as a ten-section R-2R ladder (Fig. 6). By switching the
mixer output current to various nodes in the R-2R network, the
output voltage signal varies as the power of 2, realizing
6 dB/step linear-in-dB gain control. Each R in the network can
be further split into six equal parts and achieve finer gain vari-
ation at roughly 1 dB/step, nonlinear-in-dB but monotonic, as
indicated in the transfer curve in Fig. 6. The R-2R ladder guar-
antees monotonic gain control. It is highly linear, settles fast,
and maintains constant output impedance.

By maintaining constant output impedance, the noise con-
tribution by the resistor network at the output of the RX is
constant regardless of the gain setting. This ensures that the RX
noise figure does not increase by more than the decibel number
that the RX gain is reduced by, and therefore facilitates the
implementation of an AGC algorithm that guarantees a received
SNR no less than 34 dB at any low-gain settings, allowing

Fig. 7. For an input signal ramping in power, the RX gain is adjusted to
maintain a constant output signal power level. Although the RX noise figure
increases in low-gain settings, the output SNR remains higher than 34 dB in
the entire dynamic range.

Fig. 8. Notch filter: Active-LC trap.

error-free decoding for the 64-QAM signal with sufficient
margin for signal fading and/or other impairments (Fig. 7).

3) Active LC-Trap: The RX chain further contains a notch
filter (Fig. 8) to provide partial channel selection.

With proper biasing I1, M5 together with R1 and C2 presents
inductive impedance in series with C1, and thus generates a
14-dB notch at the alternate adjacent channel of 40 MHz when
coupled to the output of the mixer. Combined with the nat-
ural low-pass filtering at the mixer output (3-dB cutoff fre-
quency at 20 MHz), the notch filter rejects any interferers at
40 MHz or above by more than 14 dB, and significantly relaxes
the linearity requirement of the baseband stages. Measurement
shows that it improves the RX out-of-channel IIP3 by 7 dB. The
notch filter takes minimal silicon area and contributes negligible
flicker noise to the signal path due to the large impedance of C1
at low frequency. The thermal noise of M5 is also negligible as
the flicker noise of the mixer switching quad dominates.

B. Transmitter

In the transmitter chain (Fig. 1), the LPF is designed to have
a fourth-order Butterworth response with a nominal corner fre-
quency at 12 MHz. After reconstruction filtering, the modu-
lated signal is upconverted by a single-sideband doubly bal-
anced mixer. The differential signal is subsequently converted to
single-ended and further amplified by a power amplifier driver
(PAD). An off-chip power amplifier is to be used for the overall
system power saving.

In a direct-conversion transmitter, the LO leakage resides at
the center of the RF signal frequency band. It is not possible to
remove it with an RF filter. Although LO leakage can be due
to various imbalances and mismatches both in the RF domain
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Fig. 9. Transmitter RF front-end.

Fig. 10. Frequency synthesizer.

and baseband, it can be compensated by applying a baseband
dc offset regardless of its origin. DC offset tuning is introduced
to the mixers to suppress LO leakage (Fig. 9) and the calibra-
tion can be done as a production trimming. An LO rejection of
more than 38 dBc is achieved without affecting the linearity or
dynamic range of the TX, which is more than 20 dB better than
the 802.11a standard requirement.

The D/S converter [11] consists of a capacitively degenerated
common source amplifier M3, whose gate senses the positive
node of the differential signal in the voltage domain and com-
bines with the negative node in the current domain at the drain.
The D/S converter shares the load inductors of the upconversion
mixers, and consequently, saves area and power consumption.
The PAD is designed as binary weighted parallel fingers of M0,
M1, and M2, so as to achieve programmable output power.

C. Frequency Synthesizer

The frequency synthesizer (Fig. 10) is designed as an in-
teger- phase-locked loop (PLL). The frequency divider is im-
plemented using a dual-modulus 8/9 prescaler and a 13-bit pulse
swallow counter. The frequency synthesizer further contains a
phase-frequency detector (PFD) and a high-performance charge
pump. With a power supply voltage of 1.8 V, the VCO gain
tends to be quite high in order to cover the required frequency
range. A high VCO gain results in high sensitivity to the noise
of VCO tuning voltage, which increases the spur level and de-
grades phase noise [12]. In this work, the required frequency
range is divided into nine bands, each about 60-MHz wide with
30-MHz overlap between adjacent bands. An automatic band

Fig. 11. Chip micrograph.

Fig. 12. Receiver gain and noise figure.

selection scheme is implemented by connecting unit capacitors
to the VCO core while monitoring the varactor tuning voltage.
It therefore achieves sufficient frequency tuning range while
maintaining a moderate VCO gain. Within each band, contin-
uous frequency tuning is achieved by using accumulation-mode
nMOS varactors.

With a reference clock at 40 MHz, an off-chip loop filter with
a bandwidth of roughly 200 kHz is found to be optimal for phase
noise performance.

V. MEASUREMENT

The transceiver chip is fabricated in CMOS process with a
feature size of 0.18m, a single poly layer, six layers of metal,
and options of metal–insulator–metal (MIM) capacitors and
high sheet rho poly resistors. The chip micrograph is shown in
Fig. 11. The total die area is less than 13 mm. It is packaged in
a 64-pin microlead frame with a backside central ground plate.

The RX gain and noise figure have been measured as a func-
tion of baseband output frequency with a resolution bandwidth
of 50 kHz (Fig. 12). The RX provides 58-dB voltage gain, which
is sufficient for the minimum sensitivity level at82 dBm re-
quired by the 802.11a standard. Take a 10-bit ADC, for ex-
ample, assuming an ADC full scale at 800 mV (1 dBV) when
a 1.8-V power supply is used; the quantization noise level is at

59 dBV. A received signal at 82 dBm at the antenna port will
be amplified to 34 dB Vrms at the ADC input, which is 25 dB
higher than the quantization noise level, with sufficient margin
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Fig. 13. Receiver sensitivity.

Fig. 14. TX transmit spectrum.

for ADC implementation imperfection (e.g., losing least signif-
icant bit) as well as RX gain variations due to process, temper-
ature, and voltage supply (PTV).

A spot noise figure of 6.8 dB is measured at 5-MHz base-
band signal frequency. The flicker noise effect manifests itself
at and below 1 MHz. According to the 802.11a standard, the
first subcarrier of the OFDM signal starts at 150 kHz, where
the noise figure is about 8 dB, which is still 2 dB better than
the 802.11a standard [3] noise figure assumption of 10 dB. The
transfer curve also shows an LPF corner frequency at 8.7 MHz.

The received packet error rate (PER) of the RX (with T/R
switch and RF filter) is measured with physical layer conver-
gence procedure service data unit (PSDU) of 1000 bytes as in-
dicated in the 802.11a standard. The number of frames that can
be used is limited by the measurement system memory and are
shown in Fig. 13. The sensitivity level is defined by the 802.11a
standard as the minimum input power when the PER reaches
10%. We therefore have a sensitivity of91 dBm at 6 Mb/s and

74 dBm at 54 Mb/s, both 9 dB better than 802.11a require-
ment.

In Fig. 14, the transmitted spectrum of a 64-QAM OFDM
signal is plotted against the spectrum mask defined by the
802.11a standard. With a total output power of 16.2 dBm, the
output spectrum is well below the spectrum mask, indicating a
good linearity margin. Note that the transceiver chip delivers
roughly 5 dBm of total power in this case, and the rest of
the RF gain is made up by an external PA. Fig. 15 shows the
transmit constellation of the same 64-QAM OFDM signal. The
error vector magnitude (EVM) is found to be less than29 dB,
which is well below the standard requirement of25 dB,
indicating sufficient linearity and phase noise performance.

The open-loop VCO phase noise has been characterized
at the divided-by-2 output. Centered on 1.75 GHz, the single

Fig. 15. Transmit constellation.

Fig. 16. LO phase noise.

TABLE I
TRANSCEIVERPERFORMANCESUMMARY

side-band phase noise is roughly120 dBc/Hz at an offset
frequency of 1 MHz. The closed-loop phase noise is measured
at the TX output with the center frequency at 5.25 GHz.
Integrated from 10 kHz to 10 MHz, the total phase error is less
than 1.5 (Fig. 16).

Table I is a summary of the transceiver performance.
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