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Abstract In this letter, a 5th-Order single-loop low dis-

tortion Sigma–Delta Modulator (SDM) is implemented

with the combination of the comparator-based switched-

capacitor (CBSC)-based and op-amp-based techniques for

asymmetric digital subscriber line (ADSL) applications.

This structure, which uses integrator (CBSC-based) and

IIR filter (op-amp-based) concurrently, has relatively fewer

feed-forward paths and modulator coefficients for sensi-

tivity reduction to mismatch. To lower the power con-

sumption of the modulator, the integrators are implemented

with CBSC, the IIR filter block is implemented by single

OTA, and a passive adder is used to realize the adder at the

input of the 5-bit quantizer. The design purpose is mini-

mizing the power consumption while the dynamic perfor-

mance maintains high. As shown in the simulation result,

for a 2-MHz signal bandwidth, the modulator achieves a

dynamic range (DR) of 86.5 dB and a peak signal-to-noise

and distortion ratio (SNDR) of 85 dB with an oversampling

ratio of 8. In addition it consumes 18.75 mW from a 1.8-V

power supply at 32 MS/s, which obtains a figure of merit of

1.6e-3.

Keywords Analog-to-digital data converter (ADC) �
Sigma delta modulator � Comparator-based switched-

capacitor circuit � ADSL

1 Introduction

Nowadays, new generation communication systems are

imposing two challenges in designing the analog-to-digital

converters (ADCs). One challenge is increase of input

signal frequency because of entering in several MHz

bandwidth applications and the other is the high resolution

ADCs, while the size of transistors and the circuit supply

voltage are becoming smaller [1]. The design of an ADC

oriented to ADSL application becomes a difficult task with

technology scaling. Technology scaling, which is the most

challenging factor in nano-scale processes, makes some

issues on design of high performance op-amps, which are

one of the crucial analog building blocks in the switch-

capacitor (SC)-circuits ADCs. It decreases intrinsic gain

(lower output resistance), voltage headroom and SNR

while it increases device leakage, nonlinearity and mis-

match [2, 3]. The most important problem is decreasing the

device gain. It causes that, the precision in the feedback

circuits is dramatically reduced, because in the traditional

SC circuits a high gain op-amp determines the accuracy of

the charge transfer. A method for achieving higher gain

without reducing voltage swing is to cascade several gain

stages, but it leads to the stability problem. Furthermore,

high gain op-amp can be realized by cascoding transistors,

but voltage headroom will be reduced. With decreasing the

signal amplitude a larger capacitance and also more power

consumption is needed to maintain the same SNR [4].

Different solutions have been introduced to deal with the

power issue such as the time-to-digital converter (TDC)
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[5], incomplete settling [6] and switched op-amps [7].

Recently, a comparator-based switched-capacitor (CBSC)

technique was reported in [8, 9] to replace the op-amp with

comparator and current sources, which has the same

operation like as op-amp-based architecture. In CBSC

technique, a comparator and switched current sources are

used to sense the virtual ground condition, instead of

forcing it with an op-amp. One of the issues, which con-

ventional architecture [8] suffers from it, is overshoot at the

end of the coarse phase which decreases the speed and

accuracy. The implementation of the SC overshoot cor-

rection circuit helps us to increase the speed (fastest set-

tling) and decrease power consumption. In this paper

design of high resolution and bandwidth sigma–delta

modulator, which uses CBSC-based integrators and an

op-amp-based IIR filter in its architecture, is investigated.

The effectiveness of this hybrid architecture is justified

through simulation using HSPICE in a 0.18 lm CMOS

process and compared with the state-of-the-art SDMs.

2 Modulator architecture

There are two architectures for designing a Sigma–Delta

modulator: Single-loop high-order and MASH (Cascade)

SDM. In this article, we utilize single-loop high-order

architecture for implementation of the modulator. In SDMs

with traditional architecture the OTA employed in inte-

grator needs a large swing, and must have a large DC gain

and slew rate (SR) in order to overcome against nonlinear

effects. High OTA DC gain results in high power con-

sumption of the modulator. To solve this problem, we use

CBSC structure instead of OTA in integrators. Moreover

for decreasing the integrator swing, we applied a structure

sigma–delta known as low-distortion [10], which uses

feed-forward paths to decrease the integrator swing. This

low-distortion modulator, illustrated in Fig. 1, just employs

one digital to analog convertor (DAC) in main feedback

path. In this structure, that uses feed-forward paths, the

integrators in the modulator loop process only the quanti-

zation noise and prevent generation of large Swing. The

single-loop high order.

SDMs may become unstable on large inputs; therefore

in high-order structures we use the multi-bit quantizer. This

causes settling in integrator to be relaxed more and

decreases instability conditions. The proposed architecture

is applied to a 5th-order single-loop SDM, with combina-

tion of CBSC-based integrators and Op-amp-based IIR

filter. Figure 2 shows the modulator structure in which we

used a 2nd-order IIR filter block instead of two integrators.

The transfer function of the filter is represented in Eq. 1.

HIIR ¼
b1z�1 þ b2z�2

1� c1z�1 � c2z�2
: ð1Þ

This method provides attractive results [11]; first the

modulator architecture has less complexity in comparison

with traditional structures. Second, the relation between

in-band zeroes and noise transfer function (NTF) of SDM

is simpler. In this manner, modulator coefficients spread is

decreased and finally modulator sensitivity with respect to

coefficient mismatching is reduced. The NTF has IIR

structure with reverse chebyshev pole and zero. NTF for a

5th-order modulator with OSR = 8 is expressed as

follows:

NTF OSR¼8j ðzÞ

¼ ðz� 1Þðz2 � 1:875zþ 1Þðz2 � 1:955zþ 1Þ
z5 � 1:2z4 þ 1:119z3 � 0:495z2 þ 0:276z1 � 0:0331

ð2Þ

With some simple calculation, we can achieve coef-

ficients values, which are presented in Fig. 2.

3 Design of key building blocks

3.1 CBSC gain stage

Figure 3 shows the complete CBSC-based integrator, along

with its timing diagram. In u1 phase, the input is sampled by

the input capacitors (CS1 and CS2). The charge transfer

phase u2 is divided into four following sub-phases: (a)

preset phase for preset switches (Prst), (b) coarse transfer

phase (E1), (c) fine transfer phase (E2) and (d) settling

phase (S = Prst ? E1 ? E2). After sampling, the outputs

(Vop and Von) are preset to VREFP and VREFN. Preset phase

(Prst) sets the output nodes to preset levels away from the

common voltage level (VCM). After preset phase, coarse

charge transfer phase is started. Ia current source charges

the positive half circuit and discharges the negative half

circuit simultaneously. As a result, input nodes of the

comparator (Vc and Vd) are charged in opposite directions to

cross each other to make the first decision as seen in

Fig. 3(b). However, there is overshoot in the output due to

the delay in the comparator and ramp rate (Vovp). Overshoot

in the coarse phase is one of the most important limiting

factors on the performance of the CBSC circuits. To reduce

the primary overshoot at the end of the coarse phase, an SCFig. 1 Low-distortion sigma–delta modulator architecture
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overshoot correction circuit is introduced which shown in

Fig. 3(a). For instance, at the end of the coarse phase, the

amount of the primary overshoot is subtracted from Vc and

is stored in Cocp. This leads to the reduction of overshoot

voltage, which has been produced in the coarse phase for

saving power. After correction, the output voltage at the end

of the coarse phase is defined as below:

Vo ¼ VIN � D�VREF þ
2Ia�td1

CT

� DVOV ð3Þ

where Ia is the coarse current, D is the digital code

determined by the quantizer and logics, CT is the total

loading capacitance at the output of the gain stage and td1 is

the delay of the comparator for a coarse ramp input. The term

DVov is correcting factor, which decreases the overshoot

voltage produced at the end of coarse phase (E1). To achieve

more accurate output, the fine transfer phase is used. During

this phase, fine current sources (Ib) are turned on to reduce

the overshoot voltage and also achieve to the second

detection as seen Fig. 3(b). The voltage comparator [12], is

depicted in Fig. 4, consists of three stages: an input

pre-amplifier (M1–M7), a decision stage (M8–M12) and

an output buffer (M13–M17). The input stage (low-gain,

high-bandwidth amplifier) converts the input voltages to

currents level needed to drive the decision stage. The

decision stage is a bistable cross-coupled circuit which

switches from one state to another in accordance with the

magnitude of the input currents. The positive feedback

speeds up the switching. The output stage is used to convert

the output voltage of the decision circuit into the digital logic

signal. To reduce static power consumption, the comparator

is controlled by signal S. When signal S is active (S = 1) Vbias

is connected to the circuit and the comparator is in the

operation mode. If S is not active, (S = 0) path between Vbias

and circuit is disconnected and the comparator turns off. For

coarse current sources which generate a large amount of

current we used cascade current sources to achieve high

output resistance for increasing the accuracy and linearity. A

PMOS current source was used for the pull-up current, and a

NMOS current source was used for the pull-down current

during the coarse charge transfer phase. Also the effective

open-loop gain Ao of a CBSC circuit [8] is modeled as:
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AO ¼
CT � RO

a � td
ð4Þ

where CT is the total capacitance at the output of each stage,

Ro is the finite output resistance of the current source, td is the

delay of the threshold-detection comparator, and a denotes

the feedback factor. For enhancing the accuracy in the fine

current source [13] the controlling switch is connected to the

drain. As a result when E2 is active (E2 = 1), it makes a

cascade combination. So we have good accuracy in

accordance with Eq. 4. During the transfer phase (u2), a

switched-capacitor common-mode feedback (CMFB) is

used to control the pull down coarse current source. The

CMFB circuit and current sources are shown in Fig. 5.

3.2 IIR filter

2nd-order IIR filter block is implemented as illustrated in

Fig. 6(a). Because of low output swing of 2nd-order filter,

1st part can be made with single OTA that has the same

accuracy and performance of 2nd-order filter with two

OTAs [14] as depicted in Fig. 6(b). The p-path part of

Fig. 6(b) is realized by capacitor Ch1, which samples out-

put in u1 and transfers the relative charge to the capacitor

CI3 in u2. The q-path part achieves by delayed-sampling at
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feedback paths with two sampling capacitors (Ch2). The

mismatching between q-path capacitors causes to limit the

attenuation of the quantization noise. Because of placing

the IIR filter block in back-end stages, the error is shaped

by previous stages, and with 0.4 percent capacitance mis-

match, the SNDR remains above 85 dB. The second part of

Fig. 6(a) can be combined with the last integrator of the

modulator in order to perform the implementation of IIR

filter block by means of single OTA. As shown in Fig. 7, a

2-stage folded-cascade class A OTA is employed to

implement the IIR filter block [15]. In this structure, in

addition to Cs compensation capacitor, the Ca capacitor is

employed to keep circuit poles further away from zero

frequency in order to attain higher rate and bandwidth with

respect to conventional structures.

Fig. 8 Fifth-order switched-capacitor delta–sigma modulator
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3.3 Other parts of SDM

Figure 8 shows the switched capacitor implementation of

SDM. As shown in Fig. 8, a passive adder at the input

of quantizer is utilized for adding the feed-forward paths

of the modulator [16]. This method does not need extra

OTA, but causes the adder gain to be less than one. For

alleviating this problem, we must use the scaling tech-

nique of reference voltage at quantizer input. After pre-

paring the quantizer output that has 33 quantization

levels, it is fed back to a DAC and the DAC output is

subtracted from the input signal of the modulator.

Because of DAC nonlinearity effects, we used a lineari-

zation algorithm called Data-Weighted Algorithm

(DWA), in front of the DAC.

4 Simulation results

In this section, results obtained from system level simula-

tion (MATLAB) and circuit level simulation using Hspice

in 0.18 lm CMOS process are compared. Figure 9 shows

the output power spectrum density (PSD) of the CBSC-

based modulator with input signal amplitude -4 dBFS and

input frequency fin = 109.375 kHz. Sampling frequency

and Oversampling ratio are fs = 32MS/s and OSR = 8,

which yields a signal bandwidth (BW) of 2 MHz. This

spectrum, which computed via a 4096-FFT point, confirms

the performance of this technique through comparison with

conventional op-amp-based modulators as shown in

Fig. 10. With a noise bandwidth (NBW) of 3.6e-4 Hz

[17], the maximum values for the SNDR are 101 dB in the

SIMULINK, 91.2 dB for the op-amp-based SDM and

85 dB for the CBSC-based SDM. Figure 11 shows the

simulated SNDR versus the input signal amplitudes nor-

malized by reference voltage (Vref). The dynamic range

(DR) of CBSC-based modulator is 86.5 dB, which shows

good agreement to the modulator simulated in MATLAB.

The simulated power consumption is 18.75 mW from

1.8 V power supply, which obtains a figure of merit of

1.6e-3. Table 1 shows the performance comparison of

state-of-the-art SDMs.

5 Conclusions

This letter addresses a 5th-order high resolution and broad-

band delta–sigma modulator with hybrid utilization of

op-amp and CBSC circuit for ADSL applications. High

performance low-distortion SDM is obtained by combina-

tion of integrator and IIR filter, which has less feed-forward

paths and modulator coefficients for sensitivity reduction to

mismatch. Furthermore, we have employed CBSC gain stage

to implement integrators which shows efficient architecture

can be achieved for this application. In comparison with

similar ones, the power dissipation is lower because of using

CBSC integrators and decreasing number of OTA in 2nd-IIR

filter block. With OSR = 8, the peak of SNDR is 85-dB, the

bandwidth is about 2 MHz and the power is 18.75 mW.

Simulation results verify the usefulness in implementation

and fabrication of the proposed architecture.
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