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A polyphase-fast-Fourier-transform (FFT) spectrum analyzer being designed

for NASA's Search for Extraterrestrial Intelligence (SETI) Sky Survey at the Jet

Propulsion Laboratory is described. By replacing the time-domain multiplicative

window preprocessing with polyphase filter processing, much of the processing loss

of windowed FFTs can be eliminated. Polyphase coefficient memory costs are mini-
mized by effective use of run-length compression. Finite word length effects are an-

alyzed, producing a balanced system with 8-bit inputs, 16-bit fixed-point polyphase
arithmetic, and 24-bit fixed-point FFT arithmetic. Fixed-point renormalization

midway through the computation is seen to be naturally accommodated by the

matrix FFT algorithm proposed. Simulation results validate the finite word length
arithmetic analysis and the renormalization technique.

I. Introduction

A 225 (33,554,432) channel, 640-MHz-wide polyphase-

fast-Fourier-transform (FFT) spectrum analyzer is being

designed at the Jet Propulsion Laboratory for the Search

for Extraterrestrial Intelligence (SETI) Sky Survey. This

spectrum analyzer will be used to separate two 320-MItz-

wide polarizations into channels approximately 20 Itz wide

for input to SETI signal detection algorithms. Construc-

tion of a prototype windowed-FFT spectrum analyzer [1]

with 40 MHz of bandwidth and 221 (2,097,152) channels
has recently been completed. The new spectrum analyzer

design, similar to the prototype machine in many respects,

is functionally divided into eight identical 80-MHz, 4-mega-
channel, real-input polyphase-FFT filter banks, each im-

plemented as a pipelined special-purpose hardware signal

processor. The spectrum analyzer functions consist of

polyphase preprocessing, a 4-megapoint matrix-algorithm

FFT and trigonometric recombination ("real-adjust") to
compute the positive half of an 8-megapoint real FFT.

Other than the increases in bandwidth and number

of channels, the main architectural difference from the
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prototype spectrum analyzer system is that the new de-
sign is a polyphase-FFT spectrum analyzer rather than

a windowed-FFT spectrum analyzer. The advantages of

polyphase-FFT spectrum analysis, as well as a review of

the supporting theory, are presented in [2] and are only
touched on here. Similarly, features that the spectrum an-

alyzer has in common with the prototype system can be

found in [1] and are not described in detail here.

The remainder of this article will be divided into the

following four main sections: a general description of the
spectrum analyzer, a description of the po]yphase-FFT fil-

ter bank implementation, a discussion of finite word length

effects and the fixed-point arithmetic implementation, and

results from system simulation.

II. General Description

The 320-MHz dual-polarization system is divided into

four 80-MItz subbands per polarization. Each of the
80-MIIz subbands, or "slices," is identical to the others,

and each can be operated independently as an 80-MIIz

spect'rum analyzer. A functional block diagram of the

320-MHz dual-polarization system is shown in Fig. 1.

Like the prototype system, each 80-MtIz slice of the

spectrum analyzer is a pipelined architecture, allowing all

stages of the polyphase-FFT algorithm to execute con-

currently. As in the prototype system, a stage "bypass"
capability and stimulus and response buffers provide built-

in testability. Each 80-MIIz slice of the system will have

an 8-bit analog/digital (A/D) converter as its input, and

24-bit fixed-point arithmetic will be used for the FFT por-

tion. The fixed-point arithmetic will be implemented in an

application-specific integrated circuit (ASIC), jointly de-
veloped with the Telecommunications and Data Acquisi-

tion (TDA) Advanced Systems very large scale integration

(VLSI) program. This saves both memory and arithmetic

relative to a floating-point implementation. In addition,
because all of the FFT is completely performed in 24-bit

fixed-point arithmetic, the transforms before and after the

matrix transposition, or "corner turn," can use identical

boards, saving a unique board design. In contrast, the

prototype performs the column FFTs in 16-bit fixed-point
arithmetic and the row FFTs in 32-bit floating-point arith-
metic.

Architectural improvements in the FFT portion of the

new spectrum analyzer include replacing two spectrum-

length (4-complex-megapoint) double buffers with single

buffers and the removal of a third spectrum-length dou-

ble buffer. 1 This improvement significantly reduces the
amount of memory in the spectrum analyzer, reducing
both size and cost.

The user-loadable window function in the prototype

system has been replaced by polyphase filter preprocess-

ing. The polyphase preprocessor is capable of operating as

a window function, because a windowed discrete Fourier

transform (DFT) is a degenerate case of a polyphase DFT
filter bank. For more information on polyphase DFT filter

banks, see [2].

As in the prototype system, the FFT is implemented

using a matrix-style DFT pipe. By decomposing the trans-
form into shorter row and column transforms, the long-

delay memories and coefficient ("twiddle factor") storage

required for the 4-megapoint FFT are concentrated in
a single matrix transposition and complex multiplication

stage, making the actual FFT arithmetic boards much sim-
pler. The spectrum analyzer performs a 4-megapoint (222)

DFT as 4096 point column DFTs followed by 1024 point

row DFTs with multiplication of the matrix entries by

complex rotation factors between the row and column

transforms. The row and column DFTs are each per-
formed as pipelined radix-4 FFTs.

While the prototype system was implemented in wire-
wrap technology, the greater bandwidth and the highly

repetitive nature of the new system require implementa-

tion using multilayer printed circuit boards. Because the
new system takes advantage of improvements in technol-

ogy, while it is functionally quite similar to the prototype,
the detailed hardware designs are all new. A functional

block diagram is shown in Fig. 2.

III. Polyphase FFT Structure

Because the spectrum analyzer channels are consid-

ered independently by the signal detection algorithms, the

worst case processing loss [3], that is, the maximum at-

tenuation of a continuous-wave (CW) signal in a channel's
passband (in dB) plus the ratio of a channel's equivalent

noise bandwidth to the channel spacing (in dB), is crucial

to the system's sensitivity to weak signals. This is rarely

less than 3 dB for windowed FFTs [3]. This is a result of
the fact that for a windowed FFT, the time aperture over

which the signal is considered (in seconds) is exactly equal

to the reciprocal of the FFT channel spacing (in hertz).

I R. Brown, Using Single Buffers and Data Reorganization to Imple-
ment a Multi-Megasample FFT (internM document), Jet Propul-
sion Laboratory, Pasadena, California.
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Consider an FFT with channel spacing Nt times finer

than the desired spacing. This FFT operates on a time
aperture N_ times longer than the FFT that would provide

the desired channel spacing. Call the shorter FFT time

aperture N1 samples and the longer FFT N1N_ samples.

Now, apply a time-domain multiplicative window with the

desired low-pass-filter transfer function to the long FFT,

compute the FFT, and discard all but every Ntth FFT

channel, i.e., retain only those bins whose center frequen-
cies correspond to a center frequency in the shorter length

N1 transform. Now shift the N1Nt sample input vector

by N1 samples and repeat the procedure. This process is

equivalent to a polyphase-FFT filter bank, implementing
a bank of identically shaped finite impulse response (FIR)

band-pass filters, each centered on the bin center frequen-

cies of the shorter, Nl-long FFT.

In summary, the polyphase-FFT filter bank operates

on a time aperture larger than its resolution, allowing bin
shapes to encompass any transfer function that can be im-

plemented as an NtN1 tap FIR filter. With as few as 8 taps

per polyphase branch, it is possible to reduce the worst

case processing loss to less than 1 dB. In fact, by includ-
ing the polyphase-filter preprocessing step prior to com-

puting the FFT, as much as 2.6 to 2.9 dB can be gained in

worst-case processing loss over Hanning or Blackman win-

dowed FFTs. In large FFT systems such as this one, the
t_olyphase preprocessing has a small computational cost

when compared to the FFT. However, substantial gains
over windowed-FFT techniques are made even for systems

with 2- or 4-tap polyphase branches, making polyphase

preprocessing more than appropriate for smaller spectrum

analyzer systems. For more discussion of polyphase DFT
filter banks, see [2].

The main cost incurred in the polyphase preprocess-

ing is in memory. The polyphase preprocessing requires
that NtN1 input points must be stored at any one time,

whereas in the windowed FFT system only N1 points of

storage were required. This storage requirement is miti-

gated somewhat by the fact that the points to be stored

are of the input word length that is typically much shorter

than the FFT arithmetic word length. In addition, the
polyphase coefficients may be quantized to only slightly

longer than the input word length without significant loss.

In our implementation, the input word length is 8 bits, and

12 bits is sufficient for the polyphase coefficients. Due to
the fact that our desired bin transfer functions are based on

• ideal band-pass filters, the prototype low-pass polyphase
transfer function does not deviate significantly from an

ideal low-pass filter. Correspondingly, the polyphase coef-

ficients do not deviate significantly from the Fourier trans-

form of an ideal low-pass filter, the Sinc function. As a re-

sult, the maximum rate of change of coefficients is limited,

and a minimum run length can be found for quantized co-

efficients. For 12-bit coefficient quantization, the minimum

run length is slightly more than 2048 coefficients, allowing

for effective use of run-length compression to minimize the

coefficient memory cost.

The minimum run length is greater than the row (sec-

ond) FFT length, guaranteeing that there will be at most
one transition per row. As a result, the rows may be sep-

arately run-length compressed, simply by identifying two
coefficient values and the location of the transition. This is

advantageous in a pipelined signal processor, where the or-

der of data points into the board may be scrambled both

within columns and by columns, because it allows run-

length coding to be efficiently implemented as shown in

Fig. 3.

Hardware simplifications result by setting the real and

imaginary polyphase coefficients equal. Since the FFT is

to be performed with the real-adjust algorithm, the real

samples represent even-time indices while the imaginary
samples represent the odd-time indices. Constraining real

and imaginary polyphase coefficients to be identical means

that the impulse response of the prototype low-pass FIR

filter is constrained to change values only on even sam-

ples. Such a constraint will alter the transfer function
of the resulting filter. One can use a matrix formulation

of the DFT (NtN1 by 2 real-only points) to examine the

transfer function of the resulting filter. Since the impulse
response changes value only on even samples, the initial

two-column DFTs (NtNx) are identical, and, in fact, both
are the desired low-pass prototype transfer functions cen-
tered on the zero-frequency bin. The relevant portions

of the entire transfer function are computed by taking

the two-point DFTs of the "twiddle-in-the-middle" com-

plex rotation factors exp (-j27r[(row no.x col. no.)Yl]) in

the passband and near-transition-band regions of the low-
pass initial DFT results. The resulting transfer function

is mainly low pass, with a replicant passband, attenuated

by 135 dB, centered at the Nyquist frequency (_r). For

a system with a 41-dB signal-to-noise ratio (SNR) CW

input, this results in a spur 28 dB below the noise floor
in the output, requiring about 360,000 accumulations or

about 5.2 hours to reach a 0-dB bin output SNR. It is

also important to note that this spur is at the limit of

the 24-bit representation, since the power of the smallest

24-bit number (2_3 +0j) is 141.5 dB down from the largest

power value (-1 -j), and, as such, is at about the same
level as output arithmetic and quantization noise. A sim-

ulation was performed with the real and imaginary coeffi-
cients constrained to be identical, and the results validated

the above analysis.
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IV. Finite Word Length Effects

With 8-bit input quantization, 16-bit fixed-point

polyphase arithmetic and 24-bit fixed-point FFT arith-
metic provide balanced system performance, with the in-

put quantization (A/D) noise dominating. The spectrum
analyzer has been designed with 8-bit input quantization

based on considerations of A/D converter technology and

the maximum expected RFI levels.

Noise due to finite word lengths can be divided between

the A/D converter and the spectrum analyzer arithmetic.
A balanced system would have roughly equal contribu-

tions from each source. The purpose of the SETI system

is to detect small signals in the presence of interference

and noise. Arithmetic and quantization noise will degrade

the system performance by effectively increasing the input

noise level, decreasing the SNR. The resulting noise power
out will be:

2
2 = ai_.+ (T_vq+ (TAr/,h(Tou t

=(T_,, 1+ (T--_-_1+_ (T_¢o/ /

where (Ti2,_and a2o,_ are the input and output noise power,

and a2Nq and 2(TArith are the quantization and arithmetic
noise, respectively. It is apparent that the sensitivity loss
is

2

2 (T_IQ O'Ar{tha°"' = _ 1 +

To put the input noise and the two digital noise factors

into the same units, a translation from rms noise (volts)

to quantization levels must be used; however, given a fixed

input quantizer word length, it is apparent that the loss
will be controlled by the ratio of the arithmetic to quanti-

zation noise.

Using the techniques in [4], the boise due to fixed-point
multiplication round otis present in an output can be com-

puted. This computation assumes that all round-off noise

sources are white, mutually uncorrelated, zero mean, and

uniformly distributed with a maximum value of 1/2 of one

least significant bit. A radix-4 decimation-in-frequency

FFT implementation was assumed. Each radix-4 FFT

stage scales the data by 1/4 to ensure no overfows oc-

cur. Blind overflow-protection scaling of the FFT stages

would result in few significant bits to represent uncor-
rupted, noise-only or weak signal outputs, so tile 24-bit

words must be automatically renormalized at some point

in the computation. This renormalization occurs at the

corner-turn memory. Making the usual assumption of

white, zero-mean, uniformly distributed input quantizer

noise, noise due to the input quantizer was computed. The

resulting ratio of the arithmetic noise to input quantiza-

tion noise is given in Table 1. These results were used to
calculate losses for the various input SNRs examined in

the next section.

Note that renormalizing the data amplifies all sources

of noise prior to the renormalization. When the renor-
malization shift is small, the majority of the arithmetic

noise is due to the final stages of arithmetic, after the

renormalization. Larger renormalization shifts reduce the

relative effect of the fixed-point arithmetic. Note that the
amount of renormalization shift depends on the maximum

peak in the spectrum. In most cases, strong interference
will be wideband relative to a spectrum analyzer channel

(19 Hz), allowing a significant (>1) renormalization shift
to be used.

In a pipelined processor implementation, renormaliza-

tion requires a buffer capable of holding the entire vector.

The matrix FFT algorithm was chosen for the FFT imple-
mentation based on experience with the SETI prototype

[1]. The initial reason for this choice was because the al-

gorithm concentrates pipeline delay memories and coeffi-
cient memory in a central matrix transposition and vector

multiplication stage. In fixed-point FFTs, another advan-

tage becomes apparent: the matrix transposition buffer

provides a natural location for the vector renormalization.
Renormalization can therefore be performed at the corner-

turn memory, prior to the twiddle multiplication stage,
without the cost of an additional buffer.

V. Simulation Results

The resulting system was simulated on a SUN-4 com-

puter workstation with the appropriate word lengths, val-

idating the analytical results and the renormalization ap-

proach. The simulated system had the following features:

(1) A 12-tap-per-branch polyphase filter with 12-bit co-
efficients.

(2) 16-bit fixed-point multiply-accumulate arithmetic in
the polyphase filter computation.

(3) 24-bit fixed-point arithmetic in the FFT, twiddle

multiply, and real-adjust sections.
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(4) 32-bit IEEE floatlng-point power calculation.

(5) A radix-4 4096 point by radix-4 1024 point matrix

style 4-megapoint complex FFT with real-adjust and
automatic renormalization between the row and col-

umn transforms.

(6) 8, 10, or 16 bits of quantization at the input (A/D

conversion).

Tile simulations were performed to test the perfor-

mance in the presence of a strong signal (75 percent full

scale on the input quantizer), measuring both output SNR

and two-tone dynamic range. The simulations demon-

strated 90-dB, close-in, two-tone dynamic range, detect-
ing a weak signal 90 dB down from a strong signal 10

FFT channels away.

A. Finite Word Length SNR Degradation

The measured SNR out was compared with the SNR

that would be output if the input quantization and arith-

metic were infinitely precise. The ideal, infinite precision

SNR is given by:

SNRide_t o_,t (dB) = SNRin (dB) + GainrFz (dB)

+ Gainpp (dB) - EQNBpp (dB)

where GainrrT is the gain due to the number of channels

in the FFT (222 channels = 66.23 dB), Gainpp is the gain

of the polyphase-DFT filter transfer function, dependent
on the signal's frequency within the resolved FFT channel

(-0.268 dB at 0.4 bins offset), and EQNBpp is the equiv-
alent noise bandwidth of the polyphase-DFT filter transfer

function relative to an ideal bandpass filter (0.346 dB in
this 12-tap case). For our test cases, the strong signal
frequency was held constant at 10 percent of the Nyquist

frequency, resulting in an offset of 0.4 bins from the center

frequency of the target bin.

Losses were predicted using the conventional round-off

and quantization noise models, assuming white noise from

each source. The results of the simulations are given in
Table 2.

At lower SNRs there is excellent agreement with the-

ory. For 8-bit input quantization, the A/D converter noise

and spurs dominate the arithmetic contribution, as pre-
dicted; they can be observed from the lower SNR 8-bit

measurements and a comparison of the 41-dB and 47-dB
SNR 8-bit predictions and measurements with the 10- and

16-bit predictions and measurements. It may be noted

that at high SNRs, the predictions deviate from the mea-

surements. While the measured losses for 8-bit inputs ex-
ceed the predictions, those for 10- and 16-bit inputs are

less than the predicted loss. At high input SNRs, the as-

sumption of white quantization and computational noise

sources is violated. This is particularly true for the 8-bit

input quantization noise with greater than 40 dB input

SNR [5]. Since the 8-bit case behaves differently than ei-

ther the 10- or 16-bit cases at these SNR levels, the in-

creased loss for 8-bit input at 41- and 47-dB input SNR

is attributed to high SNR input quantizer effects. It is

important to notice that at input SNRs above 40-dB (out-

put SNRs above 106 dB), quantization spurs from an 8-bit
input quantizer become noticeable in tile output, defining

the upper limit of the spectrum analyzer's useful range in

the presence of strong CWs.

Identifying the cause of decreased loss at high SNRs re-

quires a closer examination of the sources of quantization

noise. As the SNR increases, the loss due to the 24-bit

fixed-point arithmetic grows. Unlike the 8-bit input quan-

tization cases, the loss with 16-bit input quantization is
almost entirely due to the arithmetic, and with 10-bit in-

put, a large portion (78 percent) is due to the arithmetic.

Due to overflow-preventing attenuation in the FFT arith-

metic, which scales the data by 1/4 each stage, the lion's
share of the FFT noise contribution comes from the fi-

nal stages of FFT and real-adjust arithmetic. With high
SNR CW inputs, beyond the 40-dB design range of the in-

strument, a significant fraction of the output noise power

underflows the 24-bit fixed-point precision and is mapped

to zero. This is especially apparent with 60-dB input SNR,

where 12.5 percent (one-eighth) of the output values are
complex zeros, and an additional 45 percent have either a

zero real or imaginary component. Since arithmetic noise
is computed from multiplication round off's, and multipli-

cation by zero is an exact operation, the result is a de-

creased number of noise sources when high SNR tones are
input. As a result, the arithmetic noise can be reduced

by as much as 57.4 percent, or 3.71 dB in the 60-dB in-

put ease. This is sufficient to account for the discrepancies
observed.

B. Two-Tone Dynamic Range

Measurements of the system's close-in two-tone dy-

namic range were performed. The two-tone dynamic range

is defined as the maximum ratio of strong to weak signal
levels at which a weak signal can be detected. Detection

was performed without accumulating, providing a lower
bound on the actual two-tone dynamic range of the instru-
ment. Two-tone tests confirmed that a tone 90 dB down

from the strong signal and 10 bins away is detectable, with-

136



out accumulation, as the maximum spectral peak outside

of =[=4bins from the strong signal.

The minimum detectable small signal level, allowing

accumulation, and hence the two-tone dynamic range are
determined by the maximum spectral level outside of the

immediate spectral neighborhood of the strong signal. The

maximum spur-to-noise ratio defines the minimum de-

tectable SNR. The minimum detectable signal must be

only slightly greater than the maximum spur. Given the

very large number of noise samples in the spectrum, the ra-
tio of the maximum to the average of the sample set would

be tightly constrained (11.6 dB to 12.4 dB, 10 percent to
90 percent probability) if the output were white Gaussian

noise only and contained no spurs. Some measured values
and the probabilities that they are due to white Gaussian

noise alone are given in Table 3.

Measurements made with greater than 8-bit inputs in-

dicate that the maximum spur levels observed were due to

the input quantization. These measurements confirm that

a system with 8-bit inputs would have a two-tone dynamic

range of 41 dB + GainfFT + min(Gainpp) -- EQNBpp
- 13..0 dB = 93.6 dB. Examples of detection of a weak

signal 80 dB down from a strong signal 10 channels away
are shown in Fig. 4.

VI. Conclusions

This article has described the latest results in a con-

tinuing effort to build more sensitive and broader band-

width multichannel spectrum analyzers [1,6]. The thrusts

of the current effort, described in this article, have been in

the areas of signal processing, machine architecture, and
technology utilization. The introduction of the polyphase-

FFT provides signal processing gain superior to windowed

FFTs, nearly independent of frequency location within a

bin. Improvements in machine architecture have allowed
the use of fixed-point arithmetic and have saved cost in

both memory and arithmetic parts. Through the effective

utilization of advances in technology, the bandwidth and

number of channels of a single processor unit have each

been doubled. The signal processor will be capable of op-

eration at the limits of its 8-bit A/D converter, allowing

up to 41-dB input SNR with less than 1-dB loss in sensi-

tivity and exhibiting greater than 90-dB two-tone dynamic

range.
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Table 1. Arithmetic noise/input qusntizatlon noise

Renormalizatlon
shift

Input quantization

8 bits, dB 10 bits, dB

0 --0.64 11.40

1 --6.66 5.39

2 -12.66 -0.62

Table 2. Simulation results

Input quantization, SNRin, Ideal SNRout, Predicted loss, Measured loss,
bits dB dB dB dB

8 30 95.61 0.05 0.02

8 35 100.61 0.15 0.18

8 38 103.61 0.29 0.41

8 41 106.61 0.56 0.84

8 47 112.61 1.91 2.53

10 47 112.61 0.52 0.22

16 41 106.61 0.11 -0.065

16 60 125.61 4.70 1.415

Table 3. Maximum noise spur to average > 3500 blns from strong signal

Input, SNRin, Strong signal/ Max spur/ Probability (max./avg. > x dB)
bits dB weak signal noise average, dB (noise alone), percent

8 30 Single tone 11.60 "90

8 35 Single tone 11.71 80

8 38 Single tone 11.54 >90

8 41 Single tone 12.80 2

10 47 Single tone 11.49 >90

8 41 80 dB 12.87 2

8 41 90 dB 13.00 0.9

16 41 80 dB 11.61 90

16 41 90 dB 11.49 >90
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