
 Open access  Journal Article  DOI:10.1109/JIOT.2019.2917066

A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones
— Source link 

Daniele Palossi, Antonio Loquercio, Francesco Conti, Eric Flamand ...+2 more authors

Published on: 04 May 2018 - arXiv: Robotics

Topics: Convolutional neural network

Related papers:

 A 64-mW DNN-Based Visual Navigation Engine for Autonomous Nano-Drones

 
An Open Source and Open Hardware Deep Learning-powered Visual Navigation Engine for Autonomous Nano-
UAVs

 Ultra Low Power Deep-Learning-powered Autonomous Nano Drones

 DroNet: Learning to Fly by Driving

 Fully Onboard AI-powered Human-Drone Pose Estimation on Ultra-low Power Autonomous Flying Nano-UAVs

Share this paper:    

View more about this paper here: https://typeset.io/papers/a-64mw-dnn-based-visual-navigation-engine-for-autonomous-
rwj286yjqm

https://typeset.io/
https://www.doi.org/10.1109/JIOT.2019.2917066
https://typeset.io/papers/a-64mw-dnn-based-visual-navigation-engine-for-autonomous-rwj286yjqm
https://typeset.io/authors/daniele-palossi-1qeschr4a4
https://typeset.io/authors/antonio-loquercio-4wcfy8qrqy
https://typeset.io/authors/francesco-conti-2j0wv9dtpy
https://typeset.io/authors/eric-flamand-38dclbeem2
https://typeset.io/journals/arxiv-robotics-2niq05vq
https://typeset.io/topics/convolutional-neural-network-2r1ft81h
https://typeset.io/papers/a-64-mw-dnn-based-visual-navigation-engine-for-autonomous-2xgmza6deb
https://typeset.io/papers/an-open-source-and-open-hardware-deep-learning-powered-17np4gymk1
https://typeset.io/papers/ultra-low-power-deep-learning-powered-autonomous-nano-drones-3ii17deeq7
https://typeset.io/papers/dronet-learning-to-fly-by-driving-4qc42h4hyl
https://typeset.io/papers/fully-onboard-ai-powered-human-drone-pose-estimation-on-27x3gmox58
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-64mw-dnn-based-visual-navigation-engine-for-autonomous-rwj286yjqm
https://twitter.com/intent/tweet?text=A%2064mW%20DNN-based%20Visual%20Navigation%20Engine%20for%20Autonomous%20Nano-Drones&url=https://typeset.io/papers/a-64mw-dnn-based-visual-navigation-engine-for-autonomous-rwj286yjqm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-64mw-dnn-based-visual-navigation-engine-for-autonomous-rwj286yjqm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-64mw-dnn-based-visual-navigation-engine-for-autonomous-rwj286yjqm
https://typeset.io/papers/a-64mw-dnn-based-visual-navigation-engine-for-autonomous-rwj286yjqm


Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2020

A 64-mW DNN-Based Visual Navigation Engine for Autonomous

Nano-Drones

Palossi, Daniele ; Loquercio, Antonio ; Conti, Francesco ; Flamand, Eric ; Scaramuzza, Davide ; Benini,
Luca

DOI: https://doi.org/10.1109/jiot.2019.2917066

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-197700
Journal Article
Accepted Version

Originally published at:
Palossi, Daniele; Loquercio, Antonio; Conti, Francesco; Flamand, Eric; Scaramuzza, Davide; Benini, Luca
(2020). A 64-mW DNN-Based Visual Navigation Engine for Autonomous Nano-Drones. IEEE Internet
of Things Journal, 6(5):8357-8371.
DOI: https://doi.org/10.1109/jiot.2019.2917066



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 1

A 64mW DNN-based Visual Navigation Engine

for Autonomous Nano-Drones
Daniele Palossi, Antonio Loquercio, Francesco Conti, Member, IEEE, Eric Flamand, Davide Scaramuzza,

Member, IEEE, Luca Benini, Fellow, IEEE

Abstract—Fully-autonomous miniaturized robots (e.g., drones),
with artificial intelligence (AI) based visual navigation capa-
bilities, are extremely challenging drivers of Internet-of-Things
edge intelligence capabilities. Visual navigation based on AI
approaches, such as deep neural networks (DNNs) are becoming
pervasive for standard-size drones, but are considered out of
reach for nano-drones with a size of a few cm2. In this work,
we present the first (to the best of our knowledge) demon-
stration of a navigation engine for autonomous nano-drones
capable of closed-loop end-to-end DNN-based visual navigation.
To achieve this goal we developed a complete methodology for
parallel execution of complex DNNs directly on board resource-
constrained milliwatt-scale nodes. Our system is based on GAP8,
a novel parallel ultra-low-power computing platform, and a 27 g
commercial, open-source CrazyFlie 2.0 nano-quadrotor. As part
of our general methodology, we discuss the software mapping
techniques that enable the state-of-the-art deep convolutional
neural network presented in [1] to be fully executed aboard
within a strict 6 fps real-time constraint with no compromise
in terms of flight results, while all processing is done with only
64 mW on average. Our navigation engine is flexible and can be
used to span a wide performance range: at its peak performance
corner, it achieves 18 fps while still consuming on average just
3.5% of the power envelope of the deployed nano-aircraft.
To share our key findings with the embedded and robotics
communities and foster further developments in autonomous
nano-UAVs, we publicly release all our code, datasets, and trained
networks.

Index Terms—Autonomous UAV, Convolutional Neural Net-
works, Ultra-low-power, Nano-UAV, End-to-end Learning

SUPPLEMENTARY MATERIAL

Supplementary video at: https://youtu.be/57Vy5cSvnaA.

The project’s code, datasets and trained models are available

at: https://github.com/pulp-platform/pulp-dronet.

This work has been partially funded by projects EC H2020 OPRECOMP
(732631) and ALOHA (780788), by the Swiss National Center of Competence
Research (NCCR) Robotics and by the SNSF-ERC starting grant.
D. Palossi, F. Conti, E. Flamand and L. Benini are with the Inte-

grated Systems Laboratory of ETH Zürich, ETZ, Gloriastrasse 35, 8092
Zürich, Switzerland (e-mail: dpalossi@iis.ee.ethz.ch, fconti@iis.ee.ethz.ch,
eflamand@iis.ee.ethz.ch, lbenini@iis.ee.ethz.ch).
A. Loquercio and D. Scaramuzza are with the Robotic and Perception

Group, at both the Dep. of Informatics (University of Zürich) and the Dep.
of Neuroinformatics (University of Zürich and ETH Zürich), Andreasstrasse
15, 8050 Zürich, Switzerland.
F. Conti and L. Benini are also with the Department of Electrical, Electronic

and Information Engineering of University of Bologna, Viale del Risorgimento
2, 40136 Bologna, Italy (e-mail: f.conti@unibo.it, luca.benini@unibo.it).
E. Flamand is also with GreenWaves Technologies, Pépinière

Bergès, avenue des Papeteries, 38190 Villard-Bonnot, France (e-mail:
eric.flamand@greenwaves-technologies.com).
Copyright (c) 2019 IEEE. Personal use of this material is permitted. However,

permission to use this material for any other purposes must be obtained from

the IEEE by sending a request to pubs-permissions@ieee.org.

Fig. 1: Our prototype based on the COTS Crazyflie 2.0 nano-

quadrotor extended with our PULP-Shield. The system can

run the DroNet [1] CNN for autonomous visual navigation up

to 18 fps using only onboard resources.

I. INTRODUCTION

W ith the rise of the Internet-of-Things (IoT) era and rapid

development of artificial intelligence (AI), embedded

systems ad-hoc programmed to act in relative isolation are

being progressively replaced by AI-based sensor nodes that

acquire information, process and understand it, and use it to

interact with the environment and with each other. The ”ulti-

mate” IoT node will be capable of autonomously navigating

the environment and, at the same time, sensing, analyzing, and

understanding it [2].

Fully autonomous nano-scale unmanned aerial vehicles

(UAVs) are befitting embodiments for this class of smart

sensors: with their speed and agility, they have the potential

to quickly collect information from both their onboard sensors

and from a plethora of devices deployed in the environment.

Nano-UAVs could also perform advanced onboard analytics,

to pre-select essential information before transmitting it to

centralized servers [3]. The tiny form-factor of nano-drones

is ideal both for indoor applications where they should safely

operate near humans (for surveillance, monitoring, ambient

awareness, interaction with smart environments, etc.) [4] and

for highly-populated urban areas, where they can exploit



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 2

TABLE I: Rotorcraft UAVs taxonomy by vehicle class-size.

Vehicle Class ⊘ : Weight [cm:kg] Power [W] Onboard Device

std-size [11] ∼ 50 : ≥ 1 ≥ 100 Desktop

micro-size [12] ∼ 25 : ∼ 0.5 ∼ 50 Embedded

nano-size [13] ∼ 10 : ∼ 0.01 ∼ 5 MCU

pico-size [14] ∼ 2 : ≤ 0.001 ∼ 0.1 ULP

complementary sense-act capabilities to interact with the sur-

roundings (e.g., smart-building, smart-cities, etc.) [5]. As an

example, in this IoT scenario, a relevant application for intel-

ligent nano-size UAVs can be the online detection of wireless

activity, from edge nodes deployed in the environment, via

onboard radio packet sniffing [6].

Commercial off-the-shelf (COTS) quadrotors have already

started to enter the nano-scale, featuring only few centimeters

in diameter and a few tens of grams in weight [7]. How-

ever, commercial nano-UAVs still lack the autonomy boasted

by their larger counterparts [1], [8], [9], [10], since their

computational capabilities, heavily constrained by their tiny

power envelopes, have been considered so far to be totally

inadequate for the execution of sophisticated AI workloads,

as summarized in Table I.

The traditional approach to autonomous navigation of a

UAV is the so-called localization-mapping-planning cycle,

which consists of estimating the robot motion using either

offboard (e.g., GPS [15]) or onboard sensors (e.g., visual-

inertial sensors [16]), building a local 3D map of the envi-

ronment, and planning a safe trajectory through it [10]. These

methods, however, are very expensive for computationally-

constrained platforms. Recent results have shown that much

lighter algorithms, based on convolutional neural networks

(CNNs), are sufficient for enabling basic reactive navigation of

small drones, even without a map of the environment [1], [17],

[18], [19], [20]. However, their computational and power needs

are unfortunately still above the allotted budget of current

navigation engines of nano-drones, which are based on simple,

low-power microcontroller units (MCUs).

In Wood et al. [14], the authors indicate that, for small-

size UAVs, the maximum power budget that can be spent

for onboard computation is 5% of the total, the rest being

used by the propellers (86%) and the low-level control parts

(9%). The problem of bringing state-of-the-art navigation

capabilities on the challenging classes of nano- and pico-size

UAVs is therefore strictly dependent on the development of

energy-efficient and computationally capable hardware, highly

optimized software and new classes of algorithms combined

into a next-generation navigation engine. These constraints

and requirements depict the same scenario faced in deploying

high-level computation capabilities on IoT edge-nodes/sensors.

Moreover, in the case of a flying miniature robot, the challenge

is exacerbated by the strict real-time constraint dictated by the

need for fast reaction time to prevent collisions with dynamic

obstacles.

Whereas standard-size UAVs with a power envelope of

several hundred Watts have always been able to host powerful

high-end embedded computers like Qualcomm Snapdragon1,

Odroid, NVIDIA Jetson TX1, and TX2, etc., most nano-sized

UAVs have been constrained by the capabilities of micro-

controller devices capable of providing a few hundred Mop/s

at best. Therefore, CNN-based autonomous vision navigation

was so far considered to be out of reach for this class of drones.

In this work, we propose a novel visual navigation engine

and a general methodology to deploy complex CNN on top of

COTS resources-constrained computational edge-nodes such

as a nano-size flying robot. We present what, to the best

of our knowledge, is the first deployment of a State-of-the-

Art (SoA), fully autonomous vision-based navigation system

based on deep learning on top of a UAV visual navigation

engine consuming less than 284 mW at peak (64 mW in the

most energy-efficient configuration), fully integrated and in

closed-loop control within an open source COTS CrazyFlie

2.0 nano-UAV. Our visual navigation engine, shown on the

top of the CrazyFlie 2.0 in Figure 1, leverages the Green-

Waves Technologies GAP8 SoC, a high-efficiency embedded

processor taking advantage of the emerging parallel ultra-low-

power (PULP) computing paradigm to enable the execution

of complex algorithmic flows onto power-constrained devices,

such as nano-scale UAVs.

This work provides several contributions beyond the SoA

of nano-scale UAVs and serves as a proof-of-concept for a

broader class of AI-based applications in the IoT field. In this

work:

• we developed a general methodology for deploying SoA

deep learning algorithms on top of ultra-low power

embedded computation nodes, as well as a miniaturized

robot;

• we adapted DroNet, the CNN-based approach for au-

tonomous navigation proposed in Loquercio et al. [1] for

standard-sized UAVs, to the computational requirements

of a nano-sized UAV, such as fixed-point computation;

• we deployed DroNet on the PULP-Shield, an ultra-low

power visual navigation module featuring the GAP8 SoC,

an ultra-low power camera and off-chip Flash/DRAM

memory; the shield is designed as a pluggable PCB for

the 27 g COTS CrazyFlie 2.0 nano-UAV;

• we demonstrate our methodology for the DroNet CNN,

achieving a comparable quality of results in terms of

UAV control with respect to the standard-sized baseline

of [1] within an overall PULP-Shield power budget of

just 64 mW, delivering a throughput of 6 fps and up to

18 fps within 284 mW;

• we field-prove our methodology presenting a closed-loop

fully working demonstration of vision-driven autonomous

navigation relying only on onboard resources.

Our work demonstrates that parallel ultra-low-power com-

puting is a viable solution to deploy autonomous navigation

capabilities on board nano-UAVs used as smart, mobile IoT

end-nodes, while at the same time showcasing a complete

hardware/software methodology to implement such complex

workloads on a heavily power- and memory-constrained de-

vice. We prove in the field the efficacy of our methodology

by presenting a closed-loop fully functional demonstrator in

1 https://developer.qualcomm.com/hardware/qualcomm-flight



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 3

the supplementary video material. To foster further research

on this field, we release the PULP-Shield design and all code

running on GAP8, as well as datasets and trained networks,

as publicly available under liberal open-source licenses.

The rest of the paper is organized as follows: Section II

provides the SoA overview both in term of nano-UAVs and

low-power IoT. Section III introduces the software/hardware

background of our work. Section IV presents in detail our

CNN mapping methodology, including software tools and

optimizations. Section V discusses the design of the visual

navigation engine. Section VI-B shows the experimental eval-

uation of the work, considering both performance and power

consumption, comparing our results with the SoA and also

evaluating the final control accuracy. Finally, Section VII

concludes the paper.

II. RELATED WORK

The development of the IoT is fueling a trend toward edge

computing, improving scalability, robustness, and security [2].

While today’s IoT edge nodes are usually stationary, au-

tonomous nano-UAVs can be seen as perfect examples of next-

generation IoT end-nodes, with high mobility and requiring an

unprecedented level of onboard intelligence. The goal of this

work is to make SoA visual autonomous navigation compatible

with ultra-low power nano-drones, unlocking their deployment

for IoT applications. Therefore, this section focuses on related

work on nano-aircrafts [14] and the deployment of DNN on

top of low-power IoT nodes.

The traditional approach to autonomous navigation of nano-

drones requires to offload computation to some remote, power-

ful base-station. For instance, the authors of [21] developed a

visual-inertial simultaneous localization and mapping (SLAM)

algorithm, for a 25 g nano quadrotor. The SLAM algorithm

was used to stabilize the robot and follow a reference tra-

jectory. All the computation was performed off-board, by

streaming video and inertial information from the drone to a

remote, power-unconstrained laptop. The main problems with

this class of solutions are latency, maximum communication

distance, reliability issues due to channel noise, and high

onboard power-consumption due to the high-frequency video

streaming.

Few previous works presented nano-size flying robots with

some degree of autonomous navigation relying on onboard

computation. In [13], the authors developed a 4 g stereo-

camera and proposed a velocity estimation algorithm able

to run on the MCU on board a 40 g flying robot. If on

one side this solution allows the drone to avoid obstacles

during the flight, it still requires favorable flight conditions

(e.g., low flight speed of 0.3 m/s). In [22], an optical-flow-

based guidance system was developed for a 46 g nano-size

UAV. The proposed ego-motion estimation algorithm did not

rely on feature tracking, making it possible to run on the

onboard MCU. Unfortunately, the autonomous functionality

was limited to hovering, and the method did not reach the

accuracy of computationally expensive techniques based on

feature tracking.

In [23], an application-specific integrated circuit (ASIC),

called NAVION, for onboard visual-inertial odometry was

presented. Although this chip exposes enough computational

power to perform state estimation up to 171 fps within 24 mW,

this represents only one among other basic functionalities

required by any UAV to be fully autonomous. Therefore,

in a real use case, the proposed ASIC would still need to

be paired with additional circuits, both for complementary

onboard computation as well as for interacting with the drone’s

sensors. Moreover, to the date, the NAVION accelerator does

not reach the same level of maturity and completeness of our

work; in fact, NAVION has not yet been demonstrated on a

real-life flying nano-drone.

COTS nano-size quadrotors, like the Bitcraze Crazyflie 2.0

or the Walkera QR LadyBug, embed on board low-power sin-

gle core MCUs, like the ST Microelectronics STM32F4 [13],

[21], [24]. While significant work has been done within

academia [25], [26], [27] and industry (e.g., TensorFlow Lite2

and ARM Compute Library3) to ease the embedding of deep

neural networks on mobile ARM-based SoC’s, there is no

general consensus yet on how to “correctly” deploy complex

AI-powered algorithms, such a deep neural networks, on this

class of low-power microcontrollers. This is a “hard” problem

both in terms of resource management (in particular avail-

able working memory and storage) and the peak throughput

achievable by single core MCUs. This problem is furthermore

exacerbated by a lack of abstraction layers and computing

facilities that are taken from granted by common deep learning

tools, such as linear algebra libraries (e.g., BLAS, CUBLAS,

CUDNN) and preprocessing libraries (e.g., OpenCV).

ARM has recently released CMSIS-NN [28], which is meant

to shrink this gap by accelerating deep inference compute

kernels on Cortex-M microcontroller platforms, providing the

equivalent of a BLAS/CUDNN library (in Section VI-B we

present a detailed SoA comparison between our results and

CMSIS-NN). However, this effort does not curtail the difficulty

of effectively deploying DNNs in memory-scarce platforms,

which often requires particular scheduling/tiling [29], [30] and

is still widely considered an open problem.

Pushing beyond the aforementioned approaches, in this

work we propose and demonstrate a visual navigation engine

capable of sophisticated workloads, such as real-time CNN-

based autonomous visual navigation [1], entirely aboard within

the limited power envelope of nano-scale UAVs (∼0.2 W).

Such a kind of autonomous navigation functionality has been

previously limited to standard-sized UAVs, generally equipped

with power-hungry processors (≥10W) or relying on external

processing and sensing (e.g., GPS) [6]. Our system relaxes

both requirements: we use an onboard ultra-low-power pro-

cessor and a learning-based navigation approach.

III. BACKGROUND

In this section, we summarize the hardware/software back-

ground underlying our visual navigation engine. We first

present the original DroNet CNN developed for standard-size

UAVs. Then, we introduce the GAP8 SoC used on board of

our nano-drone.

2 ttps://www.tensorflow.org/lite
3 https://arm-software.github.io/ComputeLibrary



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 4

3x33x3

/2
B

N

B

N

1x1

/2

3x33x3

/2
B

N

B

N

1x1

/25x5

/2

3x3

/2/2 3x33x3

/2
B

N

B

N

1x1

/2

RES BLOCK 1

3x3

RES BLOCK 2 RES BLOCK 3

100×100×32 50×50×32 25×25×32 13×13×64 7×7×128

NxN

/S Convolution
/S: stride factor

NxN: ✁lter size

/S

NxN

Max-pooling
/S: stride factor

NxN: pool size

B

N

Batch

Normalization
ReLu Sum Dropout

Fully

connected
Sigmoid

7×7×12813×13×6425×25×32
Steering angle

by-pass by-pass by-pass

Prob. collision

Input image

200x200x1

Fig. 2: DroNet [1] topology.

A. DroNet

DroNet is a lightweight residual CNN architecture. By

predicting the steering angle and the collision probability, it

enables safe autonomous flight of a quadrotor in various indoor

and outdoor environments.

The DroNet topology, as illustrated in Figure 2, was inspired

by residual networks [31] and was reduced in size to minimize

the bare image processing time (inference). The two tasks

of steering and collision probability prediction share all the

residual layers to reduce the network complexity and the

frame processing time. Then, two separate fully connected

layers independently infer steering and collision probabilities.

Mean-squared error (MSE) and binary cross-entropy (BCE)

have been used to train the two predictions, respectively. A

temporal dependent weighting of the two losses ensures the

training convergence despite the different gradients’ magnitude

produced by each loss. Eventually, to make the optimization

focus on the samples that are most difficult to learn, hard

negative mining was deployed in the final stages of learning.

The two tasks learn from two separate datasets. Steering

angle prediction was trained with the Udacity dataset4, while

the collision probability was trained with the Zürich bicycle

dataset5.

The outputs of DroNet are used to command the UAV

to move on a plane with velocity in forwarding direction

vk and steering angle θk. More specifically, the low-pass

filtered probability of collision is used to modulate the UAV

forward velocity, while the low-pass filtered steering angle is

converted to the drone’s yaw control. The result is a single

relatively shallow network that processes all visual information

and directly produces control commands for a flying drone.

Learning the coupling between perception and control end-to-

end provides several advantages, such as a simple, lightweight

system and high generalization abilities. Indeed, the method

was shown to function not only in urban environments but

also on a set of new application spaces without any initial

knowledge about them [1]. More specifically, even without a

map of the environment, the approach generalizes very well to

scenarios completely unseen at training time, including indoor

corridors, parking lots, and high altitudes.

B. GAP8 Architecture

Our deployment target for the bulk of the DroNet com-

putation is GAP8, a commercial embedded RISC-V multi-

core processor derived from the PULP open source project6.

4 https://www.udacity.com/self-driving-car
5 http://rpg.ifi.uzh.ch/dronet.html 6 http://pulp-platform.org

At its heart, GAP8 is composed by an advanced RISC-V

microcontroller unit coupled with a programmable octa-core

accelerator with RISC-V cores enhanced for digital signal

processing and embedded deep inference.

S
o

C
 I

n
te

rc
o

n
n

e
c
t

PULP CLUSTER

Shared-L1 Interconnect

Shared L1 Memory
64KB

Shared Instruction Cache

HW

Sync

DBG

Unit

L2 Memory
512KB

D
M

A

I $

L1

ROM

CLK

Gen
DBG

DC/DC

LVDS

UART

SPI

I2S

I2C

CPI

HYPER

GPIO

JTAG

PMU

RTC

D
M

A

Fig. 3: Architecture of the GAP8 embedded processor.

Figure 3 shows the architecture of GAP8 in detail. The pro-

cessor is composed of two separate power and clock domains,

the FABRIC CTRL (FC) and the CLUSTER (CL). The FC is

an advanced microcontroller unit featuring a single RISC-V

core coupled with 512 kB of SRAM (L2 memory). The FC

uses an in-order, DSP-extended four-stage microarchitecture

implementing the RISC-V instruction set architecture [32].

The core supports the RV32IMC instruction set consisting

of the standard ALU instructions plus the multiply instruc-

tion, with the possibility to execute compressed code. In

addition to this, the core is extended to include a register-

register multiply-accumulate instruction, packed SIMD (single

instruction multiple-data) DSP instructions (e.g., fixed-point

dot product), bit manipulation instructions and two hardware

loops. Moreover, the SoC features an autonomous multi-

channel I/O DMA controller (µDMA) [33] capable of trans-

ferring data between a rich set of peripherals (QSPI, I2S, I2C,

HyperBus, Camera Parallel Interface) and the L2 memory with

no involvement of the FC. The HyperBus and QSPI interfaces

can be used to connect GAP8 with an external DRAM or

Flash memory, effectively extending the memory hierarchy

with an external L3 having a bandwidth of 333 MB/s and

capacity up to 128 Mbit. Finally, the GAP8 SoC also includes

a DC/DC converter converting the battery voltage down to the

required operating voltage directly on-chip, as well as two

separate frequency-locked loops (FLL) for ultra-low power

clock generation [34].

The CLUSTER is dedicated to the acceleration of com-



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 5

TABLE II: DroNet accuracy on PULP. In bold the configuration used for the final deployment.

Training Inference - Fixed16

Dataset Max-Pooling Data Type
Original Dataset HiMax Dataset

EVA RMSE Accuracy F1-score Accuracy F1-score

Original

3× 3 Float32 0.758 0.109 0.952 0.888 0.859 0.752

3× 3 Fixed16 0.746 0.115 0.946 0.878 0.841 0.798

2× 2 Float32 0.766 0.105 0.945 0.875 0.845 0.712

2× 2 Fixed16 0.795 0.097 0.935 0.857 0.873 0.774

Original + HiMax

3× 3 Float32 0.764 0.104 0.949 0.889 0.927 0.884

3× 3 Fixed16 0.762 0.109 0.956 0.894 0.918 0.870

2× 2 Float32 0.747 0.109 0.964 0.916 0.900 0.831

2 × 2 Fixed16 0.732 0.110 0.977 0.946 0.891 0.821

putationally intensive tasks. It contains eight RISC-V cores

(identical to the one used in the FC) sharing a 64 kB multi-

banked shared L1 scratchpad memory through a low-latency,

high-throughput logarithmic interconnect [35]. The shared L1

memory supports single-cycle concurrent access from different

cores requesting memory locations on separate banks and a

starvation-free protocol in case of bank contentions (typically

<10% on memory-intensive kernels). The eight cores are

fed with instruction streams from a single shared, multi-

ported I-cache to maximize the energy efficiency on the data-

parallel code. A cluster DMA controller is used to transfer

data between the shared L1 scratchpad and the L2 memory;

it is capable of 1D and 2D bulk memory transfer on the

L2 side (only 1D on the L1 side). A dedicated hardware

synchronizer is used to support fast event management and

parallel thread dispatching/synchronization to enable ultra-fine

grain parallelism on the cluster cores. CLUSTER and FABRIC

CTRL share a single address space and communicate with

one another utilizing two 64-bit AXI ports, one per direction.

A software runtime resident in the FC overviews all tasks

offloaded to the CL and the µDMA. On a turn, a low-overhead

runtime on the CL cores exploits the hardware synchronizer

to implement shared-memory parallelism in the fashion of

OpenMP [36].

IV. CNN MAPPING METHODOLOGY

In this section, we discuss and characterize the main

methodological aspects related to the deployment of DroNet

on top of the GAP8 embedded processor. This task showcases

all the main challenges for a typical deep learning application

running on resource-constrained embedded IoT node. There-

fore, while our visual navigation engine is application-specific,

the underlying methodology we present in the following of this

section is general and could also be applied to other resource-

bound embedded systems where computationally intensive

tasks have to be performed under a real-time constraint on

a parallel architecture.

A. Deploying DroNet on GAP8

Following an initial characterization phase, we calculated

the original convolutional neural network (CNN) to involve

∼41 MMAC operations per frame (accounting only for con-

volutional layers) and more than 1 MB of memory needed

solely to store the network’s weights, yielding a baseline for

the number of resources required on our navigation engine7. To

successfully deploy the CNN on top of GAP8, the execution

of DroNet has to fit within the strict real-time constraints

dictated by the target application, while respecting the bounds

imposed by the on-chip and onboard resources. Specifically,

these constraints can be resumed in three main points:

• the minimum real-time frame-rate required to select a new

trajectory on-the-fly or to detect a suspected obstacle in

time to prevent a potential collision;

• the native quality-of-results must be maintained when

using an embedded ultra-low power camera (in our pro-

totype, the HiMax – see Section V for details) instead of

the high-resolution camera used by the original DroNet;

• the amount of available memory on the GAP8 SoC, as

reported in Section III-B we can rely on 512 kB of L2

SRAM and 64 kB of shared L1 scratchpad (TCDM), sets

an upper bound to the size of operating set and dictates

ad-hoc memory management strategy.

Therefore, it is clear there is a strong need for a strategy

aimed at reducing the memory footprint and computational

load to more easily fit within the available resources while

exploiting the architectural parallelism at best to meet the

real-time constraint. The original DroNet network [1] has

been modified to ease its final deployment; we operated

incrementally on the model and training flow provided by the

original DroNet, based on Keras/TensorFlow8.

The first change we performed is the reduction of the

numerical representation of weights and activations from the

native one, 32-bit floating point (Float32), down to a

more economical and hardware-friendly 16-bit fixed point one

(Fixed16) that is better suited for the deployment on any

MUC-class processor without floating point unit (FPU), like

in our GAP8 SoC. By analyzing the native Float32 network

post-training, we determined that a dynamic range of ±8 is

sufficient to represent all weights and intermediate activations

with realistic inputs. Accordingly, we selected a Fixed16

Q4.12 representation, using 4 bits for the integer part (includ-

ing sign) and 12 bits for the fractional part of both activations

and weights (rounding down to a precision of 2−12). Then,

7 The baseline MMAC count does not correspond to the final implemen-
tation’s instruction count, because it does not account for implementation
details such as data marshaling operations to feed the processing elements;
however, it can be used to set an upper bound to the minimum execution
performance that is necessary to deploy DroNet at a given target frame rate.
8 https://github.com/uzh-rpg/rpg public dronet



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 6

we retrained the network from scratch replacing the native

convolutional layers from Keras to make them “quantization-

aware”, using the methodology proposed by Hubara et al. [37].

The second significant change with respect to the original

version of DroNet is the extension of the collision dataset used

in [1] (named Original dataset) with ∼1300 images (1122 for

training and 228 for test/validation) acquired with the same

camera that is available aboard the nano-drone (named Hi-

Max dataset). Fine-tuning approaches, like dataset extension,

have proved to be particularly effective at improving network

generalization capability [38]. In our case, the original dataset

is built starting form high-resolution color cameras whose

images are significantly different from the ones acquired by

the ULP low-resolution grayscale camera available in our

navigation engine, particularly in terms of contrast. Therefore,

we extended the training set and we evaluate our CNN for

both datasets separately. Finally, we modified the receptive

field of max-pooling layers from 3×3 to 2×2, which yields

essentially the same final results while reducing the execution

time of max-pooling layers by 2.2× and simplifying their final

implementation on GAP8.

Table II summarizes the results in terms of accuracy for

all these changes. Explained variance9 (EVA) and root-mean-

squared error (RMSE) refer to the regression problem (i.e.,

steering angle) whereas Accuracy and F1-score10 are related to

the classification problem (i.e., collision probability), evaluated

on both the Original and HiMax datasets. Regarding the

Original dataset, it is clear that the proposed modifications are

not penalizing the overall network’s capabilities. Moreover,

fine-tuning increases performance for almost all cases (both

regression and classification), considering the test on the

HiMax dataset, there is a definite improvement in term of

collision accuracy when training is done with the extended

dataset. If we consider paired configurations, the fine-tuned

one based is always outperforming its counterpart, up to 8%

in accuracy (i.e., max-pooling 3×3, Fixed16). In Table II

we also highlight (in bold) the scores achieved by the final

version of DroNet deployed on GAP8.

B. AutoTiler

One of the most significant constraints in ULP embedded

SoC’s without caches is the explicit management of the

memory hierarchy; that is, how to marshal data between the

bigger - and slower - memories and the smaller - but faster -

ones tightly coupled to the processing elements. A common

technique is tiling [39], which involves i) partitioning the input

and output data spaces in portions or tiles small enough to fit

within the smallest memory in the hierarchy (in our case, the

shared L1) and ii) setting up an outer loop iterating on tiles,

with each iteration comprising the loading of an input tile into

the L1, the production of an output tile, and the storage of the

output tile into the higher levels of the memory hierarchy.

Tiling is particularly effective for algorithms like deep neural

networks exposing very regular execution and data access

patterns. As part of this work, we propose a tiling methodology

that optimizes memory utilization on GAP8, while at the same

9 EVA =
V ar[ytrue−ypred]

V ar[ytrue]
10 F-1 = 2 precision×recall

precision+recall

time relieving the user from tedious and error-prone manual

coding of the tiling loop and of the data movement mechanism.

L2 Memory (512KB) L1 Memory (64KB)

In
p
u
t 

te
n
s
o
r

DMA

DMA

DMA

O
u
tp

u
t 

te
n
s
o
r

F
il
te

rs

Output tile

tile 2

tile 1

tile 2

tile 3

tile 4

Kin
Win

Hin

tile 1

tile 2

tile 3

tile 4

Kout
Wout

Hout

Kin × Kout

convFilter

Hf

Wf

Input tile

tile 2

Fig. 4: Convolutional layer tiling.

Considering Figure 4 as a reference, each layer in a CNN

operates on a three-dimensional input tensor representing a

feature space (with one feature map per channel) and produces

a new 3D tensor of activations as output. Convolutional layers,

in particular, are composed of a linear transformation that

maps Kin input feature maps into Kout output feature maps

employing of Kin×Kout convolutional filters (or weight ma-

trices). Therefore, in any convolutional layer, we can identify

three different data spaces which can be partitioned in tiles

in one or more of the three dimensions (i.e., W , H , and K

in Figure 4). Similar considerations can also be made for the

other layers in a CNN, allowing to treating them in the same

fashion.

As the design space defined by all possible tiling schemes

is very large, we developed a tool called AutoTiler to help

explore a subset of this space, choose an optimal tiling

configuration, and produce C wrapping code that orchestrates

the computation in a pipelined fashion as well as double-

buffered memory transfers, taking advantage of the cluster

DMA controller to efficiently move data between the L2 and

L1 memories. The fundamental unit of computation assumed

by the AutoTiler tool is the basic kernel, a function considering

that all its working data is already located in the L1 shared

memory. Examples of basic kernels include convolution, max-

pooling, ReLU rectification, addition. To map the overall high-

level algorithm to a set of basic kernels that operate iteratively

on tiles, the AutoTiler introduces a second level of abstraction:

the node kernel. The structure of the target algorithm is coded

by the developer as a dependency graph, where each node (a

node kernel) is a composition of one or more basic kernels

together with a specification of the related iteration space

over W , H , Kin, Kout. For example, a node kernel for a

convolutional layer can be composed of a first basic kernel for

setting the initial bias, a central one to perform convolutions

and a final one for ReLU rectification: in the prologue, body,

and epilogue, respectively. The AutoTiler treats the tiling of

each node kernel as an independent optimization problem con-

strained by the node kernel specification and the memory sizes.

This approach allows to build complex execution flows reusing

hand-optimized basic kernels and abstracting the underneath

complexity from the developer.



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 7

Listing 1 Example of spatial execution scheme. x, w, y are

the multi-dimensional input, weight and output tensors in L2

memory; x̂, ŵ, and ŷ are their respective tiles in L1 memory.

# weight DMA-in

DMA_Copy(ŵ ← w)

for t in range(nb_tiles_H): # tiling over H

# prologue operation (set bias value)

ŷ ← BasicKernel_SetBias(ŷ)

for j in range(nb_tiles_Kin): # tiling over Kin

# input tile DMA-in

DMA_Copy(x̂← x[j, t])
for i in range(Kout):

# body operation (convolution)

ŷ ← BasicKernel_Conv_Spatial(ŷ)

ŷ ← BasicKernel_ReLU(ŷ)

# output tile DMA-out

DMA_Copy(y[i, t]← ŷ)

Listing 2 Example of feature-wise execution scheme. x, w,

y are the multi-dimensional input, weight and output tensors

in L2 memory; x̂, ŵ, and ŷ are their respective tiles in L1

memory.

for i in range(nb_tiles_Kout): # tiling over Kout

# weight DMA-in

DMA_Copy(ŵ ← w[i])
# prologue operation (set bias value)

ŷ ←BasicKernel_SetBias(ŷ)

for j in range(nb_tiles_Kin): # tiling over Kin

# input tile DMA-in

DMA_Copy(x̂← x[j])
# body operation (convolution)

ŷ ← BasicKernel_Conv_FeatWise(ŵ, x̂, ŷ)

# epilogue operation (ReLU)

ŷ ← BasicKernel_ReLU(ŷ)

# output tile DMA-out

DMA_Copy(y[i]← ŷ)

C. Tiling, Parallelization & Optimization

As introduced in Section III, the GAP8 SoC features 8+1

RISC-V cores with DSP-oriented extensions. To develop an

optimized, high-performance and energy-efficient application

for GAP8 and meet the required real-time constraint it is

paramount that the most computationally intensive kernels of

the algorithm are parallelized to take advantage of the 8-core

cluster and are entirely using the available specialized instruc-

tions. For the purpose of this work, we used the AutoTiler

to fully implement the structure of the modified DroNet,

therefore these optimization steps are reduced to hand-tuned

parallelization and optimization of the basic kernels.

To exploit the available computational/memory resources

at best, we constrain the AutoTiler to target the following

general scheme: the input tensor is tiled along the Hin

and Kin dimensions, while the output tensor is tiled along

Hout and Kout ones. The stripes along Hin are partially

overlapped with one another to take into account the receptive

field of convolutional kernels at the tile border. Execution of

the node kernel happens in either a spatial or feature-wise

fashion, which differ in the ordering of the tiling loops and

in the parallelization scheme that is applied. In the spatial

scheme, work is split among parallel cores along the Wout

dimension; Figure 4 and 5-A refer to this scheme, which is also

exemplified in Listing 1. In the feature-wise scheme, which we

only apply on full feature maps (i.e., the number of tiles in the

GAP8 - CLUSTERSpatial scheme

A Output tensor

Wout

0
1

2
3

4
5

6
7

Kout-1

Kout

H
o
u
t

Feature-wise scheme

BOutput tensorCores

Kout

H
o
u
t

Wout

0 1 2 3 4 5 6 7

Fig. 5: Parallelization schemes utilized in the DroNet layers for

deployment on GAP8; the different colors represent allocation

to a different core.

Hout direction is 1), work is split among cores along the Kout

dimension; this scheme is shown in Figure 5-B and Listing 2.

The choice of one scheme over the other is influenced mostly

by the parallelization efficiency: after an exploration phase,

we found the best performance arose when using the spatial

scheme for the first node kernel of DroNet (first convolution

+ max-pooling) while using the feature-wise approach for the

rest. This choice is related to the fact that in deeper layers the

feature map size drops rapidly and the spatial scheme becomes

suboptimal because the width of each stripe turns too small to

achieve full utilization of the cores.

To further optimize the DroNet execution, we made

use of all the optimized signal processing instructions

available in GAP8. These include packed-SIMD in-

structions capable of exploiting sub-word parallelism, as

well as bit-level manipulation and shuffling, which can

be accessed by means of compiler intrinsics such as

__builtin_pulp_dotsp2 (for 16-bit dot product with 32-bit

accumulation), __builtin_shuffle (permutation of elements

within two input vectors), __builtin_pulp_pack2 (packing

two scalars into a vector).

D. L2 Memory Management Strategy

Given i) the residual-network topology of DroNet, which

requires to increase the lifetime of the output tensors of some

of the layers (due to bypass layers), and ii) the “scarcity” of

L2 memory as a resource to store all weights and temporary

feature maps (we would need more than 1 MB in view of

512 kB available), an ad-hoc memory management strategy for

the L2 memory is required, similar to what is done between

L2 and L1 using the GAP8 AutoTiler. Due to the high energy

cost of data transfers between L3 and L2, the strategy needs

to be aimed at the maximization of the L2 reuse.

At boot time, before the actual computation loop starts, i)

we load all the weights, stored in the external flash memory

as binary files, in the L3 DRAM memory and ii) we call

from the fabric controller the runtime allocator to reserve two

L2 allocation stacks (shown in Figure 7) where intermediate

buffers will be allocated and deallocated in a linear fashion.

The choice to use two allocation stacks instead of a single one

is because in the latter case, we would need to keep alive up

to 665 kB in L2 due to data dependencies, which is more than

the available space. Our allocation strategy updates the pointer

of the next free location in the pre-allocated L2 stack, avoiding

the runtime overhead of library allocation/free functions. We



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 8

NxN

/S Convolution
/S: stride factor

NxN: ✁lter size

/S

NxN

Max-pooling
/S: stride factor

NxN: pool size

ReLu

Sum
Fully

connected

Sigmoid

L3-L2 memory managmentNode kernel

I1=image; Alloc(O1,0); Alloc(w1,0);

Free(w1,0); I2=O1; O2=O1;

# Node kernel

5x5

/2

3x3

/2/2

3x3

I1

w1
O1

Alloc(O17,1); Alloc(w11,1);

Free(w11,1); I18=O16;

Alloc(O18,1); Alloc(w12,1);

I17

w11
O17 # Node kernel

I18

w12
O18 # Node kernel

image

R
E
S

 B
L
O

C
K

 1

x3

Free(w2,1); I4=O3; 

Alloc(O4,0); Alloc(w3,1);

I3=O2; Alloc(O3,1); Alloc(w2,1);

3x3

Free(w3,1); Free(O3,1); I5=O1;

Alloc(O5,1); Alloc(w4,1);

Free(w4,1); I6=O4; O6=O5;

Free(O4,0); Free(O1,0);

I7=O6; O7=O6;

# Node kernel

# Node kernel

# Node kernel

# Node kernel

# Node kernel

I2 O2

I3

w2
O3

I4

w3
O4

I5

w4
O5

I6

O6
O6

/2

3x3

/2

1x1

E
x
e
c
u
ti

o
n
 ✂

o
w

# �DMA w1 copy

# �DMA w2 copy

# �DMA w3 copy

# �DMA w4 copy

# �DMA w11 copy

# �DMA w12 copy

B
a
s
ic

 k
e
rn

e
ls

Fig. 6: DroNet on PULP execution graph (with pseudo-code).

differentiate our strategy between weights and feature maps:

for the former, we allocate space just before their related layer

and deallocate it just after the layer execution, as also shown

in the pseudo-code blocks of Figure 6. For the latter, due to

the residual network bypasses, we often have to prolongate

the lifetime of a feature map during the execution of the two

following layers (node kernels in Figure 6). Therefore, for

Allocation stack 0

O1 O1 O8 O8 O10 O10 O10 O10

w1 w5 w6 w7 w8 w9 O15O4

162kB 200kB 59kB 96kB 26kB 169kB 308kB 26kB

Allocation stack 1

O3 O3 O5 O5 O13 O13 O17 O17

w2 w4 w11 O18

58kB 58kB 42kB 62kB 26kB 42kB 13kB 13kB

w3 O9 O14 O14

w9 w9

Time

Fig. 7: L2 memory allocation sequence.

each RES block, there will be an amount of time where three

tensors have to be stored at the same time.

Figure 6 shows the full execution flow of DroNet related

to our solution, annotated with the sequence of node kernels

and the L3/L2 memory management blocks. For the sake of

readability, in Figure 6, we report only the first RES block,

but this can be generalized also to the others with few minor

modifications and updating input, output and weights id. In

the pseudo-code of Figure 6, the second parameter of the

Alloc and Free function specifies the allocation buffer

(i.e., Allocation stack 0 or Allocation stack 1

in Figure 7). Note that, the µDMA copies the weights from

L3 to L2 just after the destination L2 area is allocated. The

buffers’ memory allocation sequence is reported in Figure 7

(from left to right) for the entire DroNet execution. The

columns of the two stacks represent the data needed at each

execution step, where Oi and wj represent the input/output

feature maps and weights, respectively. The last row of each

stack reports the total amount of L2 memory required at each

step. Thus, the final dimension of each stack is given by the

column with the biggest occupancy (highlighted in light blue

in Figure 7), resulting in 370 kB of L2 memory. Therefore,

our solution not only allows to the DroNet execution within

the L2 memory budget constraint but results in leaving 142 kB

of the L2 still available (i.e., ∼28% of the total) for additional

onboard tasks like target following [40], etc.

V. THE PULP-SHIELD

To host our visual navigation algorithm, we designed a

lightweight, modular and configurable printed circuit board

(PCB) with highly optimized layout and a form factor com-

patible with our nano-size quadrotor. It features a PULP-based

GAP8 SoC, two Cypress HyperBus Memories11 and an ultra-

low power HiMax CMOS image sensor12 able to run up to

60 fps with a gray-scale resolution of 320 × 240 pixels with

just 4.5 mW of power. Our pluggable PCB, named PULP-

Shield, has been designed to be compatible with the Crazyflie

2.0 (CF) nano-quadrotor13. This vehicle has been chosen due

to its reduced size (i.e., 27 g of weight and 10 cm of diameter)

11 http://www.cypress.com/products/hyperbus-memory
12 http://www.himax.com.tw/products/cmos-image-sensor/image-sensors
13 https://www.bitcraze.io/crazyflie-2



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 9

A B

Fig. 8: The PULP-Shield pluggable PCB. Top view (A) and

bottom view (B).

and its open-source and open-hardware philosophy. The com-

munication between the PULP chip and the main MCU aboard

the nano-drone (i.e., ST Microelectronics STM32F40514) is

realized via an SPI interface and two GPIO signals.

In Figure 8 the schematic of the proposed PULP-Shield is

shown. Two BGA memory slots allow all possible combina-

tions of HyperRAM, HyperFlash, and hybrid HyperFlash/RAM

packages. In this way, we can select the most appropriate

memory configuration given a target application. We mounted

on one slot a 64 Mbit HyperRAM (DRAM) chip and on the

other a 128 Mbit HyperFlash memory, embodying the system

L3 and the external storage, respectively.

On the PCB (Figure 8-B) there is also a camera connector

that allows the HiMax camera to communicate with the rest of

the system through the parallel camera interface (PCI) proto-

col. Two mounting holes, on the side of the camera connector,

allow plugging a 3D-printed camera holder that can be set

either in front-looking or down-looking configuration. Those

two configurations are representative of the most common

visual sensors layouts typically embedded in any autonomous

flying vehicles. The front-looking configuration can be used

for many navigation tasks like path planning [41], obstacle

avoidance [42], trajectory optimization [9], to name a few.

Instead, the down-looking camera configuration is usually

chosen for stabilization tasks like distance estimation [43],

way-point tracking, and positioning [44], etc.

On the shield, there are also a JTAG connector for debug

purposes and an external I2C plug for future development.

Two headers, located on both sides of the PCB, grant a steady

physical connection with the drone and at the same time, they

bring the shield power supply and allow communication with

the CF through the GPIOs and the SPI interface. The form

factor of our final PULP-Shield prototype is 30×28 mm, and

it weighs ∼5 g (including all components), well below the

payload limit imposed by the nano-quadcopter.

Similarly to what has been presented in [36], the PULP-

Shield embodies the Host-Accelerator architectural paradigm,

where the CF’s MCU offloads the intensive visual navigation

workload to the PULP accelerator. As depicted in Figure 9 the

interaction starts from the host, which wakes up the accelerator

with a GPIO interrupt 1 . Then, the accelerator fetches from

its external HyperFlash storage the kernel (stored as a binary

14 http://www.st.com/en/microcontrollers/stm32f405-415.html

1

6

7

Host/Drone PULP-Shield

1 Init interrupt (GPIO)

2 Load binary

3 Configure camera (I2C)

4 Grab frames (✁DMA)

5 LD Weights and Exec

6 Write-back results (SPI)

7 Result ready (ack)

Fig. 9: Example of interaction between the PULP-Shield and

the drone.

file) to be executed: DroNet in our case 2 . Note that, in this

first part of the protocol the host can also specify which kernel

should be executed, as well as a sequence of several pre-loaded

ones available on the external Flash storage. At this point, the

GAP8 SoC can configure the HiMax camera via an internal

I2C 3 and start to transfer the frames from the sensor to

the L2 shared memory through the µDMA 4 . All additional

data, like the weights used in our CNN, can be loaded from

the DRAM/Flash memory and parallel execution is started

on the accelerator 5 . Lastly, the results of the computation

are returned to the drone’s MCU via SPI 6 , and the same

host is acknowledged about the available results with a final

interrupt over GPIO 7 . Note that, the transfer of a new frame

is performed by the µDMA overlapping the CNN computation

on the previous frame performed in the CLUSTER.

Even if the PULP-Shield has been developed specifically to

fit the CF quadcopter, its basic concept and the functionality it

provides are quite general, and portable to any drone based on

an SPI-equipped MCU and more generally to a generic IoT

node requiring visual processing capabilities. The system-level

architectural template it is based on is meant for minimizing

data transfers (i.e., exploiting locality of data) and communi-

cation overhead between the main MCU and the accelerator –

without depending on the internal microarchitecture of either

one.

VI. EXPERIMENTAL RESULTS

In this section we present the experimental evaluation of our

visual navigation engine, considering three primary metrics:

i) the capability of respecting a given real-time deadline,

ii) the ability of performing all the required computations

within the allowed power budget and iii) the final accuracy

of the closed-loop control, given as reaction time w.r.t. an

unexpected obstacle. All the results are based on the PULP-

Shield configuration presented in Section V.

A. Performance & Power Consumption

We measured wall-time performance and power consump-

tion by sweeping between several operating modes on GAP8.



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 10

0

25

50

75

100

125

150

175

200

225

250

275

300

T
o

ta
l 

p
o

w
e

r 
[m

W
]

0 50 100 150 200 250 300

0

5

10

15

20

0 100 200 300 400 500 600 700

FC @ 50MHz

FC @ 100MHz

FC @ 150MHz

FC @ 200MHz

FC @ 250MHz

Time per frame [ms]

FC @ 50MHz

FC @ 100MHz

FC @ 150MHz

FC @ 200MHz

FC @ 250MHz

FC @ 50MHz

FC @ 100MHz

FC @ 150MHz

FC @ 200MHz

FC @ 250MHz

P
e

rf
o

rm
a

n
ce

 [
fp

s]

FC @ 50MHz
FC @ 100MHz
FC @ 150MHz
FC @ 200MHz
FC @ 250MHz

25 50 75 100 125 150 175 200 225 250

CL frequency [MHz]

50

100

150

200

F
C

 f
re

q
u

e
n

cy
 [

M
H

z]

14.9 15.6 15.2

12.5 10.2 9.1 8.5 8.6 8.7 8.9 14.5 15.0 14.7

11.9 9.1 8.1 8.0 8.0 8.2 8.2 13.8 14.5 14.3

10.7 8.2 7.6 7.5 7.7 7.8 8.0 13.1 13.7 13.8

8.4 7.9 7.6 7.1 7.3 7.6 7.9 12.8 13.4 13.7E
n

e
rg

y
 p

e
r 

fr
a

m
e

 [
m

J]

5

10

15

20
VDD @ 1.0V VDD @ 1.2V

VDD @ 1.0V

VDD @ 1.2V

V
D

D
 @

 1
.2

V

V
D

D
 @

 1
.0

V

20m
J / fram

e

10m
J / fram

e5m
J / fram

e

CL frequency [MHz]

250 config. not available

A

B1 B2

Fig. 10: A) Heat map showing the energy per frame in all tested configurations of GAP8 with VDD@1.0 V and VDD@1.2 V;

B1) DroNet performance in frames per second (fps) in all tested configurations (coloring is proportional to total system power);

B2) DroNet total system power vs. time per frame in all tested configurations; dashed gray lines show the levels of energy

efficiency in mJ/frame.

We focused on operating at the lowest (1.0 V) and highest

(1.2 V) supported core VDD voltages. We swept the oper-

ating frequency between 50 and 250 MHz, well beyond the

GAP8 officially supported configuration15. Figure 10 provides

a complete view of the power consumption in all experi-

mentally possible operating modes of GAP8 on the DroNet

application while sweeping both FABRIC CTRL (FC) and

CLUSTER (CL) clock frequency, both at 1.0 V and 1.2 V

and the related achievable frame-rate. Figure 10-A shows

the energy-efficiency of all available configurations as a heat

map, where VDD@1.0 V, FC@50 MHz, and CL@100 MHz

represent the most energy efficient one. In Figure 10-B1 we

report performance as frame-rate and total power consumption

measured before the internal DC/DC converter utilized on the

SoC. Selecting a VDD operating point of 1.2 V would increase

both power and performance up to 272 mW and 18 fps. We

found the SoC to be working correctly @ 1.0 V for frequencies

up to ∼175 MHz; we note that as expected when operating

@ 1.0 V there is a definite advantage in terms of energy

efficiency. Therefore, for the sake of readability, in Figure 10

we avoid showing configurations of VDD 1.2 V that would

reach the same performance of VDD 1.0 V at a higher cost

in term of power. Similarly, in Figure 10-B2 we report power

consumption vs time to compute one frame.

In Figure 11 we present the power traces for full end-

to-end execution of DroNet, measured using a bench DC

power analyzer16. The power traces are measured by powering

the GAP8 SoC, with the most energy-efficient configuration

at 1.0 V core voltage and operating at 50 MHz on FC and

100 MHz on CL. The detailed average power consumption

(including both the FC and CL domains) is reported in

Table III. The peak power consumption of 47 mW is associated

15 https://greenwaves-technologies.com/gap8-datasheet
16 www.keysight.com/en/pd-1842303-pn-N6705B

TABLE III: Power consumption & Execution time per

frame of DroNet on GAP8 VDD@1.0 V, FC@50 MHz,

CL@100 MHz.

Layer AVG Power [mW] Exec Time [ms] L3-L2 Time [ms]

conv 1 + pool 47.1 22.6 0.1

ReLU 24.8 0.9 —

conv 2 + ReLU 38.7 17.3 0.6

conv 3 38.0 14.3 0.6

conv 4 43.6 7.3 0.1

add 38.9 0.3 —

ReLU 27.6 0.2 —

conv 5 + ReLU 37.7 9.3 1.2

conv 6 34.8 17.0 2.4

conv 7 32.7 4.2 0.2

add 24.3 0.3 —

ReLU 20.5 0.3 —

conv 8 + ReLU 33.1 13.0 4.7

conv 9 31.9 24.8 9.4

conv 10 41.9 5.4 0.5

add + ReLU 24.4 0.3 —

fully 1 13.0 0.1 0.4

fully 2 13.0 0.1 0.4

to the 1st convolutional layer; we used this value to compute

the overall power envelope of our node. Instead, the minimum

power consumption is given by the two last fully connected

layers consuming 13 mW each. The average power consump-

tion, weighted throughout each layer, is 39 mW, which grows

to 45 mW including also the losses on the internal DC/DC

converter (not included in Figure 11). In the full DroNet

execution, layers are interposed with L3-L2 data transfers,

happening with the CL cores in a clock-gated state, which

accounts for ∼7% of the overall execution time. Therefore,

power consumption for the entire board settles to 64 mW if we

also consider the cost of L3 memory access and the onboard



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 11

F
C

C
L

P
o
w

e
r 

c
o
n
s
u
m

p
ti

o
n
 [

m
W

]

0

10

0

10

20

40

RES BLOCK 1 - 32 Ch

30

50

0 20

Execution time [ms]

40 60 80 100 120 140 160

RES BLOCK 2 - 64 Ch

Fully 

connected

Sum

CLUSTER

FABRIC CTRL

RES BLOCK 3 - 128 Ch

ReLu

3x3 3x3 1x13x3 3x3 1x15x5 2x2

/2

3x33x3 1x11x1

/2 /2 /2/2 /2 /2 /2

Convolution
/S: stride factor

NxN: ✁lter sizeNxN

/S

Max pooling
/S: stride factor

NxN: pool sizeNxN

/S

✂DMA ✂DMA ✂DMA ✂DMA✂DMA ✂DMA

�DMA
L3-L2 ✄DMA

read✂DMA

Fig. 11: Power traces per layer of DroNet, measured at VDD@1.0 V, FC@50 MHz, CL@100 MHz, the symbols on top of

the plot indicate the computation stage associated with each visible phase in the power trace. Measurements are taken after

internal DC/DC converter (i.e., accounting for both FABRIC CTRL and CLUSTER).

ULP camera.

VDD 1.0V - FC@50MHz / CL@100MHz VDD 1.2V - FC@250MHz / CL@250MHz

CF Electronics PULP-ShieldMotors

FC+CL+DCDC

DRAM

Camera

0.28 W / 3.5%

0.28 W / 3.5%

8 mW / 2.8%

4 mW / 1.4%

0.28 W / 3.6%

0.06 W / 0.8%

A B

272 mW / 95.8%

7.32 W / 93.0%7.32 W / 95.6%

Fig. 12: Power envelope break-down of the entire cyber-

physical system running at FC@50 MHz-CL@100 MHz (A)

and FC@250 MHz-CL@250 MHz (B) with PULP-Shield

zoom-in (on the right).

In Figure 12 is reported the power break-down for the

complete cyber-physical system and proposed PULP-Shield.

Our nano-quadcopter is equipped with a 240 mA h 3.7 V LiPo

battery enabling a flight time of 7 minutes under standard

conditions, which results in average power consumption of

7.6 W. The power consumption of all the electronics aboard

the original drone amounts to 277 mW leaving ∼7.3 W for

the four rotors. The electronics consumption is given by the 2

MCUs included in the quadrotor and all the additional devices

(e.g., sensors, LEDs, etc.). In addition to that, introducing the

PULP-Shield, we increase the peak power envelope by 64 mW

using the most energy-efficient configuration and by 284 mW

selecting the fastest setting (0.8% and 3.5% of the total, re-

spectively). On the PULP-Shield we consider the HyperRAM

is operating at full speed only for the time required for L3-L2

data transfers (as shown in Table III) with an average power

consumption of 8 mW for the fastest configuration, as reported

in Figure 12-B. Notice that this is a worst-case figure, taking

account of both the GAP8 SoC and the HyperRAM operating

at full speed simultaneously. The power break-down of our

visual navigation module can be seen on the right of Figure 12-

B, where we include the computational unit, the L3 external

DRAM memory, and the ultra-low power camera. As onboard

computation accounts for roughly 5% of the overall power

consumption (propellers, sensors, computation and control,

cfr Section I), our PULP-Shield enables the execution of the

DroNet network (and potentially more) in all configurations

within the given power envelope.

TABLE IV: CrazyFlie (CF) lifetime with and without PULP-

Shield (both turned off and running DroNet at VDD@1.0 V,

FC@50 MHz, CL@100 MHz).

Original CF CF + PULP-Shield (off) CF + PULP-Shield (on)

Lifetime ∼440 s ∼350 s ∼340 s

Finally, in our last experiment, we evaluate the cost in

terms of operating lifetime of carrying the physical payload of

the PULP-Shield and of executing the DroNet workload. To

ensure a fair measurement, we decoupled the DroNet output

from the nano-drone control and statically set it to hover (i.e.,

keep constant hight over time) at 0.5 m from the ground. We

targeted three different configurations: i) the original CrazyFlie

(CF) without any PULP-Shield; ii) PULP-Shield plugged but

never turned on, to evaluate the lifetime reduction due to the

additional weight introduced; iii) PULP-Shield turned on exe-

cuting DroNet at VDD@1.0 V, FC@50 MHz, CL@100 MHz.

Our results are summarized in Table IV and as expected the

biggest reduction in the lifetime is given by the increased



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 12

weight. The flight time of the original nano-drone, with one

battery fully charged, is ∼440 s. This lifetime drops to ∼350 s

when the drone is carrying the PULP-Shield (turned off) and

to ∼340 s when the shield is executing DroNet. Ultimately, the

price for our visual navigation engine is ∼22% of the original

lifetime.

B. State-of-the-Art Comparison & Discussion

To compare and validate our experimental results with

respect to the current state-of-the-art, we targeted the most

efficient CNN implementation currently available for micro-

controllers, namely CMSIS-NN [28]. At peak performance in

a synthetic test, this fully optimized library can achieve as

much as 0.69 MAC/cycle on convolutions, operating on Fixed8

data that is internally converted to Fixed16 in the inner loop.

By contrast, we operate directly on Fixed16 and achieve

a peak performance of 0.64 MAC/cycle/core in a similar

scenario (on the 6th layer of DroNet, 3×3 convolution). The

bypasses and the final layers are a bit less efficient, yielding

an overall weighted peak throughput of 0.53 MAC/cycle/core

on convolutional layers, which constitute the vast majority of

the execution time.

TABLE V: CLUSTER-cycle break-down for processing one

frame on the GAP8 both FC and CL @ 50 MHz.

µDMA L3/L2 DMA L2/L1 Computation Total

Cycles 1.03 M 0.11 M 13.47 M 14.61 M

In Table V we report the execution breakdown per frame

for all activities performed by our CNN. We can see how the

L3-L2 transfers (not overlapped to computation) and the non-

overlapping part of L2-L1 transfers account for ∼1.14 Mcycles

of the overall execution time. Then, considering ∼41 MMAC

for the original CNN, in the ideal peak-throughput case of

4.28 MAC/cycle we would need ∼10 Mcycles for computing

one frame, instead of our measured 13.47 Mcycles. The

overhead is due to inevitable non-idealities such as sub-

optimal load balancing in layers exposing limited spatial

parallelism as well as tiling control loops and the marshaling

stage required by padded convolutions. Considering all of the

effects mentioned above (i.e., computation non-idealities as

well as memory transfers), we achieve a real throughput of

2.81 MAC/cycle in the DroNet execution – still 4× better

than the CMSIS-NN peak performance.

To further concretize the comparison, we take as an ex-

ample target a top-notch high-performance microcontroller:

an STM32H717 sporting a Cortex-M7 core and capable of

operating at up to 400 MHz. Without considering any data

movement overhead, and taking into account only peak per-

formance, this would be able to achieve up to 276 MMAC/s @

346 mW. By comparison, our system can achieve an average

performance of 281 MMAC/s with the most power-efficient

configuration @ 45 mW, i.e. same performance within a 5.4×

smaller power budget. Moreover, if we consider our peak-

throughput configuration (where both FC and CL are running

@ 250 MHz) we can deliver up to 702 MMAC/s @ 272 mW:

17 http://www.st.com/en/microcontrollers/stm32h7-series.html

2.5× better with 21% less power. Even if it were possible to

linearly up-scale the performance of this microcontroller to

the same level of our system, it would consume ∼880 mW,

which would constitute largely more than the 5% of power

envelope typically dedicated to onboard computation on nano-

UAV systems [14]. This confirms that the parallel-ultra-low

power approach adopted in our visual navigation engine

significantly outperforms sequential processing in terms of

energy efficiency, without compromising programmability and

flexibility.

C. Control Accuracy

To fully exploit the natural inertial agility of a lightweight

nano-quadrotor as the Crazyflie 2.0 used in our prototype, fast

onboard perception is required. To evaluate the agility of our

integrated system, we perform an experiment in which our fly-

ing platform is required to react to a sudden obstacle occluding

its way. With this experiment, we aim to demonstrate that the

PULP-Shield computational resources are enough to make full

use of the platform agility. As mentioned in Section IV-A,

for the final deployment of DroNet on the PULP-Shield, we

select the network trained with Fixed16 quantization, 2× 2
max-pool receptive field, and fine-tuning dataset. The choice

is justified by both the quantization requirement of the GAP8

SoC and the model performance, superior to other viable

alternatives (see Table II).

The experimental setting is as follows: we collect a dataset

of images by manually flying the drone over a straight path

of 20 m at an average speed of 4 m/s. At the beginning of the

test, the path is entirely free from obstacles. At T =4 s after

the start of the experiment, an obstacle appears at the end

of the track, leaving 4 m free for breaking and stopping. The

system is then required to raise a stop signal soon enough

to avoid the collision. As we show in the additional video,

our integrated system can control the nano-drone in closed-

loop. However, for safety reasons and to avoid damaging

the platform, we don’t control the nano-drone in closed-

loop during this experiment. Instead, we process the frames

collected with manual flight offline. The collected dataset is

used to study the relation between the system operational

frequencies and the drone’s reaction time.

As in the original implementation of [1], network’s predic-

tions are low-pass filtered to decrease high-frequency noise. In

detail, the collision probability pk is a low-pass filtered version

of the raw network output ck (α = 0.7):

pk = (1− α)pk−1 + αck, (1)

Figure 13 (A3-B3) illustrates the predicted collision proba-

bility of the original and quantized DroNet CNN as a function

of time. In the plots, we show both ck and pk at different

frequencies, the former reported as markers, whereas the latter

is shown as a continuous line. A horizontal dashed orange line

shows the threshold for sending a stop signal to the control

loop (pk > 0.7), and a vertical red dashed line highlights the

time at which the obstacle becomes visible (T =4 s).

To quantitatively evaluate the performance of our system at

different operational frequencies, we computed the maximum



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 13

4.0

1.0

0.8

0.6

0.4

5 10 15 20 25 30
Frequency [Hz]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
is

ta
n
ce

 f
ro

m
 o

b
st

a
cl

e
 [
m

]

5 10 15 20 25 30
Frequency [Hz]

0.0

0.5

1.5

2.0

2.5

3.0

3.5

4.0

D
is

ta
n
ce

 f
ro

m
 o

b
st

a
cl

e
 [
m

]

5 10 15 20 25 30
Frequency [Hz]

4.0

4.2

4.4

4.6

4.8

5.0

T
im

e
 [
s]

max stop time

5 10 15 20 25 30
Frequency [Hz]

4.0

4.2

4.4

4.6

4.8

5.0

T
im

e
 [
s]

max stop time

3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
o
lli

si
o
n
 P

ro
b
a
b
ili

ty
 [
-]

3.6 3.8 4.2 4.4 4.6 4.8 5.0
Time [s]

0.0

0.2

1.0

C
o
lli

si
o
n
 P

ro
b
a
b
ili

ty
 [
-]

stop threshold

LP ✁lter probability (pk) 

5 Hz

10 Hz

20 Hz

DroNet probability (ck) 

5 Hz

10 Hz

20 Hz

stop threshold

LP ✁lter probability (pk) 

5 Hz

10 Hz

20 Hz

DroNet probability (ck) 

5 Hz

10 Hz

20 Hz

A1 A2 A3

B1 B2 B3

DroNet on PULP ( xed16)

Original DroNet ( oat32)

obstacle

obstacle

braking distance

braking distance

Fig. 13: Performance comparison between the original (A1-3) and quantized (B1-3) DroNet architectures. Stop command time

(A1 and B1), minimum distance from the obstacle (A2 and B2) and collision probability as the output of both CNN and

low-pass filter (A3 and B3).

time and the minimum distance from the object at which

the stop command should be given to avoid the collision.

We deployed the Crazyflie 2.0 parameters from [45] and the

classical quadrotor motion model from [46] to analytically

compute those two quantities. From this analysis, we derived

a minimum stopping time of 400 ms and a braking distance

of 0.7 m, assuming the platform moves with a speed of 4 m/s

when it detects the obstacle.

In Figure 13 (A1-2, B1-2) we illustrate a performance

comparison between our quantized system and the original

implementation of [1]. Despite quantization, our network

outperforms [1] in term of collision detection, and can react

more quickly to sudden obstacles even at low operational

frequencies. This is in accordance with the results of Table II,

and mainly due to the fine-tuning of our network to the HiMax

camera images.

Both the quantized and original architecture share how-

ever a similar behaviour at different operational frequencies.

More specifically, both fail to detect obstacles at very low

frequencies (i.e., 5 Hz), but successfully avoid the collision at

higher rates. Interestingly, increasing the system frequencies

does not always improve performance; it can be observed

in Figure 13-B2, where performance at 20 Hz is better than

at 25 Hz. From Figure 13 we can observe that inference

at 10 Hz allows the drone to brake in time and avoid the

collision. This confirms that our system, processing up to

18 fps, can i) make use of the agility of the Crazyflie 2.0

and ii) be deployed in the same way as the original method

to navigate in indoor/outdoor environments while avoiding

dynamic obstacles. A video showing the performance of the

system controlled in closed-loop can be seen at the following

link: https://youtu.be/57Vy5cSvnaA.

VII. CONCLUSION

Nano- and pico-sized UAVs are ideal IoT nodes; due to

their size and physical footprint, they can act as mobile IoT

hubs, smart sensors and data collectors for tasks such as

surveillance, inspection, etc. However, to be able to perform

these tasks, they must be capable of autonomous navigation

of environments such as urban streets, industrial facilities and

other hazardous or otherwise challenging areas. In this work,

we present a complete deployment methodology targeted at en-

abling execution of complex deep learning algorithms directly

aboard resource-constrained milliwatt-scale nodes. We provide

the first (to the best of our knowledge) completely vertically

integrated hardware/software visual navigation engine for au-

tonomous nano-UAVs with completely onboard computation –

and thus potentially able to operate in conditions in which the

latency or the additional power cost of a wirelessly-connected

centralized solution.

Our system, based on a GreenWaves Technologies GAP8

SoC used as an accelerator coupled with the STM32 MCU on

the CrazyFlie 2.0 nano-UAV, supports real-time computation

of DroNet, an advanced CNN-based autonomous navigation

algorithm. Experimental results show a performance of 6 fps

@ 64 mW selecting the most energy-efficient SoC configura-



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 14

tion, that can scale up to 18 fps within an average power budget

for computation of 284 mW. This is achieved without quality-

of-results loss with respect to the baseline system on which

DroNet was deployed: a COTS standard-size UAV connected

with a remote PC, on which the CNN was running at 20 fps.

Our results show that both systems can detect obstacles fast

enough to be able to safely fly at high speed, 4 m/s in the case

of the CrazyFlie 2.0. To further paving the way for a vast

number of advanced use-cases of autonomous nano-UAVs as

IoT-connected mobile smart sensors, we release open-source

our PULP-Shield design and all code running on it, as well

as datasets and trained networks.

ACKNOWLEDGMENTS

The authors thank Hanna Müller for her contribution in

designing the PULP-Shield, Noé Brun for his support in

making the camera-holder, and Frank K. Gürkaynak for his

assistance in making the supplementary videos.

REFERENCES

[1] A. Loquercio, A. I. Maqueda, C. R. del Blanco, and D. Scaramuzza,
“Dronet: Learning to fly by driving,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, April 2018.

[2] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, Dec
2016.

[3] F. Conti, R. Schilling, P. D. Schiavone, A. Pullini, D. Rossi, F. K.
Gürkaynak, M. Muehlberghuber, M. Gautschi, I. Loi, G. Haugou,
S. Mangard, and L. Benini, “An IoT Endpoint System-on-Chip for
Secure and Energy-Efficient Near-Sensor Analytics,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2481–
2494, Sep. 2017.

[4] D. Palossi, A. Gomez, S. Draskovic, A. Marongiu, L. Thiele, and
L. Benini, “Extending the lifetime of nano-blimps via dynamic motor
control,” Journal of Signal Processing Systems, Feb 2018.

[5] D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466,
may 2015.

[6] Z. Liu, Y. Chen, B. Liu, C. Cao, and X. Fu, “Hawk: An unmanned mini-
helicopter-based aerial wireless kit for localization,” IEEE Transactions
on Mobile Computing, vol. 13, no. 2, pp. 287–298, Feb 2014.

[7] M. Piccoli and M. Yim, “Piccolissimo: The smallest micro aerial
vehicle,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, may 2017.

[8] Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen,
“Autonomous aerial navigation using monocular visual-inertial fusion,”
Journal of Field Robotics, vol. 35, no. 1, pp. 23–51, jul 2017.

[9] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggressive
quadrotor flight through narrow gaps with onboard sensing and com-
puting using active vision,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017.

[10] G. Loianno, D. Scaramuzza, and V. Kumar, “Special issue on high-speed
vision-based autonomous navigation of uavs,” Journal of Field Robotics,
vol. 35, no. 1, pp. 3–4, 2018.

[11] Y. Yang, Z. Zheng, K. Bian, L. Song, and Z. Han, “Real-time profiling
of fine-grained air quality index distribution using uav sensing,” IEEE
Internet of Things Journal, vol. 5, no. 1, Feb 2018.

[12] J. Conroy, G. Gremillion, B. Ranganathan, and J. S. Humbert, “Im-
plementation of wide-field integration of optic flow for autonomous
quadrotor navigation,” Autonomous robots, vol. 27, no. 3, 2009.

[13] K. McGuire, G. de Croon, C. D. Wagter, K. Tuyls, and H. Kappen,
“Efficient optical flow and stereo vision for velocity estimation and
obstacle avoidance on an autonomous pocket drone,” IEEE Robotics
and Automation Letters, vol. 2, no. 2, April 2017.

[14] R. J. Wood, B. Finio, M. Karpelson, K. Ma, N. O. Pérez-Arancibia,
P. S. Sreetharan, H. Tanaka, and J. P. Whitney, Progress on “Pico” Air
Vehicles. Cham: Springer International Publishing, 2017.

[15] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers, S. Nuske, and
S. Singh, “River mapping from a flying robot: state estimation, river
detection, and obstacle mapping,” Autonomous Robots, vol. 33, no. 1-2,
2012.

[16] D. Scaramuzza, M. C. Achtelik, L. Doitsidis, F. Friedrich, E. Kos-
matopoulos, A. Martinelli, M. W. Achtelik, M. Chli, S. Chatzichristofis,
L. Kneip, D. Gurdan, L. Heng, G. H. Lee, S. Lynen, M. Pollefeys,
A. Renzaglia, R. Siegwart, J. C. Stumpf, P. Tanskanen, C. Troiani,
S. Weiss, and L. Meier, “Vision-controlled micro flying robots: From
system design to autonomous navigation and mapping in GPS-denied
environments,” IEEE Robotics & Automation Magazine, vol. 21, no. 3,
pp. 26–40, sep 2014.

[17] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), sep 2017.

[18] F. Sadeghi and S. Levine, “CAD2rl: Real single-image flight without a
single real image,” in Robotics: Science and Systems XIII, jul 2017.

[19] N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield, “Toward low-
flying autonomous mav trail navigation using deep neural networks for
environmental awareness,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Sept 2017.

[20] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A.
Bagnell, and M. Hebert, “Learning monocular reactive uav control in
cluttered natural environments,” in 2013 IEEE International Conference
on Robotics and Automation, May 2013.

[21] O. Dunkley, J. Engel, J. Sturm, and D. Cremers, “Visual-inertial navi-
gation for a camera-equipped 25g nano-quadrotor,” in IROS2014 Aerial
Open Source Robotics Workshop, 2014.

[22] A. Briod, J.-C. Zufferey, and D. Floreano, “Optic-flow based control
of a 46g quadrotor,” in Workshop on Vision-based Closed-Loop Control
and Navigation of Micro Helicopters in GPS-denied Environments, IROS
2013, no. EPFL-CONF-189879, 2013.

[23] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, “Navion:
A fully integrated energy-efficient visual-inertial odometry accelerator
for autonomous navigation of nano drones,” in 2018 IEEE Symposium
on VLSI Circuits, June 2018, pp. 133–134.

[24] K. McGuire, G. de Croon, C. de Wagter, B. Remes, K. Tuyls, and
H. Kappen, “Local histogram matching for efficient optical flow com-
putation applied to velocity estimation on pocket drones,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), May
2016.

[25] G. Hegde, Siddhartha, N. Ramasamy, and N. Kapre, “CaffePresso: An
optimized library for Deep Learning on embedded accelerator-based
platforms,” in 2016 International Conference on Compliers, Architec-
tures, and Sythesis of Embedded Systems (CASES), Oct. 2016, pp. 1–10.

[26] D. Kang, E. Kim, I. Bae, B. Egger, and S. Ha, “C-GOOD: C-code
Generation Framework for Optimized On-device Deep Learning,” in
Proceedings of the International Conference on Computer-Aided Design,
ser. ICCAD ’18. New York, NY, USA: ACM, 2018, pp. 105:1–105:8.

[27] A. Lokhmotov, N. Chunosov, F. Vella, and G. Fursin, “Multi-objective
Autotuning of MobileNets Across the Full Software/Hardware Stack,” in
Proceedings of the 1st on Reproducible Quality-Efficient Systems Tour-
nament on Co-Designing Pareto-Efficient Deep Learning, ser. ReQuEST
’18. New York, NY, USA: ACM, 2018.

[28] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient Neural Network
Kernels for Arm Cortex-M CPUs,” arXiv:1801.06601 [cs], Jan. 2018.

[29] M. Peemen, A. Setio, B. Mesman, and H. Corporaal, “Memory-centric
accelerator design for Convolutional Neural Networks,” in 2013 IEEE
31st International Conference on Computer Design (ICCD), Oct. 2013,
pp. 13–19.

[30] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-
ing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15. New
York, NY, USA: ACM, 2015, pp. 161–170.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

[32] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold risc-
v core with dsp extensions for scalable iot endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, Oct 2017.

[33] A. Pullini, D. Rossi, G. Haugou, and L. Benini, “uDMA: An autonomous
I/O subsystem for IoT end-nodes,” in 2017 27th International Sym-
posium on Power and Timing Modeling, Optimization and Simulation
(PATMOS), Sep. 2017, pp. 1–8.



INTERNET OF THINGS JOURNAL, VOL. XX, NO. YY, MAY 2019 15

[34] D. E. Bellasi and L. Benini, “Smart energy-efficient clock synthesizer for
duty-cycled sensor socs in 65 nm/28nm cmos,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2322–2333,
Sept 2017.

[35] A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini, “A Fully-Synthesizable
Single-Cycle Interconnection Network for Shared-L1 Processor Clus-
ters,” in 2011 Design, Automation & Test in Europe. IEEE, Mar. 2011,
pp. 1–6.

[36] F. Conti, D. Palossi, A. Marongiu, D. Rossi, and L. Benini, “Enabling
the heterogeneous accelerator model on ultra-low power microcontroller
platforms,” in 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2016.

[37] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations,” arXiv:1609.07061 [cs], Sep. 2016.

[38] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
features off-the-shelf: An astounding baseline for recognition,” in IEEE
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), jun 2014.

[39] L. Cecconi, S. Smets, L. Benini, and M. Verhelst, “Optimal tiling strat-
egy for memory bandwidth reduction for cnns,” in Advanced Concepts
for Intelligent Vision Systems, J. Blanc-Talon, R. Penne, W. Philips,
D. Popescu, and P. Scheunders, Eds. Cham: Springer International
Publishing, 2017.

[40] D. Palossi, J. Singh, M. Magno, and L. Benini, “Target following on
nano-scale unmanned aerial vehicles,” in 2017 7th IEEE International
Workshop on Advances in Sensors and Interfaces (IWASI), June 2017,
pp. 170–175.

[41] P. Kumar, S. Garg, A. Singh, S. Batra, N. Kumar, and I. You, “Mvo-
based two-dimensional path planning scheme for providing quality of
service in uav environment,” IEEE Internet of Things Journal, 2018.

[42] C. Yin, Z. Xiao, X. Cao, X. Xi, P. Yang, and D. Wu, “Offline and
online search: Uav multiobjective path planning under dynamic urban
environment,” IEEE Internet of Things Journal, vol. 5, no. 2, April 2018.

[43] D. Palossi, A. Marongiu, and L. Benini, “Ultra low-power visual odom-
etry for nano-scale unmanned aerial vehicles,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2017, March 2017.

[44] D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scara-
muzza, “Vision-based autonomous quadrotor landing on a moving
platform,” in 2017 IEEE International Symposium on Safety, Security
and Rescue Robotics (SSRR), Oct 2017.

[45] J. Förster, M. Hamer, and R. D’Andrea, “System identification of the
crazyflie 2.0 nano quadrocopter,” B.S. thesis, 2015.

[46] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Model-
ing, estimation, and control of quadrotor,” IEEE Robotics & Automation
Magazine, vol. 19, no. 3, sep 2012.

Daniele Palossi is a Ph.D. student at the Dept. of In-
formation Technology and Electrical Engineering at
the Swiss Federal Institute of Technology in Zürich
(ETH Zürich). He received his B.S. and M.S. in
Computer Science Engineering from the University
of Bologna, Italy. In 2012 he spent six months as
a research intern at ST Microelectronics, Agrate
Brianza, Milano, working on 3D computer vision
algorithms for the STM STHORM project. In 2013
he won a one-year research grant at the University
of Bologna, with a focus on design methodologies

for high-performance embedded systems. He is currently working on energy-
efficient algorithms for autonomous vehicles and advanced driver assistance
systems.

Antonio Loquercio received the MSc degree in
Robotics, Systems and Control from ETH Zürich in
2017. He is working toward the Ph.D. degree in the
Robotics and Perception Group at the University of
Zürich under the supervision of Prof. Davide Scara-
muzza. His main interests are data-driven methods
for perception and control in robotics. He is a
recipient of the ETH Medal for outstanding master
thesis (2017).

Francesco Conti received the Ph.D. degree from
the University of Bologna in 2016 and is cur-
rently a post-doctoral researcher at the Integrated
Systems Laboratory, ETH Zürich, Switzerland, and
the Energy-Efficient Embedded Systems Laboratory,
University of Bologna, Italy. His research focuses
on energy-efficient multicore architectures and ap-
plications of deep learning to low power digital
systems. He has co-authored more than 30 papers
in international conferences and journals, and he
has been the recipient of three best paper awards

(ASAP’14, EVW’14, ESWEEK’18) and the 2018 HiPEAC Tech Transfer
Award.

Eric Flamand got his Ph.D. in Computer Science
from INPG, France, in 1982. For the first part of
his career, he worked as a researcher with CNET
and CNRS in France, on architectural automatic
synthesis, design and architecture, compiler infras-
tructure for highly constrained heterogeneous small
parallel processors. He then held different technical
management in the semiconductor industry, first with
Motorola where he was involved in the architecture
definition and tooling of the StarCore DSP. Then
with ST Microelectronics first being in charge of all

the software development of the Nomadik Application Processor and then in
charge of the P2012 corporate initiative aiming at the development of a many-
core device. He is now co-founder and CTO of Greenwaves Technologies a
French-based startup developing an IoT processor derived from the PULP
project. He is also acting as a part-time research consultant for the ETH
Zürich.

Davide Scaramuzza (1980, Italy) received the Ph.D.
degree in robotics and computer vision from ETH
Zürich, Zürich, Switzerland, in 2008, and a Post-
doc at University of Pennsylvania, Philadelphia, PA,
USA. He is a Professor of Robotics with University
of Zürich, where he does research at the intersec-
tion of robotics, computer vision, and neuroscience.
From 2009 to 2012, he led the European project
sFly, which introduced the world’s first autonomous
navigation of microdrones in GPS-denied environ-
ments using visual-inertial sensors as the only sensor

modality. He coauthored the book Introduction to Autonomous Mobile Robots
(MIT Press). Dr. Scaramuzza received an SNSF-ERC Starting Grant, the IEEE
Robotics and Automation Early Career Award, and a Google Research Award
for his research contributions.

Luca Benini holds the chair of Digital Circuits and
Systems at ETH Zürich and is Full Professor at the
Università di Bologna. Dr. Benini’s research interests
are in energy-efficient system design for embedded
and high-performance computing. He is also active
in the area of energy-efficient smart sensors and
ultra-low power VLSI design. He has published
more than 1000 papers, five books and several book
chapters. He is a Fellow of the IEEE and the ACM
and a member of the Academia Europaea. He is
the recipient of the 2016 IEEE CAS Mac Van

Valkenburg Award.




