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A 680 nA ECG Acquisition IC for Leadless

Pacemaker Applications
Long Yan, Member, IEEE, Pieter Harpe, Member, IEEE, Venkata Rajesh Pamula, Masato Osawa,

Yasunari Harada, Kosei Tamiya, Member, IEEE, Chris Van Hoof, Member, IEEE, and
Refet Firat Yazicioglu, Member, IEEE

Abstract—A sub- ECG acquisition IC is presented for a
single-chamber leadless pacemaker applications. It integrates a

low-power, wide dynamic-range ECG readout front end together

with an analog QRS-complex extractor. To save ASIC power,
a current-multiplexed channel buffer is introduced to drive a

7 b-to-10 b self-synchronized SAR ADC which utilizes 4 fF/unit

capacitors. The ASIC consumes only 680nA and achieves CMRR
90 dB, PSRR 80 dB, an input-referred noise of 4.9

in a 130 Hz bandwidth, and has rail-to-rail DC offset rejection.

Low-power heartbeat detections are evaluated with the help of the
ASIC acquiring nearly 20,000 beats across 10 different records

from theMIT-BIH arrhythmia database. In the presence of muscle

noise, both the average Sensitivity (Se) and Positive Predictivity
(PP) show more than 90% when the input SNR 6 dB.

Index Terms—Analog feature extraction, electrocardiogram
(ECG), heartbeat detection, leadless pacemaker, low-power.

I. INTRODUCTION

R ECENTLY, a tiny leadless pacemaker [1], [2] residing

completely inside the right ventricle of a patient's heart

receives great attention as it requires no leads, no chest inci-

sion, and no scar, but provides the same functionality and life

time as the traditional pacemaker does. Without doubt, devel-

opment of such a miniature-sized pacemaker must be centered

around ultra-low power consumption together with high quality

signal acquisition and heartbeat classification. Although elec-

trical pacing spends a significant part of the power budget of

a pacemaker system, saving power in the sensing electronics

is still crucial as cardiac rhythm disorders must be continu-

ously monitored and classified for several years [3], [4]. As a

result, high performance feature extraction methods, such as

continuous wavelet transform (CWT), are avoided to classify

the heartbeat due to its excessive computation power of the dig-

ital signal processing (DSP) [5]. A power-efficient alternative to

this is shifting the functionality of QRS feature extraction to the
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Fig. 1. Low-power ECG acquisition IC utilizing analog feature extraction to

assist implementing low-power heartbeat detection algorithm [6].

Fig. 2. The architecture of a single-channel ECG acquisition IC which embeds

an feature extraction (FE) channel.

analog domain. This will greatly reduce the system power con-

sumption by reducing the computation complexity of the DSP

as shown in Fig. 1 [6], [7]. The ECG acquisition IC ensures

to readout both the ECG signal and to extract the meaningful

ECG feature in the analog domain prior to digitization. An ADC

then digitizes both the time-domain ECG signal (ECGout) and

its feature signal (FEout) and provides it to a DSP. The FEout

channel is simply emphasizing ECG signal activity in a spe-

cific frequency band. In the DSP, a low-power beat detection

algorithm can be implemented by using the power of FEout as

an input to detect signal peaks and then using the time-domain

ECG signal to classify the heartbeat.

1932-4545 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 3. Detailed implementation of the fully-differential capacitive-coupled IA.

In this paper, a sub- ECG acquisition IC [8] is presented

for low-power heartbeat detection. The presented IC not only

embeds a power efficient analog feature extractor but also

it further integrates a current-multiplexed ADC driver and a

self-synchronized ADC to improve the power efficiency of the

analog back end. This advances the state-of-the-art by reducing

power consumption of the IC below 1 without compro-

mising other specs, such as input SNR 70 dB, CMRR 90 dB,

PSRR 80 dB. Furthermore, it assists the DSP platform in

implementing a low-power heartbeat detection algorithm by

reducing digital computation complexities.

This paper is organized as follows: Section II describes the

ASIC architecture and implementations. It includes: 1) the detail

implementation of readout channel including an instrumentation

amplifier (IA), switched-capacitor filters, and a programmable

gain amplifier (PGA), and 2) the power-efficient data conversion

technique based on a current-multiplexed (CMPX) buffer and a

self-synchronizedADC. Section III summarizes ASICmeasure-

ment results. In Section IV, the heartbeat detection system is

evaluated. Finally, Section V concludes the paper.

II. ASIC IMPLEMENTATION

Fig. 2 shows the architecture of a single-channel ECG ac-

quisition ASIC which embeds a flexible, low-power QRS fea-

ture extraction channel. The ASIC integrates a fully differen-

tial AC-coupled IA as first stage which can handle rail-to-rail

input DC offset without any external passive components. One

branch of the IA goes to the analog feature extractor (FE), which

consists of a programmable gain amplifier (PGA) and accurate

narrow-bandwidth filters, and is used to precisely monitor the

signal activity in a selected frequency band of the ECG signal.

The ECG channel is similar, but provides wider signal band-

width. In both ECG and FE channels, the signals are converted

into single-ended at the PGA stage to reduce the power con-

sumption by driving a single-ended ADC. In addition to that, the

7 b-to-10 b configurable ADC [9] digitizes ECGout and FEout

via a current-multiplexed (CMPX) buffer to avoid the use of

power-consuming channel buffers and ADC drivers.

Note that the ASIC is a highly integrated solution offering

all of the functionality of acquiring the ECG signal without

any external passive components. A sub-1 V bandgap refer-

ence is completely integrated without any external capacitor

for noise filtering to provide on-chip stable bias signals, and

a clock generator delivers all necessary clock signals from a

single 32 kHz quartz crystal for ADC sampling and accurate

signal filtering. In addition, the ASIC provides wide scale pro-

grammability and can be tailored to a wide dynamic range signal

acquisition. Through externally controllable configuration reg-

isters, the ASIC can select different settings for channel gain,

bandwidth, and ADC resolution. 11 bit (10 bit data and 1 bit

channel ID) parallel ADC outputs are provided for further dig-

ital signal analysis in a DSP platform such as beat detection and

classification.

A. Readout Channel With Embedded Feature Extraction (FE)

The IA is the first active block in the complete signal readout

chain and the design is critical as it determines for a large part

performances such as noise, dynamic range, CMRR, input

impedance, and the capability to filter out large DC offset at

inputs. Fig. 3 shows the on-chip rail-to-rail capacitive-coupled

IA utilized in this ASIC. A fully differential folded cascode

amplifier together with capacitive feedback divider provides a

closed-loop gain of 20 dB. At the outputs of the amplifier, source

followers together with 20 resistors act as common mode

detector. With 20 nA bias current flowing through each source

follower, the outputs of the IA support a large signal swing as

high as 1.1 without significant distortion (total harmonic

distortion (THD) 1%). The extracted common mode (CM)

signal is then compared with , to set the output CM

voltage to mid-supply. Note that the output CM voltage also

biases the inputs of the amplifier through 2 pseudo resistors in

parallel to the feedback capacitors (21.5 pF). The IA consumes

only 150 nA while showing 400 input noise floor.
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Fig. 4. (a) Measured transfer functions of the FE channel and (b) its detailed

implementation.

The IA drives 2 switched-capacitor high pass filters (SC-

HPF) in the ECG channel and FE channel, respectively. Fig. 4

shows the details of FE channel. Unlike the ECG channel that

provides a HPF corner frequency of 1 Hz, the FE channel is

normally configured to 10 Hz to reject low-frequency T-waves

as well as electrode motion artifacts. The SC-HPF utilizes a

floating structure which has a unity gain at DC while providing

an accurate and flexible cutoff frequency of 1 Hz, 2 Hz, 5 Hz,

10 Hz, or 20 Hz by adjusting the value of . Benefitting

from switching the small capacitors , the filters consume

small silicon area but provide large enough input impedance

more than 400 . Thanks to the floating HPF, the IA not only

can bias the HPFs and the following PGAs in

ECG and FE channels but can drive them directly without ad-

ditional analog buffers and bias circuits. In the FE channel, a

10 Hz–25 Hz (5 Hz/step by adjusting the value of ) flex-

ible switched-capacitor low pass filter (SC-LPF) is further in-

tegrated after the PGA to attenuate high-frequency out-of-band

interferences.

Followed by the HPF, a PGA translates the differential signal

to an amplified single-ended output (Fig. 5), thus saving power

by half in the later stages. One differential pair in the differ-

ential-to-difference amplifier (DDA) receives the differential

signal from the HPF. The other differential pair sets the DC

output value to (0.75 V) and configures the gain

. The capacitor is always connected to in-

stead of ground. According to the different gain settings, the

Fig. 5. (a) Programmable Gain Amplifier (PGA) based on Differential

Difference Amplifier (DDA) with flipped capacitors. (b) Detailed implementa-

tion of DDA.

feedback capacitors are flipped from the side of to

the side of . The advantage to do so is that the noise from

is not anymore amplified by the high gain of the PGA.

This is especially important in the case when the PGA needs to

provide high gain and reject relatively high noise that is present

at the power supply simultaneously. The PGA provides 0 dB to

24 dB (6 dB/step) variable gain on top of the IA gain (20 dB).

The PGA can also be used as a buffer (0 dB) by enabling feed-

back switch . The switch consists of 2 PMOS transis-

tors facing each other to ensure sufficiently high off-resistance

not to deteriorate the low frequency cutoff of the PGA.

B. Power-Efficient Data Conversion

Shifting the feature extraction to the analog domain increases

the number of channels to be acquired by the single ADC. The

design is driven by the speed considerations on the channel

multiplexing between ECG and FE. Furthermore, those time-

multiplexed signals must be precisely sampled by the ADC.
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Fig. 6. (a) Power efficient data conversion based on Current-Multiplexed (CMPX) buffer and self-synchronized 7 b-to-10 b ADC. (b) Details of CMPX buffer.

(c) CDAC implementation in the ADC.

Typical readout systems [6], [7], [10]–[12] consume significant

power in the back end as they employ power consuming channel

buffers and analog switches (16% of channel power in [6]) to

ensure the analog signal settles within sufficient accuracy. In

contrast, signal multiplexing before the filters and the PGA can

save power but limits the programmability between the channels

[13]. A low-power buffer that multiplexes the input signals in

the current domain is introduced in Fig. 6(a) and (b). The CMPX

buffer employs a folded-cascode amplifier with complementary

inputs to provide high input impedance and to accommodate

amplified large signals from the PGA stages. Transistors and

convert the ECGout and FEout signals into current, and they

are multiplexed by and at low impedance nodes in

the folded-cascode stage. Part of the bias current through

and is recycled as the multiplexed branches are active al-

ternatingly at a rate of (half of the ADC sampling rate,

). The multiplexed current flows to the folded-cas-

code stage, creating an output voltage signal at .

A self-synchronized ADC implementing a successive ap-

proximation algorithm with asynchronous dynamic logic uses

the comparator and DAC to approximate the time-multiplexed

signal from the CMPX buffer. The flexible-resolution ADC

outputs a 7 b-to-10 b digital code dependent on the configured

resolution. As shown in Fig. 6(c), a 9 bit capacitor array acts

both as sampling capacitor and as feedback DAC. The DAC is

Fig. 7. The ASIC chip micrograph.

controlled by the digital bits B9–B1, generated during the SAR

bit cycles. A 9 bit DAC is sufficient for a 10 bit ADC as the

LSB bit cycle doesn't need to update the DAC anymore. An ad-

ditional capacitor of 32 C is inserted to add redundancy, which

relaxes DAC settling requirements and saves comparator power

[9]. The DAC is implemented based on custom designed capac-

itors which utilize the parasitic fringing capacitance between

3 different metal layers (metal layers 3, 4, and 5 are placed

in parallel to increase capacitor density while metal layer 1 is

placed underneath for shielding). Note that absolute value of

the capacitor is not very critical in the presented DAC topology
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Fig. 8. Measured performance of readout channel andADC. (a) PSRR and CMRRmeasured at ECGout. (b) THD (up to 10th harmonic power) measured at ECGout

with 7 Hz input signal. (c) Measured channel output noise at FEout ( –15 Hz) and ECGout (1–130 Hz) with their PGA gain of 6 dB. (d) Measured ADC

performance at 10 bit mode.

but the important aspect is to maintain relative matching in

order to maintain linearity. To achieve sufficient matching, all

capacitors (except the LSB which is implemented with a 2 fF

unit element) are based on identical 4 fF unit elements and

manual dummy-metal filling is performed around the array to

maintain perfect symmetry. Based on Calibre extractions, the

maximum capacitor error turns out to be 0.05 LSB, which is

acceptably small. Mismatch studies in [14] and measurement

results in [15] also confirm that the customized capacitors

provide sufficient matching performance.

According to the selected resolution, the comparator and

DAC are adjusted so that the lower resolution can save power

while the higher resolutions can benefit from higher accuracy.

Even in 10 bit resolution mode, the small input capacitance of

the ADC (only 2 pF, which still provides )

and the fast data conversion time allow the CMPX buffer to

settle down analog signals within 0.1% accuracy while con-

suming only 100 nA.

III. MEASUREMENT RESULTS

The ASIC is fabricated in a 0.18 CMOS process and

occupies 8.6 as shown in Fig. 7. Without any dynamic

offset cancellation technique, the ECG channel can sufficiently

rejects any in-band common mode noise at inputs as it shows

CMRR more than 90 dB with a channel gain of 31.2 dB. With

the help of the PGA improving supply noise rejection at high

gain, the entire ECG channel achieves a PSRR more than

80 dB at the gain of 43.2 dB as shown in Fig. 8(a). This is 14 dB

PSRR improvement by avoiding noise amplification

in the PGA without consuming additional power and area.

The supply noise immunity of the channel allows using single

power supply pin in the IC package. As shown in Fig. 8(b), the

ECG channel can amplify

up to 110 input signals with THD 1%. This can be

improved to THD 0.1% by reducing the input signal below

68 . The ECG channel achieves 4.9 input re-

ferred noise in a 130 Hz bandwidth [shown in Fig. 8(c))] which

translates to an input SNR of more than 70 dB. As

shown in Fig. 8(d), 9 bit ENOB is achieved with a DNL and

INL less than 1 LSB which is sufficient for accurate heartbeat

detection in the DSP. Compared to [6], [7], the ASIC shows

similar performance while consumes 10 times lower power

[7] On the other hand, the ASIC performs better in terms of

, CMRR, and PSRR while consumes similar power to
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TABLE I

ASIC PERFORMANCE COMPARISON WITH STATE OF THE ARTS

Calculated from the performance reported,

TABLE II

HEARTBEAT DETECTION EVALUATION RESULTS WITH CWT AND BAND POWER ALGORITHMS

, where TP stands for true positive (the number of true beats that have been detected), FN

stands for false negative (the number of true beats that have not been detected), and FP stands for false positive (the number of false beats that have

been marked as true beats).

[16], [10]. The total current consumption of the ASIC is only

680 nA. Among those, channels (1 PGAs) consume

350 nA (44%), the CMPX together with the ADC consumes

110 nA (17%), and the other supporting circuits (bias and

digital) consume 220 nA (32%).

IV. HEARTBEAT DETECTION SYSTEM EVALUATION

The heartbeat detection system is evaluated with the help of

an external DSP [17]. An ECG test signal from the MIT-BIH

arrhythmia database [18] is acquired by the ASIC with the

26 dB gain for both ECG channel (1–130 Hz) and FE channel

(10–15 Hz). The ADC digitizes ECGout and FEout into 10 bit

digital codes at a rate of 512 Hz. A low-power band-power

(BP) beat detection algorithm [6] is implemented in the DSP

with fixed point C language. To detect a peak, 64 samples each

for ECGout and FEout are used to calculate , and a

threshold value (TH) (shown in Fig. 1). Similar to [6], the peak

is detected by comparing to the TH value where

the lower limit for TH is optimized as 25% of the maximum

peak of within the threshold crossing region. Once

the peak is detected, a 8 ms searching window is applied to

ECGout to classify the heartbeat.

Table II compares the heart beat detection accuracy to the

high performance CWT [19] By detecting nearly 20,000 beats

across 10 different records fromMIT-BIH arrhythmia database,

the average Se and PP are evaluated to be 99.15% and 97.53%,

respectively, while the median Se and PP are evaluated to be

99.67% and 98.41%, respectively. The system is also evaluated

for its robustness in the presence of noise such as muscle noise

and additive white Gaussian noise (AWGN) with respect to dif-

ferent SNRs from 24 dB to 0 dB on top of a clean ECG signal

(record 101). As shown in Fig. 9, the system performs Se and

PP above 90% even with the muscle noise stress test for SNR

6 dB. With respect to the AWGN stress test, the system main-

tains the Se and PP above 90% for SNR 8 dB. Although

the heartbeat detection based on the BP algorithm performs less
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Fig. 9. Upper figure shows Se and PP performance of the heartbeat detection in the presence of muscle noise (ma) and additive white Gaussian noise (AWGN) as

a function of signal to noise ratio (SNR) compared to the results of CWT based algorithm reported in [19]. Lower figure shows time domain representation with

ECG signal from record 101 superimposed with muscle noise .

accurate than the CWT based approach when the SNR is low,

the BP approach is much more power efficient as it spends only

5.5% execution cycles of the CWT approach. It is worth to men-

tion that the noise stress tests didn't include the noise caused by

motion artifacts which is another critical noise source in prac-

tice further degrading the classification accuracy. Due to the

external DSP consuming 30 , the complete test system con-

sumes 31 . The entire system power efficiency can be further

improved to implement a custom DSP like a SoC [20]

V. CONCLUSION

A sub- ECG acquisition IC integrating analog feature

extraction is presented for a single-chamber leadless pacemaker

application. The ASIC advances the state-of-the-art ECG

readout front-end by consuming only 680 nA without com-

promising important performances such as CMRR 90 dB,

PSRR 80 dB, and SNR 70 dB. To evaluate heartbeat detec-

tion, the ASIC assists an external microcontroller to implement

a low-power BP beat detection algorithm. Across more than

20,000 beats in 10 different records from the MIT-BIH ar-

rhythmia database, the average Se and PP show more than 90%

for muscle noise stress test when the input SNR 6 dB.
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