
Struct Multidisc Optim (2011) 43:181–190

DOI 10.1007/s00158-010-0557-z

RESEARCH PAPER

A 99 line code for discretized Michell truss optimization
written in Mathematica

Tomasz Sokół

Received: 17 April 2010 / Revised: 15 July 2010 / Accepted: 25 July 2010 / Published online: 14 September 2010

c© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract The main purpose of the paper is to provide an

easy-to-use code for topological optimization of the least

weight trusses, written in the Mathematica programming

language. The main idea of the presented approach consists

in using a fixed ground structure and the linear program-

ming formulation of the optimization problem. The solver

is based on the fast interior point method. The strong effort

is done to create the effective generator of the computa-

tional model utilizing the high regularity of the ground

structure and the high sparsity of the geometric matrix. The

efficiency and reliability of the algorithm is confirmed in

several numerical tests. Due to a linear programming formu-

lation of the optimization problem the method presented in

the paper assures finding the global optimum, hence it may

be considered as the useful tool for verification of results

obtained in other ways. The appended complete Mathemat-

ica code of the program developed will be supplied by the

Publisher on SpringerLink.
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1 Introduction

The optimum design problem: find the lightest, plane,

pin-jointed frame of a bounded compliance, transmitting

a given loading to a part of the boundary of the given

feasible domain—turns out to be equivalent to the prob-

lem of finding the lightest pin-jointed frame of a bounded

stress level, with equal stress limits in tension and compres-

sion, transmitting the loading to the prescribed boundary

of the feasible domain, see Hemp (1973) and Achtziger

(1997). The analytical solutions to this problem must sat-

isfy the conditions of the theory of Michell trusses; see

Hemp (1973) and Rozvany et al. (1995). These solutions

exceed the class of trusses: they are discrete-continuous

structures composed of the fibrous domains of orthogonal

microstructure reinforced by bars of finite cross sections.

These solutions can be approximated from within the sub-

class of trusses (i.e. pin-jointed frames of finite number of

bars) or from within the continuum description thus giving

up prediction of the reinforcing bars and excluding possi-

bility of considering the point loads. Having at our disposal

these two approximate methods to attack the initial prob-

lem it is thought appropriate yet to choose the discrete

approximation—as free of the two drawbacks mentioned.

The natural incorporation of the point loads seems here cru-

cial; note that almost all available Michell solutions concern

this class of loadings.

Note, however, that the sole knowledge of the Michell’s

theory does not deliver hints of how the optimal layout

looks like. Only having an impression of the correct lay-

out one can construct the Hencky net and then endow it

with appropriate mechanical properties. The complete solu-

tions are rare. It is sufficient to stress here that the static part

of the theory of Michell’s cantilever supported on a circle

has only been put forward in the relatively new paper by

http://dx.doi.org/10.1007/s00158-010-0557-z
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Graczykowski and Lewiński (2005), where a proof of van-

ishing the duality gap between kinematic and static formu-

lations of this problem has been published. Note also, that

due to hyperbolicity of the governing equations of Michell’s

trusses the layouts are usually composed of many subdo-

mains with border lines being the lines of discontinuity of

some stress components; see e.g. Fig. 3 in Graczykowski

and Lewiński (2007).

Having in view the above mentioned properties of

Michell trusses it is not easy to predict a new solution cor-

rectly: many layouts can be imagined as correct for the same

load and the same feasible domain geometry. It is really not

clear which of them should be discussed and which of them

should be rejected a priori. The new layouts are not the sim-

ple composition of the known layouts. Some suggestions are

very convincing, but may be misleading. Thus a theoretician

needs an unbiased hint from the purely numerical side.

The really valuable numerical predictions of Michell-like

structures do not draw upon the properties of the known

analytical solutions. The genuine method of their construc-

tion was developed in Dorn et al. (1964); it is based on the

concept of the ground structure composed of all bars con-

necting given regular set of nodes. Most of these bars are

not necessary to equilibrate the applied loading and, con-

sequently, disappear during the optimization process. This

prediction, however, cannot be done in advance. The cross

section areas are the main but not the only design variables.

The crucial point of this approach is that the cross section

areas may assume nonnegative values. Thus the zero values

are admissible, which paves the way to find the catenary

structures, capable of carrying only one set of loads. Let

us remind here the funicular structures transmitting systems

of parallel forces to fixed supports. Such a specific class of

structures should be encompassed by the numerical meth-

ods. The ground structure methods satisfy this condition,

provided that the global stiffness matrix is not required to

be invertible.

The present paper is close in spirit to the paper by Gilbert

and Tyas (2003), where the initial optimization problem

has been rearranged to the so called plastic design formula-

tion assuming the form of the linear programming problem.

Gilbert and Tyas (2003) solved this problem with using the

interior point method. They significantly improved the tra-

ditional ground structure approach by the iterative member

adding technique.

The same numerical problem is solved in the present

paper by other implementation of the interior point method,

announced in Sokół and Lewiński (2009). The code has

been written in Mathematica 7 symbolic language, seek

Wolfram (2003). The method as such would be use-

less, without taking advantage of the geometric matrix

being sparse. The details of the program are explained in

Section 3, while the whole 99-line optimization code has

been appended to the paper. This reference to the title of

the popular paper by Sigmund (2001) has been suggested

by anonymous Reviewer. The code listed here can be freely

downloaded from the internet web page connected with this

paper, see Online Resource 1.

The software developed applies to the case of plas-

tic design with: (a) equal permissible stresses in tension

and compression: σT = σC , (b) unequal stress bounds

for tension and compression: σT �= σC . This numerical

tool makes it possible to construct new optimal layouts for

which the analytical solutions are unknown, and to check

already published analytical solutions. In particular, the

present paper confirms that the analytical results published

in Lewiński et al. (1994a, b) for the case of σT = σC and in

Graczykowski and Lewiński (2007) for the case of unequal

stress limits—are correct. In particular, this software has

delivered a numerical confirmation of the huge family of

benchmarks being published in Graczykowski and Lewiński

(2010).

The software developed has also made it possible to pre-

dict a correct layout of the unsolved till now problem of

two symmetric parallel forces to be optimally transmitted

to fixed nodes, in the case of the feasible domain being the

half-plane. This numerical prediction has paved the way to

find the analytical solution. The optimal layout turns out

to compare favourably with the numerical results for the

ground structures of high density; the reader is referred to

Sokół and Lewiński (submitted) for the details.

Concluding, the software developed delivers numerical

predictions of the characteristics of the optimal layouts with

the volume predictions approaching the optimal volume

with arbitrary accuracy. Since the analytical predictions are

usually found by the kinematic method, while the numerical

predictions follow from static consideration, this consis-

tency of both the results—showing that the duality gap

is slowly vanishing with increase of the density of the

ground structure - simultaneously confirms correctness of

the analytical results.

2 Minimum volume truss optimization problem

The goal of the present paper is to find a truss of minimal

volume subject to the compliance constraint, as formulated

bellow; cf. Achtziger (2007)

s.t.

min
A∈RM , q∈RN

LT A

K q = P

PT q ≤ W0

A ≥ 0

(1)

Here L = [L1, L2, ..., LM ]T represents the vector of bar

lengths, A = [A1, A2, ..., AM ]T represents the vector of
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cross section areas, while P and q are the vectors of nodal

loads and displacements. K is the stiffness matrix and W0 is

a given positive constant. The last inequality is understood

component-wise i.e. Ai ≥ 0. The cross section areas Ai are

the main design variables. If the ground structure is viewed

as fixed, the vector L of bar lengths is prescribed. Note that

the equilibrium equations are treated as equality constraints.

The displacements q j are state variables, independent of Ai .

Thus the number of unknown variables is N + M . Finding

numerical solution to problem (1) requires expensive meth-

ods of the nonlinear programming. Therefore, it is rather

not applicable for large tasks corresponding to the ground

structures of high density, with big N and M numbers.

To make the problem less complex we shall pass to the

formulation with forces in members as the only state vari-

ables, see Achtziger (2007) and Gilbert and Tyas (2003).

The problem (1) can be reformulated to equivalent formula-

tion (Achtziger 2007)

s.t.

min
T∈RM , C∈RM

LT (T + C)

BT (T − C) = P

T ≥ 0, C ≥ 0

(2)

where T and C are the vectors of tension and compression

forces in bars and B is the geometric matrix of components

representing directional cosines of bars. The latter problem,

being still equivalent to the problem (1), involves 2M design

variables but now it becomes a linear programming prob-

lem that can be solved by well-developed numerical tools,

applicable for large number of unknowns. Thus the ground

structures of high density may be successfully analyzed.

The problem (2) may be rearranged to a standard form

of a linear programming problem by introducing the new

design variables:

vi = Ti L i and vM+i = Ci L i for i = 1, . . . , M. (3)

and by introducing the matrix

H =
[

BT
�, −BT

�
]

, where

� = diag[1/L1, 1/L2, . . . , 1/LM ]. (4)

Computation of this matrix may be performed by divid-

ing every column of matrix BT by the length of the cor-

responding bar, but H may also be derived directly by

computing the quotients �xi/L
2
i and �yi/L

2
i . Note that for

integer increments �xi and �yi the components of matrix

H are rational numbers and may be preserved in exact form

(using appropriate software). For currently available opti-

mization method it is not any advantage, but it may be

important for future numerical treatments. To conclude, the

truss topology optimization problem may be written in the

standard form of linear programming as follows

s.t.

min
v∈R2M

∑

i

vi = eT v

H v = P

v ≥ 0

(5)

with all cost coefficients in the objective function equal to

one (e is a vector of length 2M , whose entries are all equal

to 1).

The objective functions in (2) or (5) correspond to—but

are not exactly—the optimum volume determined by (1).

The problem consists just in simple scaling but to make the

paper self-contained the basic formulas will be outlined bel-

low. For easier comparison of results obtained in different

ways it is worth to introduce a normalized, non-dimensional

volume as well as other auxiliary quantities. The static prob-

lem considered in the paper is linear. Consequently, if two

times bigger loading is applied two times bigger displace-

ments and axial forces will appear. Similarly the lengths

of bars are proportional to the size of the structure. It is

worth to introduce the non-dimensional quantities (denoted

by upper dash) in the following manner:

P = PP, S = PS, L = hL, q = Phq, etc. (6)

where the scalar P is a referential load intensity and h is an

arbitrary chosen size of a structure (height, length, width,

etc.). The optimal volume subject to constrained compliance

may be written as

VW =
(
∑

|Si | L i

)2

E W0
=

P2h2

E W0

(

∑
∣

∣Si
∣

∣ L i

)2
=

P2h2

E W0
VW ,

(7)

where VW is a non-dimensional compliance controlled

volume, given by

VW =
(

∑
∣

∣Si
∣

∣ L i

)2
, (8)

Correspondingly, the optimal volume subject to con-

strained stresses is expressed by

Vσ =
∑

|Si | L i

σ0
=

Ph

σ0

(

∑
∣

∣Si
∣

∣ L̄ i

)

=
Ph

σ0
V σ , (9)

where V σ is a normalized, non-dimensional stress con-

trolled volume, given by

V σ =
∑

∣

∣Si
∣

∣ L i . (10)

Note that equations linking stress and compliance controlled

volumes are quadratic; for example:

V σ =
√

VW (11)
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or

VW =
σ 2

0

E W0
V 2

σ . (12)

These formulas are important for proper interpretation

and comparison of different results presented in the liter-

ature, see Gilbert and Tyas (2003) and Achtziger (2007).

Further, we shall write V σ = V .

The plastic layout optimization problem (2) can be gen-

eralized to the case of unequal stress limits for tension

and compression: σT �= σC . Note that in fully-stressed

trusses the volumes of the bars under tension are equal to

Ti L i/σT and the volumes of the bars under compression

are equal to Ci L i/σC . Thus we can formulate the following

optimization problem

s.t.

min
T∈RM , C∈RM

LT T + κ LT C

BT (T − C) = P

T ≥ 0, C ≥ 0

, (13)

in which the ratio of limiting stresses is denoted by κ =
σT /σC . Passing from (2) to (13) requires only a “cosmetic”

change in the objective function. Note, however, that the

latter problem is not equivalent to the problems previously

discussed in this paper, see Rozvany (1996).

3 Details of numerical implementation

The choice of the adequate optimization method directly

depends on the type of the problem to be solved. In the

case of optimization problem (1) the general or specialized

methods of nonlinear programming have to be applied. Usu-

ally they are expensive and limited to relatively small tasks.

Contrary, the problems (2), (5) and (13) may be solved

using linear programming methods. The most popular, the

simplex or revised simplex methods are possible but not ade-

quate for large-scale problems. In practice, such tasks with

thousands of unknowns are almost intractable using these

methods due to the exponentially growing time of compu-

tation regarding to the problem size. However, the newer

and much more effective linear programming methods are

becoming available. For today, the interior point method is

one of the most reasonable choices. This method was devel-

oped by Karmarkar (1984) and later improved by Mehrotra

(1992), Wright (1997) and Nocedal and Wright (1999). The

method has even been successfully generalized to a class of

nonlinear convex optimization problems. The basic idea of

the method consists of a barrier function used to encode the

convex set of constraints. Contrary to the simplex method

which goes along the boundary, it moves through the inte-

rior of the feasible region and reaches the optimal solution

asymptotically. Two most popular versions of this method:

the primal affine scaling method and the primal–dual inte-

rior point method are presented in detail in the book by

Bhatti (2000). The second version requires more memory

but is significantly faster.

The next, very important topic in developing the whole

algorithm is the generator of the computational model. It

should be noted that the fixed ground structure has to be

dense but at the same time very regular. It is composed of

groups of identical elements (neglecting unessential trans-

lations in XY plane or XYZ space). The stiffness matrices

as well as directional cosines are equal in these groups and

may be calculated only once for a given group of bars. For

a dense ground structure, thousands of bars in one group

may exist so the final profit of the single calculation is sig-

nificant. Moreover, due to high regularity of the mesh there

is no need of creating nodes and elements like in a typical

FEM program—they are optionally needed only for graphi-

cal presentations. In the program presented in this paper the

patterns of elements are introduced to preserve the mem-

ory. The pattern includes the necessary and condensed data

for the whole family of bars; they are: nodal increments,

indices for loops, lengths and directional cosines of bars

(see Appendix 1). To solve the optimization problem (2)

all what is needed is creating the vectors L, P and the geo-

metric matrix B. The last one requires, however, the further

attention. It is clear that this matrix is very sparse. Inde-

pendently of the problem size every row of it contains only

four nonzero elements (or six for space trusses). This spar-

sity must be utilized to make the algorithm efficient. First

of all, the sparse matrix representation allows to preserve a

huge amount of memory and to deal with large-scale prob-

lems, that otherwise would be intractable. Additionally, the

great benefit of the computation time may be achieved by

avoiding unnecessary algebraic operations, especially mul-

tiplication by zero. Obviously it requires applying some

specialized procedures (libraries) for sparse matrices, but in

the present day they are commonly available. Concluding,

the sparse matrix representation is essential for the over-

all efficiency of the algorithm, especially for large-scale

problems. The larger problem size is—the greater benefit

of memory and processor time may be achieved.

Let us consider the plane truss with the ground struc-

ture restricted to the rectangular area. Three demonstrative

examples of such structures are shown in Fig. 1. Note that

the mesh density is described by four numbers: NX , NY ,

DX , DY . The first two denote the numbers of divisions

of the rectangle in X and Y directions, and correspond to

the “external” density. (Every node in the mesh is uniquely

identified by a pair of integers, numbered from 0 to NX and

from 0 to NY for X and Y directions, respectively.) The next

two numbers DX and DY describe the “internal” density—

it is a depth (in the Manhattan distance manner) of possible

connections between nodes. In general these numbers may
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a

b

c

Fig. 1 The examples of ground meshes with different depth of internal

connections: a 4 × 3:1 × 1–55 elements, b 4 × 3:4 × 2–115 elements,

c 8 × 6:5 × 5–1,054 elements

also be defined separately for X and Y directions. Never-

theless, if possible, they should be equal. It results from

the fact that the ground structure should form the mesh of

mutually orthogonal families of bars. Therefore, it is also

strongly recommended that the basic cell of the mesh is

square, rather than rectangular.

The code for truss topology optimization has been

written in Mathematica 7 (Wolfram 2003). It is the pow-

erful mathematical program with the comfortable envi-

ronment for advanced computations and visualizations.

Thanks to many functions ready for use, like global oper-

ations on the whole vectors or matrices, the code is much

stricter than in any classical programming languages (like

C/C++ or similar). Moreover the Mathematica has an

internal support for sparse matrices and a powerful ver-

sion of the interior point method (see SparseArray[...]

and LinearProgramming[..., Method → “InteriorPoint”]

for details). Description of the internal implementation of

the interior point method applied in Mathematica is included

e.g. in Champion and Strzebonski (2008). The program has

been divided into separate procedures (modules) that have

thoroughly been tested and optimized for speed and memory

usage. For example, to create a dynamic list, the natural but

relatively slow functions Append or AppendTo are replaced

by more efficient pair of functions Reap-Sow. Many of

auxiliary arrays were packed by ToPackedArray function

to preserve the memory. Thanks to a compact coding in

Mathematica the program is short. Its listing is included in

Appendix 1. The program is adjustable and offers the full

control of the size and density of the ground structure as

well as any loading and supports. The typical call to the pro-

gram and its output are shown in Fig. 2. The block of input

data is simple and takes only first four lines. The example of

the data input presented below corresponds to a well known

Michell cantilever; cf. Fig. 2.

Xmax = 3; Ymax = 2;

NX = 60; NY = 40; DIST = 20;

supports = {{{0, NY/4}, {1, 1}},

{{0, NY 3/4}, {1, 1}}};

loads = {{{NX, Round[NY/2]}, {0, -1}}};

r = OptimalTruss[Xmax, Ymax, NX, NY,

supports, loads, DIST]

Mesh 60x40:20x20, Nodes 2501,

Elements 800076, DOF 4998

Matrix H 4998eqs x 1600152dvs in 73MB

(59.6GB full)

Objective S.L = 13.0049,

CPU time = 225.4s

Fig. 2 The example of calling of the OptimalTruss and its output
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a

b

Fig. 3 Long cantilever problem and the exact optimal truss layout by

Lewiński et al. (1994a)

Fig. 4 Mesh 6 × 2:1 × 1; V = 15.0 P h/σ0

For today only plane trusses were implemented and

tested in the program. Theoretically the similar algo-

rithm would be used for space trusses but the problem

size increases dramatically, thus the smarter strategies are

required in this case. It will be the topic of the further

research and the next versions of the presented program.

4 Examples

The program described in the previous section has been

thoroughly examined in many numerical tests. A few of

them are presented bellow.

Fig. 5 Mesh 60 × 20:1 × 1; V = 15.0 P h/σ0

Fig. 6 Mesh 6 × 2:2 × 2; V = 14.5 P h/σ0

Fig. 7 Mesh 12 × 4:2 × 2; V = 13.9321 P h/σ0

Fig. 8 Mesh 60 × 20:3 × 3; V = 13.6953 P h/σ0

As the first example, consider a long cantilever beam

shown in Fig. 3a. Assume that the domain of possible mate-

rial is restricted to a rectangular panel with the ratio of

length to height equal to 3:1. The left side of the panel

is clamped while the right side is loaded by the vertical

force applied at the middle-central point. The problem is

classical and may be viewed as one of the most popular

benchmark tests. The exact-analytical solution was obtained

for the first time in Lewiński et al. (1994a); see Fig. 3b. This

layout consists of two Michell circular fans of origins at

the corner-supports and then of four orthogonal-curvilinear

Hencky nets: Michell “shield” (Michell 1904), two Chan

fans (Chan 1967), and the “shield” found in Lewiński et al.

(1994a). The exact value of the optimal stress controlled

volume is equal to 13.5972 Ph/σ0. It may be observed that

middle supports as well as material in some regions are

not necessary and disappear in the optimal structure. It is

worth to note that the analytical solution is hard to obtain

(it requires the advanced mathematical tools for solving

hyperbolic differential equations and is based on Bessel and

Fig. 9 Mesh 60 × 20:5 × 5; V = 13.6439 P h/σ0

Fig. 10 Mesh 60 × 20:20 × 20; V = 13.6343 P h/σ0
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Fig. 11 Mesh 120 × 40:10 × 10; V = 13.6126 P h/σ0

Fig. 12 Mesh 120 × 40:20 × 20. V = 13.6120 P h/σ0

Lommel special functions). Contrary, the numerical solu-

tion may easily be obtained using the algorithm presented

in this paper.

To make the investigation more extensive many different

ground structures are tested. The truss layouts obtained for

different densities of the ground structure are presented in

Figs. 4, 5, 6, 7, 8, 9, 10, 11, and 12. The thickness and the

gray scale of lines are proportional to square root of cross

section areas. Dark-thick lines correspond to thick bars

and light-thin lines—to thin bars, respectively. Obviously

the denser ground structures give better results regarding

to the optimal volume as well as the distribution of mate-

rial. Density should however be understood not only as the

external division of the domain into the number of rectan-

gular cells. The density of internal connections is of the

same importance because it allows transferring of forces in

different directions. It is clearly visible on results presented

in Figs. 4 and 5. They refer to the ground structures with

internal density 1 × 1. It means that only horizontal, ver-

tical and 45◦-slope bars are included, like in Fig. 1a. It is

no matter what the external density is used—in all cases the

optimal volume is equal to 15.0 Ph/σ0; this result is over

Fig. 13 Half-plane with two forces and two fixed supports

10% worse than exact one. The improvement of the solution

may be achieved only after including bars with new direc-

tions; compare the results in Figs. 6–10. The influence of

the internal density is evident. For the densest mesh 120 ×
40 with internal density 20 × 20 (see Fig. 12), the result

is very close to the exact solution; the relative error of the

volume is equal to 0.11%. Topology and shape of the final

truss correspond also very well to the exact layout shown in

Fig. 3b.

The efficiency of the presented algorithm has been thor-

oughly examined using the internal Mathematica’s func-

tions like ByteCount[], Timing[], etc. The results are col-

lected in Table 1. The first column describes the applied

mesh density. The next two columns include the total num-

bers of nodes and elements. The RAM capacities needed

for storing the matrix H defined in (4) are given in two next

columns, respectively for sparse and full matrix representa-

tions. The next (sixth) column includes the processor time

used to solve the optimization problem. The next column

presents the normalized, non-dimensional stress volume

defined by (10) and the last column includes the relative

error corresponding to the exact solution given by Lewiński

et al. (1994a). Note that the speed and the numerical stability

of the program are very good. The sparse matrix represen-

tation allows preserving a lot of memory. For example, in

Table 1 Results of the first

example regarding to efficiency Mesh density No. No. bars RAM for H in [MB] CPU Volume V σ Relative

nodes
Sparse Full

time [s] error [%]

60 × 20:1 × 1 1,281 4,880 0.34 188 0.3 15.0000 10.32

60 × 20:2 × 2 1,281 9,520 0.76 366 1.0 13.8671 1.98

60 × 20:3 × 3 1,281 18,328 1.56 705 1.8 13.6953 0.72

60 × 20:4 × 4 1,281 26,672 2.32 1,026 3.2 13.6580 0.45

60 × 20:5 × 5 1,281 42,448 3.75 1,632 5.4 13.6439 0.34

60 × 20:10 × 10 1,281 113,912 10.23 4,380 10.7 13.6350 0.28

60 × 20:20 × 20 1,281 280,136 25.29 10,772 43.3 13.6343 0.27

120 × 40:10 × 10 4,961 532,872 48.17 80,009 147.0 13.6126 0.11

120 × 40:20 × 20 4,961 1,745,496 158.68 262,080 768.0 13.6120 0.11
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a

b

c

d

Fig. 14 Optimal layouts for different densities of the ground structure

the last densest mesh almost 3.5 millions of design vari-

ables were used (two times the number of bars). This task

requires more than 250 GB RAM just for storing matrix H

in full form and only 159 MB of RAM using sparse matrix

representation. The profit is evident. The calculations were

performed on Intel Core 2 Duo E8400/3 GHz based PC with

4 GB of RAM. This fact clearly demonstrates the power

and efficiency of the presented approach. The last problem

took only about 13 min, which is an excellent result for so

large-scale problem.

The second example is shown in Fig. 13. It is a struc-

ture transmitting two symmetrically located vertical forces

to two fixed supports. The forces are applied at 1/4 and 3/4

of the span length. The feasible domain is the half plane

over the line linking the supports. The layouts obtained for

Fig. 15 Exact-analytical solution from Sokół and Lewiński

(submitted)

Fig. 16 Michell cantilever problem for σT �= σC ; see Graczykowski

and Lewiński (2010)

different densities of the mesh are shown in Fig. 14. The

results are collected in Table 2. The layouts of Fig. 14 have

recently played the role of hints of the analytical solution.

This solution is being put forward in the paper by Sokół and

Lewiński (submitted); see Fig. 15, where the optimal layout

of the problem of Fig. 13 is reported.

All trusses shown in Fig. 14 are structurally unstable.

The same property characterizes the Michell continuum

in Fig. 15. Despite this instability the solutions are cor-

rect, because the virtual work of the forces P on the

zero-energy modes vanishes. This is discussed in detail in

Sokół and Lewiński (submitted). The great advantage of

the numerical method proposed is that it does not exclude

such unstable structures from the algorithm. This complies

with the Michell remark no III, p. 591 in Michell (1904).

It should also be noted that due to direct solving of the lin-

ear programming problem (2) the method terminates with a

guaranteed correct result.

The last example concerns the reliability of the pro-

gram in the case of different stress limits for tension and

compression: σT �= σC . The corresponding optimization

problem for this case is given in (13). The exact results of

Table 2 Results of the second

example regarding to efficiency

aTwo last results were computed

for the half-symmetric part of

the structure

Mesh density No. No. bars RAM for H in [MB] CPU Volume V σ Relative

nodes
Sparse Full

time [s] error [%]

20 × 10:5 × 5 231 5,998 0.5 41 0.2 3.83790 1.78

40 × 20:10 × 10 861 73,172 6.6 1,900 5.0 3.80594 0.93

40 × 20:20 × 20 861 169,796 15 4,400 21.3 3.80593 0.93

80 × 40:20 × 20 3,321 1,115,216 102 112,000 290.0 3.78171 0.29

80 × 49:20 × 20a 4,050 1,441,349 131 177,002 599.7 3.77643 0.15

100 × 61:20 × 20a 6,262 2,406,373 219 457,510 1,312.4 3.77509 0.11
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a

b

c

d

Fig. 17 Numerical solutions for: a κ = 1, b κ = 3, c κ = 9, d

κ = 100

the problem shown in Fig. 16 are given by Graczykowski

and Lewiński (2010). The following ratios κ = σT /σC have

been examined: 1, 3, 5, 7, 9, 100. The selected optimal-

numerical layouts are presented in Fig. 17. All of them have

been executed for the ground structure of density 110 ×
40:20:20, with 4,551 nodes and 1,587,926 elements. The

Table 3 Comparison of analytical and numerical solutions

κ arctan(
√

κ) Exact Num. vol. Relative CPU

volumea V σ error [%] time [s]

1 45◦ 11.8273 11.8406 0.112 579

3 60◦ 23.2900 23.3176 0.118 720

5 66◦ 34.6664 34.7083 0.121 731

7 69◦ 46,0208 46,0777 0,124 753

9 72◦ 57.3665 57.4380 0.125 788

100 84◦ – 573.8080 – 889

aExact-analytical results from Graczykowski and Lewiński (2010)

volumes obtained in numerical way agree very well with

the exact volumes reported in Graczykowski and Lewiński

(2010). The layouts fit also very well. For example, the

angle of flare of the upper fan matches well the theoretical

value of this angle which is equal to arctan(
√

κ). The com-

parison of the results is given in Table 3. One can notice

that the relative error of the volume as well as CPU time

increase for growing κ . Thus the tasks with κ �= 1 are harder

to solve. The program presented in the paper is capable of

solving them successfully.

5 Conclusions

The computational program developed should serve as a

convenient tool for predicting new exact solutions to the

Michell problems. The listing of the program can be found

in Appendix 1. It requires the Mathematica, version 6 or

higher. The program is based on the concept of the ground

structure and that is why it produces results which are not

built on any knowledge of properties of the optimum lay-

outs. This is the essential virtue of the method, since the

complete theory of Michell structures has not been devel-

oped till now and we cannot unconditionally say that the

properties noted in the most cited reference sources hold

good in all specific cases.

The correct prediction of the solution of problem in

Fig. 13 seems to be a success, since the pseudo truss in

Fig. 15 is structurally unstable and this solution is highly

sensitive to the position of forces P , in contrast to the

better known cantilever solutions (e.g. Graczykowski and

Lewiński 2010; Lewiński et al. 1994a, b) in which the

Hencky net is independent of the loading applied.
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Lewiński T, Zhou M, Rozvany GIN (1994b) Extended exact solutions

for least-weight truss layouts—part II: unsymmetric cantilevers.

Int J Mech Sci 36:399–419

Mehrotra S (1992) On the implementation of a primal-dual interior

point method. SIAM J Optim 2:575–601

Michell AGM (1904) The limits of economy of material in frame

structures. Phil Mag 8:589–597

Nocedal J, Wright S (1999) Numerical optimization. Springer, New

York

Rozvany GIN (1996) Some shortcomings in Michell’s truss theory.

Struct Optim 12:244–250

Rozvany GIN, Bendsøe MP, Kirsch U (1995) Layout optimization of

structures. Appl Mech Rev 48:41–119

Sigmund O (2001) A 99 line topology optimization code written in

Matlab. Struct Multidisc Optim 21:120–127
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