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Abstract—  The problem of estimating nonstationary signals 

has been considered in many previous publications.  In this 

paper we propose an alternative algorithm in order to accurately 

estimate AM/FM
1
 signals.  Only single component signals are 

considered.  We perform local polynomial modeling on short 

time segments using a nonsequential strategy.  The degree of  

polynomial approximation is limited due to the shortness of each 

time segment.  The time support of a segment is controlled by a 

criterion defined on the spectrogram.  To keep optimality a 

maximum likelihood procedure estimates the local model 

parameters leading to a non linear equation system in R
7
.  This is 

solved by a Simulated Annealing technique.  Finally, the local 

polynomial models are merged to reconstruct the entire signal 

model.  The proposed algorithm enables highly nonlinear 

AM/FM estimation and shows robustness even when Signal to 

Noise Ratio (SNR) is low.  The appropriate Cramer Rao Bounds 

(CRB) are presented for both polynomial phase and amplitude 

signals.  Monte Carlo simulations show that the proposed 

algorithm performs well.  Finally, our proposed method is 

illustrated using both numerical simulations and a real signal of 

whale sound.  

I. INTRODUCTION AND OUTLINE 

This paper is concerned with the commonly encountered 

problem of estimating nonlinear AM/FM signals.  This topic 

is frequently addressed in engineering systems and applied 

science.  Examples of which involve radar, sonar, mechanics, 

speech, and communications.  Although this problem has 

been widely investigated for many years [2-3-4-9-10-14], the 

proposed techniques fail to estimate the AM/FM modulation 

at low SNR.  These used AM/FM polynomial models, hence 

strong modulations need high orders.  However, this reduces 

the performance of the analysis. 

So, in aiming, both, to estimate all types of modulation and 

to improve the accuracy, we present an alternative approach.  

Contrary to [2-3-4-9-10-14], we propose to pay attention to 

the local variations of the modulations instead of the entire 

frequency and amplitude.  To keep optimality we locally 

estimate these variations using a Maximum Likelihood (ML) 

procedure.  

In other words, we segment the signal in short time 

windows as shown in Fig 1.  The first segment corresponds 

with the most energetic part of the signal; the segmentation is 

then carried out on both positive and negative time 
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 AM/FM: Amplitude Modulation/ Frequency modulation 

progression.  This corresponds to a nonsequential strategy 

which is an original part of this work. The length of each 

segment is adapted to locally approximate the amplitude and 

the frequency by second order polynomial functions in 

agreement with the Weierstrass theorem.  We then estimate 

parameter models using the ML procedure.  As this leads to a 

rather complicated function to be minimized, we use an 

optimization technique which is easily implemented and 

increases efficiency.  We will show the effects of the chosen 

polynomial base upon the parameter estimation.  An 

orthogonal polynomial base results in amplitude parameters 

being uncoupled.  Therefore, we propose one adapted to the 

discrete time context.  In that case we get higher estimation 

accuracy.  Once all local polynomial models have been 

estimated, we propose a merging strategy to reconstruct the 

entire signal model. 

The suggested method enables us to free ourselves from a 

polynomial phase and amplitude model as in [2-3-4-9-10-14], 

for the entire modulation.  Therefore, the estimation of the 

model polynomial order is no longer necessary.  We also 

benefit from the fact that there is no more error propagation 

due to the iterative estimation of the polynomial coefficients 

as in [2-3-4-9-10-14].  Moreover the proposed algorithm 

results in a good compromise between the local optimality 

and computational time. 

 

The discrete signal to be dealt with herein is given by: 

   j [ ]

[ ] [ ] [ ]
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          (1) 

Where e[n] is assumed to be a white complex Gaussian 

process with zero mean and unknown variance σ2.  We 

assume no discontinuous phase φ[n], strictly positive 

amplitude A[n] and reduced frequency F[n] respecting the 

Shannon theorem. 

 

Section II describes the local model estimation.  In Section 

III, we develop the time segmentation algorithm.  In Section 

IV, Cramer Rao bounds (CRB) derived in [4] for the entire 

frequency and amplitude are compared to the proposed global 

estimator.  The analysis of numerical simulations and a real 

signal are discussed in Section V.  Finally Section VI sets out 

our conclusions and work in progress. 

II. LOCAL MODEL ESTIMATION 



In this section, we consider a short time segment of the 

component defined in (1).  Its time support is obtained from 

the time-segmentation algorithm introduced later.  It is short 

enough to allow a second order polynomial approximation for 

both the local frequency and amplitude.  Hence, we have a 

reduced number of coefficients to estimate.  Typically, the 

length ranges between 12 and 60 samples with respect to the 

variations of the frequency modulation.  

 

A. Local AM/FM Model 

For the ith segment, both the local frequency fi[k] and 

amplitude ai[k] (Fig. 2) are approximated by: 
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Fig. 1.     Examples of segment length for a nonlinear AM/FM signal  

 

 
Fig. 2.  Local segment of an AM/FM modulation (31 samples). 

 

where , [ ]i ug k is a uth order normalized polynomial defined 

over [-Li/2,Li/2].  To simplify implementation of the algorithm, 

the segment length Li +1 is assumed to be odd.  Additionally, 

we reference the local time k and initial phase θi,0 to the 

segment centre in order to minimize estimation errors [8-11].  

Then the phase is locally approximated by: 
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To sum up, for the ith segment, we have to 

estimate { },0 ,1 ,2 ,0 ,0 ,1 ,2
, , , , , ,= θ

i i i i i i i i
θ a a a f f f .  This is a set of 

seven parameters: three parameters for the amplitude, the 

initial phase, and three parameters for the frequency.  The 

estimation is done using two constraints: strictly positive 

amplitude and no discontinuous phase.   

  To conserve optimality, a ML technique is used for the local 

parameter estimation.  It results in a nonlinear equation to be 

minimized in 7ℜ .  As the noise is assumed to be Gaussian, 

the ML estimator is equivalent to the Least Squares (LS) one.  

So we write: 
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2
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Through yi[k] and si[k] we can note the noisy observations 

and the signal model respectively.  They are restricted to the 

ith segment and time referenced to its centre.  
 

B. Optimization strategies 

Due to the complexity of the likelihood function (4), 

parameter estimation by direct maximization is extremely 

difficult.  To overcome this problem, we apply two numerical 

methods:  the Simulated Annealing (SA) and the MCMC 

(Metropolis Hasting random walk one variable at time) 

method which are stochastic techniques.   

The SA one has analogies with the annealing of solids in 

physics [7].  It has significant efficiency when a desired 

global extremum is hidden in many local extrema, and its 

implementation is relatively simple.  The MCMC method [1] 

is also easily implemented.  However it requires more time to 

converge.  In [6] we compare both SA and MCMC methods 

for a quadratic modulation over a short time window.  Monte-

Carlo simulations show the mean square errors (MSE) of the 

parameter estimates are closed to the derived CRB for both 

SA and MCMC techniques.  Nevertheless, the SA one is less 

biased than that of the MCMC.  We finally choose the SA 

technique based on these observations in the following. 

An important point in reducing the convergence time for 

the chosen algorithm is to use a good initialization source.  So, 

to solve (4), the time frequency (TF) trajectory provided by 

the spectrogram is used to initialize the SA technique.  This is 

composed of the ridge of energy.  As it is a continuous time 

function, it has a polynomial approximation. This gives a 

close initialization for the frequency and amplitude 

parameters.  The remaining parameters are set equal to zero. 

 



C. Base effects 

Here the influence of the chosen polynomials is studied.  In 

fact, from results given in [6-4], the Fisher information matrix 

derived for amplitude parameters is diagonal for orthogonal 

base only.  So, this orthogonality is interesting since it leads 

to uncoupling of the parameter estimation.  Thus the 

estimation accuracy will be improved.  An orthogonal 

polynomial base is given by Legendre one in continuous time.  

However when discretized it looses its orthogonal properties.  

So, we derive a discrete orthonormal polynomial base in 

discrete time directly. 

Let gi,u  =[ gi,u[-Li/2],…, gi,u[Li/2] ] be a Li+1 dimension 

orthonormal vector such as: 

                 <gi,u  ,  gi,v>= δu,v                      (5)
0
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v
uκ  is the vth order polynomial coefficient of gi,u[k].  By 

applying the Gram-Schmidt procedure over [-Li/2,Li/2] using 

(5), we get the
v
uκ  values  

i i i i

i i

i i i

i i i i i
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    Then three different bases are compared: the canonical 

base2 which is not normalized, the discretized Legendre base 

and the proposed one (7).  Fig. 3. shows the Mean Square 

Error (MSE) of a0, i and f0, i estimates using the three bases.    

Fig. 4. shows their bias.  The same quadratic AM/FM 

modulation is considered over a 33-sample segment.  Both of 

Fig. 3 and 4 illustrate the higher estimation given by the 

proposed base.  This remark is true for the remaining 

parameters too.  This helps the SA technique in finding the 

shortest path to the global extremum, hence increasing the 

convergence rate of the algorithm.  Moreover orthogonality 

simplifies the initialization of the agitation low [13-7] of the 

SA algorithm. 

   Considering the time-support shortness, the SA algorithm 

for the estimation of the parameters is biased (Fig4).  As the 

CRB is the lower bound on the estimation accuracy of an 

unbiased estimator, estimation errors are not directly 

comparable with the CRBs given in [4-6].  Here, it is just used 

as a reference in evaluating the performance of the algorithms. 

 

III. TIME  SEGMENTATION  ALGORITHM 

   To find the time support of each segment we proceed in 

three steps: 

 First, the main energy peak of the spectrogram is located in 

time and frequency.  This corresponds with the most energetic 
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 The second order canonical base: 1, x and x²,  for x belongs to [-Li/2, Li/2] 

point of the signal.  The spectrogram is used to do this since 

the frequency resolution is not critical.  The segment length is  

 
Fig. 3.         MSE (o-) and CRB (-):  Parameter  estimation of a quadratic 

AM/FM signals using different bases:  the orthonormal  proposed  base, the 

Legendre base and the canonical one from left to right respectively.  

 

 
Fig. 4.     Bias in (%) of the parameter estimates of a quadratic AM/FM 

signals using different bases:  the orthonormal calculated base (-), the 

Legendre base (:) and the Canonical one (- -)  

 
fixed to at least three periods of the main peak frequency.  We 

also limit the sample number to 60 to reduce the time 

convergence. 

   Then local estimation of the frequency and the amplitude is 

done using the method given in Section II, see Ref. [13] for  

the implementation of the SA-method.  Following this all 

other segments are extracted and treated in the same way by 

locating next energetic peaks. 

   Finally we reconstruct the entire signal by merging the 

contiguous local models.  We need to detect the overlap 

between segments.  In doing so, the frequency is smoothed by 

a Hamming window with respect to the phase continuity 

constraint.  Fig. 5. shows the significant weight of the 

Hamming windows in the segment centre since the error 

estimation is minimized there. 

 



Previous segment 

Next segment 

 

 

 

 

 

 

 

 

 
                    Fig. 5 : Smoothing using hamming windows 

 

   The steps involved in the entire signal estimation are as 

follows: 
 

   Initialization     Let 0, [ ] [ ], 0 1= = ≤ ≤i y n y n for n N-  

   Step 1  Determine the segment to be processed. 

             a) ])[(mspectrogramaxarg=],[
,

maxmax nyfn
fn

   

             b)  Set   Li= 3* floor value of (1/ maxf ).  

             c) Put i iL L
2 2i max max

segment [n - , n ]= +   

 

   Step 2   Estimate the local polynomial model as in section II.  

 

   Step 3   If there is overlap between the estimated segments 

                 smooth for both the local frequency and amplitude 

                 ( Fig. 5.).  Otherwise go to step4. 

 

   Step 4   If all samples are treated go to step 5, else set 1+= ii . 

                Reconstruct the estimated parts of the signal model 

                using (1). 

                Remove them from y [n].  Then restart step 1. 

 

   Step 5   Reconstruction of the entire estimate signal model  

                using (1). 

 

  We notice that the model given by (1) is still conserved since 

the estimated parts of the signal model are not removed when 

we use (4).  This avoids error accumulation due to the 

segmentation. 

 

The proposed strategy is nonsequential.  It is particularly 

interesting in that it constructs segments centered on the most 

energetic points of the signal.  This considerably decreases 

estimation errors.  Furthermore, the proposed algorithm is 

well balanced with respect to accuracy and low CPU time.  In 

spite of its apparent complexity, it is easy to implement.  For 

example for a cubic AM/FM modulation with N equal to 257 

samples, we have about five segments to process depending 

on the SNR 

Contrary to the existing techniques such as the HAF 

(Higher Ambiguity Function) [9-4-3-2], we don’t need to 

estimate degree and the coefficients of the entire AM/FM 

models.  Local variations of the frequency and the amplitude 

are closely tracked.  Examples in Section V show good results.  

Moreover, Ref. [6] noted that in a comparison with HAF for 

polynomial phase signals, the proposed algorithm shows the 

best tracking of the AM/FM modulations. 

IV. CRAMER RAO BOUND 

Let us consider a polynomial phase and amplitude signal 

with a single component.  The signal model is given by (1).  

The amplitude and the frequency are given by the following 

equations: 
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where ρu[n] and ηu[n] are normalized canonic polynomial 

bases.  P and Q are polynomial orders of the amplitude and 

the phase respectively.  In [4], Friedlander and Francos 

derived the CRB for polynomial amplitude and phase for the 

entire modulation. 
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with    ρ=[ρ0[n] ,…, ρP[n]],     Λ=j [η0(n). s(n),…,ηQ(n). s(n)] , 

                
' '1

2 0 Q[ [n ], , [n ]]π= η ηh , 

and          j (n) j (n)

0 P
[ ( ).e ,...,   ( ).e ]Φ Φ= ρ ρΦ n n   

The symbol of ‘ (n)• ’denotes the N dimension vector of a 

scalar function ‘ (n)• ’ for 10 −≤≤ Nn .  ‘.’denotes element 

by element multiplication of the vector entries.  ‘H’ is the 

transpose conjugate and ‘ ' ’ is for the derivation.  

We observe that the derived CRB are functions of time.  To 

make comparison with the CRBs given by (9), we choose a 

cubic polynomial AM/FM signal, as an example, with N=257,  

see Fig. 6.  Monte Carlo simulations with 100 trials were run 

with global3 SNR equal to 15 dB and 10 dB.  Fig 7 and 8 

illustrate the MSE of the reconstructed amplitude and 

frequency modulations versus the corresponding CRBs (9) 

respectively.  They show a robustness of our proposed 

technique when the SNR becomes low. 

It is important to note that the SNR is not constant over 

time due to the nonstationarity of the signal.  Therefore, the 

SNR can be locally 4  lower than the global SNR which 

explains the differences in performance over time (Fig. 9). 

V. NUMERICAL EXAMPLES 

In this section, the proposed algorithm is illustrated with 

numerical examples. 

First we use a fifth order polynomial AM/FM signal which 

means that the phase order is 6.  This is a very high AM/FM 

modulation.  Fig. 10 shows three curves: the original signal 

versus the reconstructed ones with SNR equal to 15 and 10 

dB and for N=257.  It is easily seen that the estimated curves 

are close to the original amplitude and frequency.  Thus the 

proposed algorithm is able to estimate highly modulation. 
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 A global SNR is evaluated using the entire signal 

4
 A local SNR is evaluated  on each segment 



 Fig.  6: An cubic -AM/FM signal with N=257 and parameter values 

{a0,a1,a2,a3,θ0,b0,b1,b2,b3}={18.7,4.7,32.0,-31.6;-2.18,4.8,-3.5,0.15, 1.57}. 

 

 

 
Fig. 7 : CRB (-) versus amplitude MSE (:) for the cubic AM/FM signal of 

the Fig. 6. for SNR= 15 dB and 10 dB. 

 

 
Fig. 8  : CRB (-) versus frequency MSE (:) for the cubic AM/FM signal of the 

Fig. 6. for SNR= 15 dB and 10 dB. 

 

 

 
Fig.  9: Local SNR (dB) computed on 25 samples gliding window for a global 

SNR=15 dB 

 
Fig. 10 : (a) Original frequency (-) versus the reconstructed ones for 15 dB 

(-- ) and for 10 dB (: ).  (b) Original amplitude versus the reconstructed ones 

for 15 dB and 10 dB 

 

Then we consider an other example: a sinusoidal AM/FM 

signal as in (1) with  

( )
( )

[ ] 5 5sin
0 1

[ ] 0.25 0.1cos 2

 π= + ≤ ≤ −
= + π

 

   

nA n
N

with n N
nF n

N

 

We note that it is not polynomial phase.  Fig. 11 shows it to 

be well estimated for SNR equal to 15, 10 and 5 dB.  This 

illustrates that we can apply local polynomial models to 

estimate a nonpolynomial phase signals. 

   Finally to show the efficiency of the algorithm we consider 

a real signal:  that of whale sound.  In certain bioacoustics 

studies on the effects of human-made sound on a whales’ 

behavior, scientists need estimate the whale sounds embedded 

in significant noise, particularly that due to shipping.  Far 

from simple linear chirps and being affected by amplitude 

distortion, detection of the whale’s sound need more than 

 

 
Fig. 11 : (a) Original frequency (-) versus the reconstructed ones: (--) for 

15dB , (: )  for 10dB,and (-.-) for 5dB.  (b) Original amplitude versus the 

reconstructed ones: for 15dB, for 10dB and for 5dB. 



linear AM/FM-estimation techniques.  Fig. 12 shows the 

spectrogram of the noisy signal.  As we see the information 

gives by the spectrogram or Fourier transform does not yield 

precise information for the AM and FM modulation.  Fig. 13 

and 14 give the result of our approach for unknown SNR.  

Most of the frequency variations seem to be in agreement 

with the spectrogram.  The estimated amplitude thought of as 

the mean of the noisy observations. 

 

Fig. 12:  Spectrogram of the whale sound 

 

 Fig. 13 Estimated Frequency modulation  

 

 
Fig. 14   Estimated-Amplitude modulation (-) versus the amplitude of 

Hilbert transform of the original noisy signal (- -). 

VI. CONCLUSIONS 

In this paper we investigate the estimation of highly 

nonstationary single component signal embedded in noise. 

Based on nonsequential time segmentation and local 

polynomial modeling, the proposed algorithm is able to fit the 

frequency and the amplitude by merging local polynomial 

models.  Using a maximum likelihood estimator for the local 

model parameters allow us to keep optimality.  Comparisons 

with existing techniques such HAF show that our approach is 

performant [6].  It is not limited to linear AMFM modulation.  

Moreover, it doesn’t need prior estimation on the phase 

degree.  Numerical simulations, including sinusoidal AM/FM 

modulation and high order polynomial phase signals, show 

the good performance.  Aiming now to study multicomponent 

signals works are in progress in this direction. 
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