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ABSTRACT - Inhibition of α-amylase, enzyme that plays a role in digestion of starch and glycogen, is 
considered a strategy for the treatment of disorders in carbohydrate uptake, such as diabetes and obesity, as 
well as, dental caries and periodontal diseases. Plants are an important source of chemical constituents with 
potential for inhibition of α-amylase and can be used as therapeutic or functional food sources. A review 
about crude extracts and isolated compounds from plant source that have been tested for α-amylase 
inhibitory activity has been done. The analysis of the results shows a variety of crude extracts that present α-
amylase inhibitory activity and some of them had relevant activity when compared with controls used in the 
studies. Amongst the phyto-constituents that have been investigated, flavonoids are one of them that 
demonstrated the highest inhibitory activities with the potential of inhibition related to number of hydroxyl 
groups in the molecule of the compound. Several phyto-constituents and plant species as α-amylase 
inhibitors are being reported in this article. Majority of studies have focused on the anti-amylase phenolic 
compounds. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
_______________________________________________________________________________________ 

INTRODUCTION 
 
Disorders of carbohydrate uptake may cause 
severe health problems such as diabetes (1), 
obesity (2), and oral diseases (3), all of which 
threaten an increasing worldwide population. 
Diabetes mellitus (DM) is a metabolic disorder 
resulting from deficiency in insulin secretion, 
insulin action, or both, promoting disturbance of 
carbohydrate, fat and protein metabolism. Long-
term complications of diabetes mellitus include 
retinopathy, nephropathy, neuropathy, micro-
angiopathy and increased risk of cardiovascular 
disease (1, 4, 5). 

The therapeutic strategies for the treatment of 
type 2 diabetes include the reduction of the 
demand for insulin, stimulation of endogenous 
insulin secretion, enhancement of the action of 
insulin at the target tissues and the inhibition of 
degradation of oligo and disaccharides (6). The 
drugs commonly used in clinic to handle or 
control diabetes are insulin, sulfonylureas, 
biguanide, glucosidase inhibitors, aldose 
reductase inhibitor, thiazolidinediones, 
carbamoylmethyl benzoic acid, insulin-like 
growth factor. The effect of these drugs is aimed 
to lower the level of blood glucose (4, 7, 8). One 

therapeutic approach for treating type 2 diabetes 
mellitus is to decrease the post-prandial glucose 
levels. This could be done by retarding the 
absorption of glucose through the inhibition of the 
carbohydrates-hydrolysing enzymes, -
glucosidase and -amylase, present in the small 
intestinal brush border that are responsible for the 
breakdown of oligosaccharides and disaccharides 
into monosaccharides suitable for absorption (1, 
7, 9, 10). Inhibitors of these enzymes, like 
acarbose, delay carbohydrate digestion and 
prolong overall carbohydrate digestion time, 
causing a reduction in the rate of glucose 
absorption and consequently blunting the post-
prandial plasma glucose rise (1, 4). 

Dental caries and periodontal diseases are the 
most prevalent oral infectious diseases that cause 
significantly impact a person’s overall health, 
having considerable economic impact, if not 
adequate treated (3, 11). 
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Take part in etiopathology of dental caries, the 
most abundant enzyme in human saliva, α-
amylase salivary, possess at least three distinct 
biological functions in the oral cavity (12). First, 
its hydrolytic activity is responsible for the initial 
break down of starch to oligosaccharides. Second, 
several lines of evidence indicate that salivary α-
amylase bound to tooth enamel or hydroxyapatite 
may play a role in dental plaque formation. Third, 
α-amylase in solution binds with high affinity to 
viridans oral streptococci and bacteria-bound α-
amylase is capable of hydrolyzing starch to 
glucose, which can be used as a food source and 
then further metabolized to lactic acid. Localized 
acid production by bacteria can lead to the 
dissolution of tooth enamel, a critical step in 
dental caries progression (12, 13). Because of its 
central role in the oral cavity, α-amylase salivary 
has been exploited as a target for the structure-
assisted design of compounds that might prevent 
unwanted dental plaque formation and the 
subsequent process of dental caries formation and 
progression. Ethnopharmacological approach 
and bioassay-guided isolation have provided a 
lead in identifying potential α-amylase inhibitors 
from plant sources. Currently, methods to 
determine the levels of α-amylase inhibitor are 
based on the measurement of α-amylase activity 
resulting by the different iodine staining power in 
the presence or absence of an inhibitor during the 
action of the enzyme on soluble starch or by using 
an alkaline reactive whose brown reduction 
products are determined photometrically as 
reported by Bernfeld (14, 15). This review 
highlights on the plants and their active 
constituents so far reported to have α-amylase 
inhibitory activity. 
 
CHARACTERISTICS OF -AMYLASE 
 
The α–amylase (α -1,4-glucan-4-
glucanohydrolases; E.C. 3.2.1.1) is one of the 
major secretory products of the pancreas (about 
5–6%) (16) and salivary glands, playing a role in 
digestion of starch and glycogen and can be found 
in microorganisms, plants and higher organisms 
(17). The α -amylase constitute a family of endo-
amylases that catalyse the initial hydrolysis of 
starch into shorter oligosaccharides through the 
cleavage of α-D-(1-4) glycosidic bonds (17-20). 
Neither terminal glucose residues nor α-1,6-
linkages can be cleaved by α-amylase (16). The 
end products of α-amylase action are 
oligosaccharides with varying length with an α-
configuration and α-limit dextrins (21), which 

constitute a mixture of maltose, maltotriose, and 
branched oligosaccharides of 6–8 glucose units 
that contain both α-1,4 and α-1,6 linkages (16). 
Others amylolytic enzymes participate in the 
process of starch breakdown, but the contribution 
of α-amylase is a prerequisite for the initiation of 
this process (19). 

The human α-amylase is classical calcium-
containing enzyme composed of 512 amino acids 
in a single oligosaccharide chain with a molecular 
weight of 57.6 kDa (16). There are five α-amylase 
genes clustered in chromosome 1, at location 
1q21, in humans. Three of them code for salivary 
R-amylase, AMY1A, AMY1B, and AMY1C, and 
the other two genes AMY2A and AMY2B are 
expressed in the pancreas (22, 23). Human 
salivary and pancreatic α-amylases share a high 
degree of amino acid sequence similarity with 
97% identical residues overall and 92% in the 
catalytic domains (12, 18). 

The amylase presents a three-dimensional 
structure capable of binding to substrate and, by 
the action of highly specific catalytic groups, 
promote the breakage of the glycoside links (20). 
The protein contains 3 domains: A, B, and C. 
Domain A, which has a (β/α)8 barrel fold, 
constitutes the catalytic core domain. It contains 
about 280–300 residues. The catalytic triad (Asp, 
Asp, Glu) is present in domain A (24, 25). The B 
domain is inserted between A and C domains and 
is attached to the A domain by disulphide bond. 
The C domain presents a β sheet structure linked 
to the A domain by a simple polypeptide chain 
and seems to be an independent domain with 
unknown function. The active site (substrate-
binding) of the α-amylase is situated in a long 
cleft located between the carboxyl end of both A 
and B domains. The calcium (Ca2+) is situated 
between A and B domains and may act in 
stabilizing the three-dimensional structure and as 
an allosteric activator. The substrate-binding site 
contains 5 subsites (-3 -2 -1 +1 +2) (26). 

α-Amylase catalyze the hydrolysis of starch 
via a double displacement mechanism involving 
the formation and hydrolysis of a covalent β-
glycosyl enzyme intermediate by using active site 
carboxylic acids for it (27). The residues, in 
particular, Asp197, Glu233, and Asp300 were 
described to function as catalytic residues (26, 
27). Probably, Asp197 acts as nucleophil that 
attacks the substrate at the sugar anomeric center, 
forming a covalently bound reaction intermediate. 
In this step, the reducing end of the substrate is 
cleaved off the sugar skeleton. In a second step a 
water molecule attacks the anomeric center to 
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break the covalent bond between Asp197 and the 
substrate, attaching a hydroxyl group to the 
anomeric center. In both steps Glu233 and Asp300 
either individually or collectively act as acid/base 
catalysts. As a consequence, the active site of 
human α-amylase consists of several major 
binding subsites identified through kinetic studies 
(26). The same studies show that the “-1”, “-2”, 
and “-3” pocket is the core of the catalytic 
reaction (26).   
 
INHIBITORS OF -AMYLASE FROM 
PLANTS 
  
The potential role of the medicinal plants as 
inhibitors of α-amylase has been reviewed by 
several authors. A variety of plants has been 
reported to show α-amylase inhibitory activity 
and so may be relevant to the treatment of type 2 
diabetes. About 800 plant species have been 
reported to possess antidiabetic properties. A wide 
range of plant-derived principles belonging to 
compounds, mainly alkaloids, glycosides, 
galactomannan gum, polysaccharides, 
hypoglycans, peptidoglycans, guanidine, steroids, 
glycopeptides and terpenoids, have demonstrated 
bioactivity against hyperglycaemia (28). A list of 
plants reported to have significant α-amylase 
inhibitory activity is shown in Table 1. 

Syzygium cumini L. (syn: Eugenia jambolana 
Lam.) and Psidium guajava L. are widely used 
traditional system of medicine to treat diabetes in 
India (29). The aqueous extracts from S. cumini 
seeds and P. guajava leaves  both showed a dose-
dependent inhibitory effect on α-amylase activity 
(29). The extract from seeds of S. cumini also 
significantly decreased the levels of blood glucose 
on diabetic rats (28, 30). Conforti and cols. (2005) 
(31) demonstrated that  methanol, ethyl acetate 
and hexane extracts from two varieties of 
Amaranthus caudatus L. seeds (Oscar blanco and 
Victor red. Oil) showed α-amylase inhibitory 
activity (above 80% inhibition rate) at 0.25-
1mg/mL. 

The buffered extracts of several plant species 
namely Balanites aegyptiaca L., Camellia 
sinensis L. Del., Galega officinalis L., 
Holarrhena floribunda (Don) Durand & Schinz, 
Khaya senegalensis (Desr.) A. Juss., Melissa 
officinalis L., Mitragyna inermis (Willd.) O. 
Ktze., Rosmarinus officinalis L., Securidaca 
longepedunculata Fresen., Tamarindus indica L., 
Taraxacum officinale Web. ex Wigg., and 
Vaccinium myrtillus L. were screened for α-
amylase activity and showed remarkable 

inhibitory activity (above 45% inhibition rate at 
0.2g/mL) (6). Methanol extracts of 41 plants, used 
in traditional Mongolian medicine have been 
tested for α-amylase inhibitory properties and 
significant inhibition of the enzyme was shown by 
Rhodiola rosea L., Ribes pullchelum Turcz, and 
Vaccinium uliginosum L;  extracts from 
Geranium pretense L, Leontopodium 
ochroleucum Beauv., Paeonia anomala L., and 
Pentaphylloides fruticosa L. Schwarz showed α-
amylase inhibitory activity greater than 30% (32). 
Loizzo and cols (2008) screened the methanol, 
hexane and chloroform extracts from nine 
Lebanon traditional medicinal plants 
recommended in Lebanon for diabetes and found 
that the methanol extracts of Salvia acetabulosa 
L. and Marrubium radiatum Devile ex Benth 
exerted the highest inhibitory activity against α-
amylase (33). 

Ayurveda, the traditional Indian herbal 
medicinal system practiced for over thousands of 
years have reports of antidiabetic plants with no 
apparent known side effects (34, 35). Chloroform 
extracts of six plants namely Azadirachta indica 
A. Juss, S. cumini, Ocimum tenuflorum L., 
Murraya koenigii (L.) Spreng., and Linum 
usitatissimum L., traditionally used in Ayurveda 
along with Bougainvillea spectabilis Willd. used 
as a hypoglycemic plant in West Indies, and some 
parts of Asia were screened for inhibitory activity 
on α-amylase (34). A significant inhibition was 
observed with extracts of O. tenuflorum (34). 
Other six Indian medicinal plants were tested for 
their effect on α-amylase activity. Among them, 
Mangifera indica L., Embelia ribes Burm.,  
Phyllanthus maderaspatensis Linn. and Punica 
granatum L. showed interesting α-amylase 
inhibitory activity (36). 

The proteinaceous inhibitor of α-amylase 
(αAI), which inhibits animal salivary and 
pancreatic a-amylase, has been identified and 
isolated from various plant species (37). Amongst 
this plants, seeds of Phaseolus vulgaris L. contain 
proteinaceous inhibitors of the α-amylase and the 
isoform inhibitor αAI-1 have been isolated and 
characterized (38, 39). The common bean αAI-1 
has been reported to have relatively great 
potential as an extensive anti-obesity and anti-
diabetes remedy (37). 
 
PHYTOCONSTITUENTS WITH  
-AMYLASE INHIBITORY ACTIVITY 
 
A wide array of plant has derived numerous 
chemical compounds that have demonstrated 
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activity consistent with their possible use in the 
treatment of diabetes. Research on new bioactive 
compounds from medicinal plants has led to 
isolation and structure elucidation of a number of 
exciting new pharmacophores. A list of phyto-
constituents having significant α-amylase 
inhibitory activity is provided in Table 2. 

Oligosaccharide inhibitors of the trestatin 
family that contain the acarviosine moiety (e.g., 
acarbose 1), proteinaceous inhibitors isolated 
from microbial sources and plant tissues (40) and 
molecules present in plants comprise the natural 
inhibitors of α-amylase (41). Acarbose [1], a well 
know drug widely used for clinical treatment of 
diabetes mellitus, is a pseudotetrasaccharide, 
produced by Actinoplanes sp. fermentation, 
consisting of a polyhydroxylated 
aminocyclohexene derivative (valienamine) 
linked via its nitrogen atom to a 6-deoxyglucose, 
which is itself α-1,4-linked to a maltose moiety. It 
is a competitive inhibitor of -amylase and the 
mechanism of inhibition seems to be due to the 
unsaturated cyclohexene ring and the glycosidic 
nitrogen linkage that mimics the transition state 
for the cleavage enzymatic of glycosidic linkages 
(42, 43). 

In the structural study of the human 
pancreatic α-amylase /acarbose complex, acarbose 
inhibitor was described to bind subsites “-3” 
through “+2” (26). In acarbose the valienamine 
moiety is found in binding subsite -1 and its 
strong inhibition is believed to result from 
enhanced binding of this moiety with the side 
chain of Asp197, Glu233, and Asp300. Kinetic 
studies also highlighted the importance in 
catalysis of the presence of hydroxyl groups in the 

ligand together with the Asp197, Glu233, and Asp300 
residues in the binding site (substitution of these 
residues leading to a considerable drop in 
catalytic activity) (26). 

Acarbose [1] is metabolised by small and 
large intestinal carbohydrases to give acarviosine-
glucose and glucose (43). The main adverse 
effects observed with acarbose are 
gastrointestinal, including abdominal discomfort, 
flatulence, meteorism and diarrhea (8, 43, 44). 
These adverse effects might be caused by the 
increase of degradation products in the intestine 
resulting in the abnormal bacterial fermentation of 
undigested carbohydrates (43, 44). Indeed, these 
main side effects are common to -amylase 
inhibitors. Specifically, bloating, abdominal 
discomfort, diarrhea and flatulence occur in about 
20% of patients (45). Frequently such effects lead 
to therapy discontinuation (7). -Glucosidase 
inhibitors are contraindicated in patients with 
irritable bowel syndrome or severe kidney or liver 
dysfunction. Inflammatory bowel disease is a 
relative contraindication (4). There are also 
reports of an increased of renal tumors occurrence 
and serious hepatic injury and acute hepatitis (46). 

Studies with healthy and type 2 diabetes 
subjects showed that natural α-amylases inhibitors 
isolated from wheat (47) and white bean (48) 
significantly reduced the peak of postprandial 
glucose. Inhibitory profiles were investigated in 
green, oolong and black teas and the results 
suggested that catechins may be responsible for 
its activity in human salivary α-amylase (49).  
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Therefore, the present article reviews and shows 
in table 1 a list of compounds with human α-
amylase inhibitory capacity.  

Phenolic compounds are a large group of 
structurally diverse naturally occurring 
compounds that possess at least a phenolic moiety 
in their structures. Most of these compounds 
possess various degrees of antioxidant or free 

radical scavenging properties as well as medicinal 
properties and have long been used as drugs. 

Flavonoids are abundant class of natural 
phenolic compounds with several biological 
activities. They share a common structural 
skeleton consisting of two aromatic rings (A and 
B) linked through three carbons attached to the A-
ring, forming an oxygenated heterocycle (ring C) 
and are divided in  groups (Figure 1). 
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Figure 1. Flavonoids basic skeletons
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Lo Piparo et al. (2008) investigated the 
interactions between flavonoids and human α-
amylase in order to understand the molecular 
requirement for enzyme inhibition. They showed 
that the potency of inhibition is correlated with 
the number of hydroxyl groups on the B ring of 
the flavonoid skeleton. The interaction occurs 
with the formation of hydrogen bonds between 
the hydroxyl groups in position R6 or R7 of the 
ring A and position R4’ or R5’ of the ring B of 
the polyphenol ligands and the catalytic residues 
of the binding site and formation of a conjugated 
-system that stabilizes the interaction with the 
active site (41). These results are in general 
agreement with the mechanism of action proposed 
for acarbose (50). 
Tannins are another heterogenous polyphenol 
group widely distributed in the plant kingdom that 
are often present in unripe fruits, but can 
disappear during ripening. They have a relatively 
high molecular weight and can be classified into 
two major classes: hydrolysable tannins and 
condensed tannins. Hydrolysable tannins are 
subdivided into gallotannins, derived from gallic 
acid [2] units linked to a sugar moiety), while 
condensed tannins are complex polymers, where 
the building blocks are usually catechins and 
flavonoids (51). 
 

COOH

HO

OH

OH

2 gallic acid  
 

Several polyphenolic compounds presenting 
α-amylase inhibitory activity are shown at Figures 
2, 3, and 4. Tannins could cause several effects on 
the biological system because they are potential 
metal ion chelators and protein precipitation 
agents forming insoluble complexes with 
proteins, as well as  biological oxidants (52). 
Tannic acid and tannin-rich nonalcoholic 
components of red wine have been shown to 
reduce serum glucose levels after starch-rich 
meals in a study of patients with non-insulin 
dependent diabetes mellitus (53). As the 
mechanism involved in this anti-hyperglycemic 
effect is unknown, it is possible that tannins can 
inhibit α-amylase activity in situ. The ability to 
strongly bind to proteins forming insoluble and 
indigestible complex is the basis of their extensive 

use in the leather industry (tanning process), and 
for the treatment of diarrhea, bleeding, skin 
injuries (54) and probably it is the action 
mechanism to cause inhibition of the enzyme -
amylase. 

Terpenoids are compounds that comprise 
various structures commonly found in nature with 
a several function in plants and animals. They 
usually arise from head-to-tail joining of isoprene 
units and a combination of two or more isoprene 
units divide the terpenoids in monoterpene (C10), 
sesquiterpene (C15), diterpene (C20), sesterterpene 
(C25), triterpene (C30) and tetraterpene (C40) (55). 

Triterpenoids are a large and structurally 
diverse group of natural products derived from 
squalene [33] or related acyclic 30-carbon 
precursors (56) with several potential uses in 
medicine. Some triterpenoids with well-
characterized biological activities include sterols, 
steroids, and saponins (57). 

A range of real and potential usable biological 
effects are being studied for triterpenoids. Anti-
inflammatory, analgesic, antimicrobial, 
antimycotic, antiviral, antiplasmodial, 
antiulcerogenic, anticariogenic, 
immunomodulatory, vascular protective, anti-
obese, anticancer and tonic effects are ones the 
use related uses for this class of compound (58, 
59). Hepato and cardioprotective activity were 
also related for triterpenoids (59-61). 
Triterpenoids represent a promising and 
expanding source for biologically active natural 
compounds whose potential for research and 
development of new substances with 
pharmacologic activity. However, despite the fact 
that triterpenoids are widely distribute in plants, 
inhibitory α-amylase activity was related only for 
oleanane, ursane and lupane types and the 
mechanism by which this activity occur still 
unknown. Some terpenes presenting inhibitory 
activity on α-amylase are shown at Figure 5. 
 
CONCLUSION 
 
α-Amylase, a salivary or pancreatic enzyme plays 
an important role in early breakdown of complex 
carbohydrates into simple molecules. Modulation 
of α-amylase activity affects the utilization of 
carbohydrates as an energy source and stronger is 
this modulation; more significant is the reduction 
is the breakdown of complex carbohydrates. 
Majority of studies have focused on the anti-
amylase phenolic compounds. 

The action mechanism proposed for 
inhibitory capacity of flavonoids correlated the 
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potency of inhibition of these compounds with the 
number of hydroxyl groups on the B ring of the 
flavonoid skeleton with the formation of 
hydrogen bounds between the hydroxyl groups of 
the polyphenol ligands and the catalytic residues 
of the binding site of the enzyme. The high 
inhibitory capacity is observed in flavonols and 
flavones groups. 

The main inhibitory effects of the tannins is 
related with its the ability to strongly bind to 
carbohydrates and proteins. However, Kandra et 
al. (2004) suggested that the interaction between 
tannins, such galloylated quinic acid, and human 
α-amylase is also correlated with free OH groups 
in the tannin, that are able to participate in 
hydrogen bonding (51). However, in this review 
is possible to note that tannins are not always an 
effective inhibitor of α-amylase. 

The significant differences in inhibitory 
activity for α-amylase were shown in luteolin-7-
O-glucoside [9b] from different studies. This 
compound showed 100% of inhibition in one 
study and 50% of inhibition in another. The same 
methodology was carried out to evaluate this 
activity in both studies, however the concentration 
of tested compound and incubation time of 
enzyme were different for both (6, 62). 

Inhibitory activities ranging from 100% to 
50% were also observed for fisetin [4c] and 
luteolin [9a]. The analyzed studies showed 
differences in the concentration of tested 
compound, incubation time of enzyme and 
substrate solution used (6, 41, 62), and the impact 
that changes can be noted in the obtained results.  

Differences in percentage of inhibition were 
also observed for rosmarinic acid [28] and 
daidzein [15a]. Inhibitions of 85% and 50% for 
rosmarinic acid and 23% and 55% for daidzein 
were shown in the assays using starch and ρ-
nitrophenyl-α-D- maltopentaoside (PNPG) as a 
substrate, respectively (6, 41, 62, 63). 

The comparison of inhibitory activity to α-
amylase showing in the studies allows to observe 
significant differences in percentage of inhibition 
for the same compound. This is due a several 
number of valuable assay methods for available 
the amylase activity. Between them, two types of 
assays are largely used to determine the action of 
α-amylase. One is based on increase in reducing 
power of the substrate by the dinitrosalicylic acid 
(DNS) reagent (64), whereas the other is based on 
the change of the iodine- staining properties of the 
substrate (65). Thus, some modifications in this 
assays reported by researchers could express 
different results for α-amylase inhibitory activity. 

As the intake of phenolic compounds is 
associated with many beneficial effects, it is also 
necessary to consider the dose for humans, 
because it is possible to reduce α-amylase activity 
by consuming food or medicinal herbs rich in 
polyphenols with strong α-amylase activity, if it 
takes in consideration that this source of 
polyphenols possess different kinds of this 
compounds in variable concentration. Therefore, 
more available evidences are necessary about the 
safety of using natural α-amylase inhibitor. 

Also, there is need for novel agents, 
therapeutic strategies or designing functional 
foods that could act on the physiological 
regulation of sugar uptake, blood sugar levels, and 
prevention of oral diseases. 

For the future, a standardized protocol to 
search potential inhibitors maybe should be 
designed in order to minimize the differences 
among obtained results. 
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Table 1. Plants with -amylase inhibitory activity 

Plant Parts used Type of extract 
Activity (% inhibition) 
(concentration) 

 
Control References 

Acanthaceae 

Andrographis paniculata Nees 
Leaf and 
aerial parts 

Ethanol 
52.5 (50.9mg/mL) 
54.8 (11.3mg/mL) 

Acarbose with 50.1% of maxim 
inhibition at 10mg/mL 

(66) 

Actinidiaceae 
Actinidia deliciosa (A.Chev.) C.F.Liang & 
A.R.Ferguson 

Leaf Methanol 90% 50 (0.0429mg/mL) 
Voglibose with 50% of inhibition at 
0.0466mg/mL 

(67) 

Amaranthaceae 

Amaranthus caudatus var. Oscar blanco Seed 

Methanol 94.71 (1mg/mL) 

Non-treated enzyme (31) 

Ethyl acetate 93.82 (0.5mg/mL) 

Hexane 90.64 (0.1mg/mL) 

Amaranthus caudatus var. Victor red Seed 

Methanol 95.12 (1mg/mL) 

Ethyl acetate 84.03 (0.25mg/mL) 

Hexane 91.63 (0.1mg/mL) 

Anacardiaceae 

Mangifera indica L. Bark Ethanol 84.1 (1mg/mL) 
Phaseolus vulgaris with 59.4% of 
inhibition at 0.0125mg/mL 

(36) 

Apocynaceae 
Holarrhena floribunda (Don) Durand & 
Schinz 

Leaf Aqueous buffered 20-45 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL 

(6) 

Asteraceae 

Leontopodium ochroleucum Beauverd Aerial part Methanol 35.8 (0.3mg/mL) 
Acarbose with 79.6% of inhibition at 
0.1mg/mL 

(32) 

Taraxacum officinale Web. ex Wigg. Herb Aqueous buffered 20-45 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL 

(6) 

Varthemia iphionoides Boiss Aerial part 
Aqueous 
Ethanol 

67.6 (0.2mg/mL) 
70.5 (0.2mg/mL) 

Non-treated enzyme 
(68) 

Balanitaceae 

Balanites aegyptiaca L. Bark Aqueous buffered 45-75 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL 

(6) 

Coniferae 

Ginkgo biloba L. Leaf Ethanol 70 (50mg/mL) Non-treated enzyme (69) 
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Crassulaceae 

Rhodiola rosea L. Rhizome Methanol 78 (0.3mg/mL) 
Acarbose with 79.6% of inhibition at 
0.1mg/mL 

(32) 

Ericaceae 

Vaccinium myrtillus L. Leaf Aqueous buffered > 75 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL 

(6) 

Vaccinium uliginosum L. 
Leaf and 
wood 

Methanol 80.7 (0.3mg/mL) 
Acarbose with 79.6% of inhibition at 
0.1mg/mL 

(32) 

Euphorbiaceae 

Phyllanthus amarus Schum. et Thonn. Whole plant Hexane 24.3 (1mg/mL) 
Triticum aestivum with 32% of 
inhibition at 5 unit/mL 

(70) 

Phyllanthus maderaspatensis L. Whole plant Ethanol 47.6 (1mg/mL) 
Phaseolus vulgaris with 59.4% of 
inhibition at 0.0125mg/mL 

(36) 

Geraniaceae 

Geranium pratense L. Aerial part Methanol 43.9 (0.3mg/mL) 
Acarbose with 79.6% of inhibition at 
0.1mg/mL 

(32) 

Grossulariaceae 

Ribes pulchellum Turcz. Aerial part Methanol 78.9 (0.3mg/mL) 
Acarbose with 79.6% of inhibition at 
0.1mg/mL 

(32) 

Lamiaceae 

Marrubium radiatum Delile ex Benth. Aerial part Methanol 50 (0.0611mg/mL) 
Acarbose with 50% of inhibition at 
0.05mg/mL 

(33) 

Melissa officinalis L. Leaf 
Ethanol 50 (3.33mg/mL) Non-treated enzyme (63) 

Aqueous buffered 50 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL 

(6) 

Ocimum tenuflorum L. Leaf Chloroform 24.57 (10mg/mL) 
Acarbose with 50 % of inhibition at 
1.22mg/mL 

(34) 

Origanum vulgare L. Leaf Ethanol 42 (3.33mg/mL) Non-treated enzyme (63) 

Rosmarinus officinalis L. Leaf Aqueous buffered 60 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL 

(6) 

Salvia acetabulosa L. Aerial part Methanol 50 (0.0912mg/mL) 
Acarbose with 50% of inhibition at 
0.05mg/mL 

(33) 

Fabaceae  

Cajanus cajan L Seed Aqueous buffered 100 (2mg protein) Non-treated enzyme (71) 

Galega officinalis L. Herb Aqueous buffered 35 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL

(6) 
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Olneya tesota A.Gray Seed Aqueous 65 (0.0044mg/mL) Non-treated enzyme (72) 

Phaseolus vulgaris L. Pericarp Aqueous buffered 45-75 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL 

(6) 

Tamarindus indica L. Leaf Aqueous buffered 90 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL 

(6) 

Malvaceae 

Hibiscus sabdariffa Linn. Flower Methanol 50% 100 (10mL/g fr. wt.) Non-treated enzyme (73) 

Meliaceae 

Khaya senegalensis (Desr.) A. Juss. Bark Aqueous buffered 45-75 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL 

(6) 

Myrsinaceae 

Embelia ribes Burm. f. Seed Ethanol 59.3 (1mg/mL) 
Phaseolus vulgaris with 59.4% of 
inhibition at 0.0125mg/mL 

(36) 

Myrtaceae 

Psidium guajava var. Pomiferum 
Leaf 

Aqueous 98 (200mg/mL) Non-treated enzyme (29) 

Psidium guajava L. Ethanol 31.7 (1.5mg/mL) 
Acarbose wiith 52.1% of inhibition at 
1.5mg/mL 

(37) 

Syzygium cumini (L.) Skeels 
Leaf Chloroform 22.31 (10mg/mL) 

Acarbose with 50 % of inhibition at 
1.22mg/mL 

(34) 

Seed Aqueous 98 (200mg/mL) Non-treated enzyme (29) 

Nyctaginaceae 

Bougainvillea spectabilis Wild. Leaf Chloroform 29.43 (25mg/mL) 
Acarbose with 50 % of inhibition at 
1.22mg/mL 

(34) 

Paeoniaceae 

Paeonia anomala L. Root Methanol 33.1 (0.3mg/mL) 
Acarbose with 79.6% of inhibition at 
0.1mg/mL 

(32) 

Pinaceae 

Cedrus libani A. Rich 
Essential 
oils from 
cones 

Aqueous buffered 31 (1mg/mL) 
Acarbose with 50 % of  at inhibition 
1.22mg/mL 

(33) 

Polygalaceae 

Securidaca longepedunculata Fresen. Root Aqueous buffered 20-45 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL 

(6) 

Portulacaceae 
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Talinum portulacifolium Asch. Ex Schweinf. Leaf Methanol 60.66 (1mg/mL) 
Acarbose with 50.33% of inhibition at 
0.05mg/mL 

(74) 

Punicaceae 

Punica granatum L. Fruit rind Ethanol 68.2 (1mg/mL) 
Phaseolus vulgaris with 59.4% of 
inhibition at 0.0125mg/mL 

(36) 

Rosaceae 

Pentaphylloides fruticosa (L.) O.Schwarz 
Leaf and 
branch 

Methanol 31.2 (0.3mg/mL) 
Acarbose with 79.6% of inhibition at 
0.1mg/mL 

(32) 

Rubiaceae 

Mitragyna inermis (Willd.) O. Ktze. Leaf Aqueous buffered 75 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL 

(6) 

Rutaceae 

Murraya koenigii L. Leaf Chloroform 56.64 (25mg/mL) 
Acarbose with 50 % of  at inhibition 
1.22mg/mL 

(34) 

Saxifragaceae 

Bergenia ciliata, Haw. Rhizome 
Methanol 50% 
Aqueous 
Ethyl acetate 

93.5 (150mg/mL) 
65.3 (150mg/mL) 
84.3 (150mg/mL) 

 
Non-treated enzyme (75) 

Theaceae 

Camellia sinensis L. Del. Leaf Aqueous buffered 45-75 (200mg/mL) 
Acarbose with inhibition higher than 
75% at 200mg/mL 

(6) 

 

Table 2. Natural compounds with α-amylase inhibition 
Compound Source Activity Control Reference 
Flavonol 

quercetin (3a) - 
82% of inhibitory activity (50% 
inhibition at 21,4µM) 

Acarbose with 99% of maxim inhibition 
(50% inhibition at 0,996µM) 

(41) 

3,7,3’-trimethoxy quercetin (3b) 
Varthemia iphionoides Boiss. 
& Blanche (Asteraceae) 

32% of inhibitory activity (100µM) Non-treated enzyme (68) 

quercetrin (3c) 
Kalopanax pictum 
(Araliaceae) 

± 45% of inhibitory activity 
(5mg/mL) 

Acarbose with 50% inhibition at 5-
50µg/mL 

(62) 

rutin (3d) 
Sophora japonica 
L.(Leguminosae) 

± 40% of inhibitory activity 
(5mg/mL) 

Acarbose with 50% inhibition at 5-
50µg/mL 

(62) 

kaempferol (3e) - 34% of inhibitory activity (50% Acarbose with 99% of maxim inhibition (41) 
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inhibition was not determined) (50% inhibition at 0,996µM) 
5,7,4’- trihydroxy-3-
methoxyflavone (3f) 

Varthemia iphionoides Boiss. 
& Blanche (Asteraceae) 

99% of inhibitory activity (100µM) Non-treated enzyme (68) 

5,4’- dihydroxy-3,7-
dimethoxyflavone (3g) 

Varthemia iphionoides Boiss. 
& Blanche (Asteraceae) 

98% of inhibitory activity (100µM) Non-treated enzyme (68) 

5, 4’- dihydroxy-3, 6, 7-
trimethoxyflavone (3h) 

Varthemia iphionoides Boiss. 
& Blanche (Asteraceae) 

77% of inhibitory activity (100µM) Non-treated enzyme (68) 

astragalin (3i) 
Polygala japonica Houtt. 
(Polygalaceae) 

± 55% of inhibitory activity 
(5mg/mL) 

Acarbose with 50% inhibition at 5-
50µg/mL 

(62) 

hyperin (3j) 
Kalopanax pictum 
(Araliaceae) 

± 55% of inhibitory activity 
(5mg/mL) 

Acarbose with 50% inhibition at 5-
50µg/mL 

(62) 

isorhamnetin (4a) - 
35% of inhibitory activity (50% 
inhibition was not determined) 

Acarbose with 99% of maxim inhibition 
(50% inhibition at 0,996µM) 

(41) 

narcisin (4b) 
Sophora japonica L. 
(Leguminosae) 

± 70% of inhibitory activity 
(5mg/mL) 

Acarbose with 50% inhibition at 5-
50µg/mL 

(62) 

fisetin (4c) 
- 50% inhibition between 0,4-0,6mM  

Acarbose with 50% inhibition at < 
0,1mM 

(6) 

- 85 (50% inhibition at 19,6 µM) 
Acarbose with 99% of maxim inhibition 
(50% inhibition at 0,996µM) 

(41) 

myricetin (4d) - 
79% of inhibitory activity (50% 
inhibition at 30,2 µM) 

Acarbose with 99% of maxim inhibition 
(50% inhibition at 0,996µM) 

(41) 

quercetin dimer (5a) Allium cepa L. (Liliaceae) 87% of inhibitory activity Acarbose (76) 
 (4´-O-β-D-glucopyranoside of 
quercetin dimer) (5b) 

Allium cepa L. (Liliaceae) 56% of inhibitory activity Acarbose (76) 

Quercetagetin (6) - 
97% of inhibitory activity (50% 
inhibition at 10,2µM) 

Acarbose with 99% of maxim inhibition 
(50% inhibition at 0,996µM) 

(41) 

kaempferol–3- O-[6”-O-(3- 
hydroxy-3-methylglutaroyl) 
glucoside] (7) 

Polygala japonica Houtt. 
(Polygalaceae) 

100% of inhibitory activity 
Acarbose with 50% inhibition at 5-
50µg/mL 

(62) 

 auranetin-5-methylether (8) 
Varthemia iphionoides Boiss. 
& Blanche (Asteraceae) 

18% of inhibitory activity (100µM) Non-treated enzyme (68) 

Flavone 

Luteolin (9a) 
Lonicera japonica Thunb.  
(Caprifoliaceae) 

100% of inhibitory activity 
(5mg/mL)

Acarbose with 50% inhibition at 
5-50µg/mL

(62) 
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- 50% inhibition at  0,2mM 
Acarbose with 50% inhibition at 
< 0,1mM 

(6) 

- 
 88% of inhibitory activity (50% 
inhibition at 18,4 µM) 

Acarbose with 99% of maxim 
inhibition (50% inhibition at 
0,996µM) 

(41) 

luteolin -7-O-glucoside (9b) 

Allium cepa L. (Liliaceae) 
82% of inhibitory activity (50% 
inhibition was not determined) 

Acarbose (76) 

Salix gracilistyla Miq. 
(Salicaceae)  

100 % of inhibitory activity 
(5mg/mL) 

Acarbose with 50% inhibition at 
5-50µg/mL 

(62) 

- 50% inhibition between 0,2-0,4mM 
Acarbose with 50% inhibition at 
< 0,1mM 

(6) 

acacetin (9c) - 
14% of inhibitory activity (50% 
inhibition was not determined) 

Acarbose with 99% of maxim 
inhibition (50% inhibition at 
0,996µM) 

(41) 

apigetrin (9d) - 50% inhibition at < 0,2mM 
Acarbose with 50% inhibition at 
< 0,1mM 

(6) 

lonicerin (9e) 
Lonicera japonica Thunb. 
(Caprifoliaceae) 

± 55 % of inhibitory activity 
(5mg/mL) 

Acarbose with 50% inhibition at 
5-50µg/mL 

(62) 

rhoifolin (9f) 
Lonicera japonica Thunb. 
(Caprifoliaceae) 

± 60 % of inhibitory activity 
(5mg/mL) 

Acarbose with 50% inhibition at 
5-50µg/mL 

(62) 

diosmetin (10a) - 
19% of inhibitory activity (50% 
inhibition was not determined) 

Acarbose with 99% of maxim 
inhibition (50% inhibition at 
0,996µM) 

(41) 

genkwanin (10b) - 
17% of inhibitory activity ( 50% 
inhibition was not determined) 

Acarbose with 99% of maxim 
inhibition (50% inhibition at 
0,996µM) 

(41) 

scutellarein (11a) - 
98 % of inhibitory activity (50% 
inhibition at 9,64 µM) 

Acarbose with 99% of maxim 
inhibition (50% inhibition at 
0,996µM) 

(41) 

eupafolin (11b) - 
99% of inhibitory activity (50% 
inhibition at 48µM) 

Acarbose with 99% of maxim 
inhibition (50% inhibition at 
0,996µM) 

(41) 

Bilobetin (12) 
Ginkgo biloba L. 
(Ginkgoaceae) 

± 25% of inhibitory activity 
(5mg/mL) 

Acarbose with 50% inhibition at 
5-50µg/mL 

(62) 

Flavanone 

naringenin (13a) - 
26% of inhibitory activity (50% 
inhibition was not determined) 

Acarbose with 99% of maxim 
inhibition (50% inhibition at 
0,996µM) 

(41) 

hesperetin (13b) - 39% of inhibitory activity (50% Acarbose with 99% of maxim (41) 



J Pharm Pharmaceut Sci (www.cspsCanada.org) 15(1) 141 - 183, 2012 
 

 

 
 

157 

inhibition was not determined) inhibition (50% inhibition at 
0,996µM) 

hesperidin (13c) 
Citrus unshiu (Swingle) 
Marcow. (Rutaceae) 

± 60% of inhibitory activity 
(5mg/mL) 

Acarbose with 50% inhibition at 
5-50µg/mL 

(62) 

Flavanonol 
Alliuocide G (14a) Allium cepa L. (Liliaceae)  96% of inhibitory activity Acarbose (76) 
 Isoflavone 

daidzein (15a) 

- 
± 55% of inhibitory activity 
(5mg/mL) 

Acarbose with 50% inhibition at 
5-50µg/mL 

(62) 

- 
23% of inhibitory activity (50% 
inhibition was not determined) 

Acarbose with 99% of maxim 
inhibition (50% inhibition at 
0,996µM) 

(41) 

genistein (15b) 

- 
± 30% of inhibitory activity 
(5mg/mL) 

Acarbose with 50% inhibition at 
5-50µg/mL 

(62) 

- 
25% of inhibitory activity (50% 
inhibition was not determined) 

Acarbose with 99% of maxim 
inhibition (50% inhibition at 
0,996µM) 

(41) 

Proanthocyanidin     

catechin (16a) - 
13% of inhibitory activity (50% 
inhibition was not determined) 

Acarbose with 99% of maxim 
inhibition (50% inhibition at 
0,996µM) 

(41) 

catechin hydrate  (16a) - 50% inhibition at > 20 mM 
Acarbose with 50% inhibition at 
5,7µM 

(49) 

epicatechin (16b) - 
10% of inhibitory activity (50% 
inhibition was not determined) 

Acarbose with 99% of maxim 
inhibition (50% inhibition at 
0,996µM) 

(41) 

(-)-catechin gallato (16c) 
Bergenia ciliate ( Haw) 
(Saxifragaceae) 

50% inhibition at 401 μM Non-treated enzyme (75) 

(-)-epicatechin gallato (16d) 
Bergenia ciliate ( Haw) 
(Saxifragaceae) 

50% inhibition at 739 μM Non-treated enzyme (75) 

epicatechin gallate (16d) - 50% inhibition at 1,5 mM 
Acarbose with 50% inhibition at 
5,7µM 

(49) 

epigallocatechin gallate (17)  - 50% inhibition at 1,4 mM 
Acarbose with 50% inhibition at 
5,7µM 

(49) 

theaflavin (18a) - 50% inhibition at 67 µM 
Acarbose 50% inhibition at 
5,7µM 

(49) 

theaflavin monogallate (18b) - 50% inhibition at 5,5 µM 
Acarbose 50% inhibition at 
5,7µM 

(49) 

theaflavin digallate (18c) - 50% inhibition at 2,9 µM Acarbose 50% inhibition at (49) 
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5,7µM  
Others 
2-(3,4-Dihydroxybenzoyl)-
2,4,6-trihydroxy-3 (2H)-
benzofuranone (19) 

Allium cepa L. (Liliaceae) 88% of inhibitory activity Acarbose (76) 

Aceronidin (20) 
Malpighia emarginata DC. 
(Malpighiaceae) 

34% of inhibitory activity (50% 
inhibition at 820µM) 

Non-treated enzyme (77) 

Tannin     

“Aleppo tannin” (Gallotanin) 
(21) 

“Gall nut” 

Dissociation 
constants of the inhibitor containing 
complexes EI (KEI) 0,82µg mL-1  vs 
dissociation 
constants of the inhibitor containing 
complexes ESI (KESI) 3,32µg mL-1   

Acarbose with dissociation 
constants of the inhibitor 
containing complexes EI (KEI) 
0,45µg mL-1  vs dissociation 
constants of the inhibitor 
containing complexes ESI (KESI) 
0,065µgmL-1   
 

(54) 

Pedunculagin (22a) 
 

Rubus suavissimus S. LEE 
(Rosaceae) 

14% of inhibitory activity 
theaflavin- 
3,3_-di-O-gallate with 83% of 
inhibition 

(78) 

1(�)-O-galloyl pedunculagin 
(22b) 

Rubus suavissimus S. LEE 
(Rosaceae) 

56% of inhibitory activity 
theaflavin- 
3,3_-di-O-gallate with 83% of 
inhibition 

(78) 

1 (α)- galloyl pedunculagin 
(22b) 

Rubus suavissimus S. LEE 
(Rosaceae) 

36% of inhibitory activity 
theaflavin- 
3,3_-di-O-gallate with 83% of 
inhibition 

(78) 

strictinin (23a) 
Rubus suavissimus S. LEE 
(Rosaceae) 

52% of inhibitory activity 
theaflavin- 
3,3_-di-O-gallate with 83% of 
inhibition 

(78) 

sanguiin H5 (23b) 
Rubus suavissimus S. LEE 
(Rosaceae) 

56% of inhibitory activity 
theaflavin- 
3,3_-di-O-gallate with 83% of 
inhibition 

(78) 

roshenin B (1-desgalloyl 
sanguiin H6 (23c) 

Rubus suavissimus S. LEE 
(Rosaceae) 

54% of inhibitory activity 
theaflavin-3,3_-di-O-gallate 
with 83% of inhibition 

(78) 

sanguiin H2 (23d) 
Rubus suavissimus S. LEE 
(Rosaceae) 

36% of inhibitory activity 
theaflavin- 
3,3_-di-O-gallate with 83% of 
inhibition 

(78) 

sanguiin H10 (23e) 
Rubus suavissimus S. LEE 
(Rosaceae) 

23% of inhibitory activity 
theaflavin- 
3,3_-di-O-gallate with 83% of 
inhibition 

(78) 
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sanguiin H11 (23f) 
Rubus suavissimus S. LEE 
(Rosaceae) 

1% of inhibitory activity 
theaflavin- 
3,3_-di-O-gallate with 83% of 
inhibition 

(78) 

lambertianin A (23g) 
Rubus suavissimus S. LEE 
(Rosaceae) 

36% of inhibitory activity 
theaflavin- 
3,3_-di-O-gallate with 83% of 
inhibition 

(78) 

sanguiin H6 (23h) 
Rubus suavissimus S. LEE 
(Rosaceae) 

19% of inhibitory activity 
theaflavin-3,3_-di-O-gallate 
with 83% of inhibition 

(78) 

rubusuaviin A (24a) 
Rubus suavissimus S. LEE 
(Rosaceae) 

60% of inhibitory activity 
theaflavin-3,3_-di-O-gallate 
with 83% of inhibition 

(78) 

rubusuaviin B (24b) 
Rubus suavissimus S. LEE 
(Rosaceae) 

60% of inhibitory activity 
theaflavin-3,3_-di-O-gallate 
with 83% of inhibition 

(78) 

rubusuaviin C (24c) 
Rubus suavissimus S. LEE 
(Rosaceae) 

17% of inhibitory activity 
theaflavin- 
3,3-di-O-gallate with 83% of 
inhibition 

(78) 

rubusuaviin D (24d) 
Rubus suavissimus S. LEE 
(Rosaceae) 

52% of inhibitory activity 
theaflavin-3,3-di-O-gallate with 
83% of inhibition

(78) 

rubusuaviin E (24e) 
Rubus suavissimus S. LEE 
(Rosaceae) 

14% of inhibitory activity 
theaflavin- 
3,3-di-O-gallate with 83% of 
inhibition 

(78) 

rubusuaviin F (24f) 
Rubus suavissimus S. LEE 
(Rosaceae) 

34% of inhibitory activity 
theaflavin-3,3-di-O-gallate with 
83% of inhibition 

(78) 

Tannic acid (25) 

- 50% inhibition at < 0,2mM 
Acarbose with 50% inhibition at 
< 0,1mM 

(6) 

- 

Dissociation constants of the 
inhibitor containing complexes EI 
(KEI) between 8-9µg mL-1  vs 
dissociation constants of the 
inhibitor containing complexes ESI 
(KESI) between 45-49µgmL-1   

- (51) 

Cinnamic acid derivatives 

chlorogenic acid (26) - 50% inhibition between 1,4-1,6mM 
Acarbose with 50% inhibition at 
< 0,1mM 

(6) 

isochlorogenic acid (27) - 50% inhibition between 0,6-0,8mM 
Acarbose with 50% inhibition at 
< 0,1mM 

(6) 

rosmarinic acid (28) - 85% of inhibitory activity Non-treated enzyme (63) 
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- 50% inhibition between 1,4-1,6mM 
Acarbose with 50% inhibition at 
< 0,1mM 

(6) 

esculin (29) - 50% inhibition between 1,4-1,6mM 
Acarbose with 50% inhibition at 
< 0,1mM 

(6) 

Terpenes 
Squalene (33) - 30% of inhibitory activity Non-treated enzyme (31) 

Lupeol (34) - ± 50% of inhibitory activity 
α-Amylase inhibitor from wheat 
seed Triticum aestivum 

(70) 

3-O-[(9Z)-9exadec-9-enoyl]-�-
amyrin (35) 

Spondias mombin L. 
(Anacardiaceae)  

57% of inhibitory activity  Acarbose (79) 

oleanolic acid (36a) - ± 55% of inhibitory activity 
α-Amylase inhibitor from wheat 
seed Triticum aestivum 

(70) 

ursolic acid (36b) - ± 87, 5% of inhibitory activity 
α-Amylase inhibitor from wheat 
seed Triticum aestivum 

(70) 

mixture of lambertianin C (23i), 
Sanguiin H10 (23e), and 
Sanguiin H6 (23h) 

Rubus idaeus L. variety Glen 
Ample (Rosaceae) 

± 75% of inhibitory activity 
green tea with ± 99% of maxim 
inhibition 

(80) 

Mixture of gallic acid (2),  
proto-catechuic acid (30), 
caffeic acid (32a), ellagic acid 
(31), ferulic acid (32b), 
quercetin (3a) and kaempferol 
(3e)  

Centratherum anthelminticum 
( L.) Kuntze (Asteraceae) 

90% of inhibitory activity ( 50% 
inhibition at 185µg)   
 

Acarbose with 85% of maxim 
inhibition (50% inhibition at 
17µg) 

(81) 

Isomeric mixture of oleanolic 
(36a) and ursolic acid (36b) 

Phyllanthus amarus 
Schumach. & Thonn. 
(Euphorbiaceae)  

± 65% of inhibitory activity (50% 
inhibition at 2,01µg) 

α-Amylase inhibitor from wheat 
seed Triticum aestivum 

(70) 

Mixture of betulinic acid (37) 
and 3, 5, 7, 4’- tetrahydroxy 
flavanone (14b) 

Syzygium cumini L. 
(Myrtaceae) 

98% of inhibitory activity Not determined (29) 
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Figure 2. Flavonoids presenting α-amylase inhibition activity 
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Figure 2. Flavonoids presenting α-amylase inhibition activity (….. Continued) 
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Figure 2. Flavonoids presenting α-amylase inhibition activity (….. Continued) 
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Figure 2. Flavonoids presenting α-amylase inhibition activity (….. Continued) 
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Figure 2. Flavonoids presenting α-amylase inhibition activity (Continued) 
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Figure 3. Tannins presenting α-amylase inhibition activity 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..)
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Figure 3. Tannins presenting α-amylase inhibition activity (Continued…..) 
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Figure 4. Cinnamic acid derivatives presenting α-amylase inhibition activity 
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Figure 5. Terpenes presenting α-amylase inhibition activity 
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Figure 5. Terpenes presenting α-amylase inhibition activity (Continued…..) 


