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Abstract 

Background: The conversion of cellulose by cellulase to fermentable sugars for biomass-based products such as cel-

lulosic biofuels, biobased fine chemicals and medicines is an environment-friendly and sustainable process, making 

wastes profitable and bringing economic benefits. Trichoderma reesei is the well-known major workhorse for cellulase 

production in industry, but the low β-glucosidase activity in T. reesei cellulase leads to inefficiency in biomass degrada-

tion and limits its industrial application. Thus, there are ongoing interests in research to develop methods to over-

come this insufficiency. Moreover, although β-glucosidases have been demonstrated to influence cellulase produc-

tion and participate in the regulation of cellulase production, the underlying mechanism remains unclear.

Results: The T. reesei recombinant strain TRB1 was constructed from T. reesei RUT-C30 by the T-DNA-based mutagene-

sis. Compared to RUT-C30, TRB1 displays a significant enhancement of extracellular β-glucosidase (BGL1) activity with 

17-fold increase, a moderate increase of both the endoglucanase (EG) activity and the exoglucanase (CBH) activity, 

a minor improvement of the total filter paper activity, and a faster cellulase induction. This superiority of TRB1 over 

RUT-C30 is independent on carbon sources and improves the saccharification ability of TRB1 cellulase on pretreated 

corn stover. Furthermore, TRB1 shows better resistance to carbon catabolite repression than RUT-C30. Secretome 

characterization of TRB1 shows that the amount of CBH, EG and BGL in the supernatant of T. reesei TRB1 was indeed 

increased along with the enhanced activities of these three enzymes. Surprisingly, qRT-PCR and gene cloning showed 

that in TRB1 β-glucosidase cel3D was mutated through the random insertion by AMT and was not expressed.

Conclusions: The T. reesei recombinant strain TRB1 constructed in this study is more desirable for industrial applica-

tion than the parental strain RUT-C30, showing extracellular β-glucosidase hyper production, high cellulase produc-

tion within a shorter time and a better resistance to carbon catabolite repression. Disruption of β-glucosidase cel3D 

in TRB1 was identified, which might contribute to the superiority of TRB1 over RUT-C30 and might play a role in the 

cellulase production. These results laid a foundation for future investigations to further improve cellulase enzymatic 

efficiency and reduce cost for T. reesei cellulase production.
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Background

Cellulose is abundantly presented in nature and in waste 

materials in the form of wood, grass, leaves, agricultural 

wastes (straw, husk, corn cob, and begass et  al.), food 

processing wastes, timber wastes, municipal wastes and 

so on. Cellulose is renewable, inexpensive and environ-

ment-friendly by deriving its carbon from the air instead 

of petroleum or natural gas. �erefore, bioconversion 

of cellulose by cellulase to fermentable sugars which is 

further utilized by microorganisms to produce cellu-

losic biofuels, biobased fine chemicals and medicines, is 

environment-friendly and sustainable by making good 
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use of waste and bringing economic efficiency. Cellulase 

is a complex, extracellular enzyme mixture, mainly con-

sisting of three synergistic enzymes participating in the 

degradation of cellulose: endoglucanase (EG, EC3.2.1.4), 

exoglucanase (or cellobiohydrolase, CBH, EC 3.2.1.91), 

and β-glucosidase (BGL, EC 3.2.1.21) [1]. EG randomly 

hydrolyzes the internal glycosidic linkages in the non-

crystalline area of cellulose, mainly producing cellodex-

trin and oligosaccharides. CBH liberates cellobiose units 

from either the reducing or nonreducing ends of cellu-

lose chain. �en, BGL hydrolyzes cellobiose and oligosac-

charides to release fermentable -glucose [1].

Currently, the cellulase used in industry is produced 

mainly from bacteria and fungi (Penicllium, Aspergil-

lus, and Trichoderma) [2]. Among them, the filamentous 

fungus Trichoderma reesei is the important industrial 

workhorse, because it has remarkable ability to produce 

cellulase in quantities exceeding 100  g/L [3]. However, 

T. reesei has low β-glucosidase activity, which reduces 

efficiency in biomass degradation and compromises its 

industrial application [4]. Under cellulase-inducing con-

ditions, the production of secreted β-glucosidase com-

prises only about 1  % of the total T. reesei cellulase [5]. 

�us, there are ongoing interests in research to increase 

β-glucosidase amount in the cellulase complex from T. 

reesei. �e supplementation of β-glucosidase produced 

by other fungi to the T. reesei cellulase preparations has 

been employed to increase the enzyme efficiency of 

hydrolyzing cellulosic substrates [6, 7]. Meanwhile, the 

construction of a single recombinant T. reesei that pro-

duces the full set of saccharifying enzymes in optimum 

amount, including BGL, represents another approach to 

reduce processing cost. Genetic engineering has been 

successfully utilized to increase the BGL activity in T. 

reesei, as well as the cellulase production. �e activity 

of β-glucosidase in T. reesei has been enhanced by het-

erologous expression of exotic β-glucosidases from other 

fungi, such as Penicillium decumbens [8], Aspergillus 

aculeatus [9, 10], and Periconia sp. [11]. Using strong 

artificial cellobiohydrolase 1 promoter to express T. ree-

sei extracellular β-glucosidase (BGL1) led to 3.7-fold 

increase in β-glucosidase activity of T. reesei [12]. In spite 

of all the genetic efforts which have been done, there is 

still no available T. reesei strain which could produce cel-

lulase with optimal amounts for different components.

On the basis of the T. reesei genome database v.2.0 

(http://www.genome.jgipsf.org/Trire2/Trire2.home.

html), at least 10 genes encoded β-glucosidase isozymes 

have been identified: cel1A, cel1B, cel3A, cel3B, cel3C, 

cel3D, cel3E, cel3F, cel3G and cel3H. Among them, cel3A 

(bgl1) is the major extracellular β-glucosidase in cellulase 

production [5], while cel1A (bgl2) [13] and cel1B [14] are 

intracellular. In addition, it is presumed that cel3B, cel3E, 

cel3F, cel3G and cel3H are extracellular, while cel3C, 

cel3D and cel3H are intracellular [15]. �e involvement 

of β-glucosidases in cellulase production has been stud-

ied by characterization of mutants with knockout of dif-

ferent β-glucosidases. Single deletion of cel3A caused 

a lag phase of the cellulase induction by cellulose in T. 

reesei [16]. Single deletion T. reesei mutants of cel1A or 

cel1B exhibited a delay in the induction of cellulase gene 

but unaffected cellulase production by cellulose, while 

these mutants displayed normal induction of cellulase 

genes but increased cellulase production by cellobiose 

[14]. Moreover, cel1A and cel1B are required for the cel-

lulase induction by lactose in T. reesei [17]. An amino 

acid substitution V409F in enzyme Cel1A was found in 

the cellulase hyper-producing mutant PC-3-7 [18], which 

is responsible for the enhanced cellulase production in 

PC-3-7 using cellobiose as the carbon source [19]. Dis-

ruption of the transcription factor BglR in strain PC-3-

7, which regulates β-glucosidase genes except cel3A in T. 

reesei, resulted in elevated cellulase production on cel-

lobiose [20]. Apparently, the effect of cel3A, cel1A and 

cel1B on cellulase production varied as the corresponding 

mutants are grown on different carbon sources. Although 

all these current studies have shown that β-glucosidases 

take part in cellulase biosynthesis regulation, Knowledge 

with respect to the underlying mechanism is lack.

In the present study, the T. reesei recombinant strain 

TRB1 was derived from T. reesei RUT-C30 by the 

T-DNA-based mutagenesis. Compared to RUT-C30, 

TRB1 displays a substantial enhancement of extracellu-

lar β-glucosidase activity, a modest increase of both the 

endoglucanase activity and the exoglucanase activity, a 

slight increment of the total filter paper activity, and a 

faster cellulase induction. �is superiority of TRB1 over 

RUT-C30 is independent on carbon sources. Further-

more, the underlying mechanism for the β-glucosidase 

hyper-production in TRB1 was investigated.

Results

Recombinant T. reesei strain TRB1 shows β-glucosidase 

hyper-production and faster cellulase induction

Gene bgl1 (containing an C-terminal 6-histidine tag) 

from T. reesei was cloned into plasmid pDht/sk under a 

modified CBH1 promoter [21], resulting in the plasmid 

construction pBGL (Fig.  1a). pBGL was transformed 

into T. reesei RUT-C30 by AMT method and five T. ree-

sei transformants were obtained: TRB1, TRB2, TRB3, 

TRB4 and TRB5. Surprisingly, we found that the cellulase 

production of TRB1 was much higher than other recom-

binant strains and strain RUT-C30 on day 3 cultivation 

using cellulose as the carbon source (Fig. 1b). Compared 

to the parental strain RUT-C30, the pNPGase activity 

(the β-glucosidase activity), the CMCase activity (the 

http://www.genome.jgipsf.org/Trire2/Trire2.home.html
http://www.genome.jgipsf.org/Trire2/Trire2.home.html
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CMC activity), the pNPCase activity (the CBH activity) 

and the FPase activity (the filter paper activity) in strain 

TRB1 on day 3 were increased by 23-, 8.7-, 3.3- and 22.4-

fold, respectively.

In details, the time course of various enzymes’ activi-

ties and total protein concentration in the supernatant of 

strain TRB1 was determined (Fig.  2). �e recombinant 

strain TRB1 showed an excellent β-glucosidase activ-

ity throughout the whole cellulase production process, 

which reached the highest activity of 19 IU/mL on day 7 

with a 27-fold increase (Fig. 2a). Similar to β-glucosidase 

activity, the CBH activity in TRB1 kept rising from day 3 

to 7 with the maximum activity of about 2.0 IU/mL, and 

was 4.4-fold higher than that in strain RUT-C30 (Fig. 2b). 

�e CMCase activity of both strain RUT-C30 and strain 

TRB1 peaked on day 5, with the maximum activity of 

10 and 30 IU/mL respectively (Fig. 2c). �e CMC activ-

ity was increased by 4.2-fold in TRB1 on day 7 (Fig. 2c). 

�erefore, TRB1 greatly outperforms strain RUT-C30 

during the whole time course in terms of the pNPGase 

activity, the CMCase activity and the pNPCase activity. 

However, the FPase activity which represents the total fil-

ter paper enzyme activity was only slightly increased with 

11 % (Fig. 2d). �is may be due to the fact that the total 

protein concentration of the supernatant of strain TRB1 

is almost the same as that of strain RUT-C30 (Fig.  2e). 

More discussions on this issue will be presented below. 

In addition, high cellulase activity in the supernatant of 

strain TRB1 was detected even at the early cultivation 

stage (day 3), indicating a faster cellulase induction and 

production in strain TRB1 in comparison with the paren-

tal strain RUT-C30 (Fig. 2d).

The outperformance of strain TRB1 is independent 

of carbon sources

�e performance of T.reseei mutants often rely heavily 

on what kind of carbon source is available for them and 

sometimes various results were obtained when using dif-

ferent carbon sources [14, 22]. Hence, we wonder whether 

the outperformance of recombinant T. reesei strain TRB1 

in this study is carbon source dependent. To this end, the 

pNPGase, pNPCase, CMCase, FPase activities and pro-

tein concentration of strain T. reesei RUT-C30 and TRB1 

were analyzed in time course when grown on media con-

taining cellobiose, lactose, galactose and sucrose as the 

sole carbon source. Very poor cellulase induction was 

observed for both strain RUT-C30 and strain TRB1 on 

either galactose or sucrose (data not shown). For both T. 

reesei RUT-C30 and TRB1, lactose is not a good cellulase 

inducer as cellulose, but better than cellobiose (Fig.  3). 

Most interestingly, the superiority of TRB1 over RUT-C30 

remained on both lactose and cellobiose, resembling cel-

lulase induction and production by cellulose: a significant 

enhancement of the pNPGase activity (Fig.  3a), a mod-

erate increase of the CMCase activity (Fig.  3b) and the 

pNPCase activity (Fig. 3c), a minor increasement of FPase 

activities (Fig.  3d), unaffected extracellular protein pro-

duction ability (Fig. 3e) and high cellulase activity at the 

early cultivation stage (Fig. 3). �e maximal β-glucosidase 

activity of TRB1 induced by lactose was 12 IU/mL, as high 

Fig. 1 a Schematic illustration of the plasmid pBGL. Kan kanamycin resistance; LB left border of binary vector; RB right border of binary vector; Pcbh 

a modified CBH promoter [21]; Ttrpc Aspergillus nidulans trpC terminator; bgl1 T. reesei bgl1 gene; hph hygromycin B phosphotransferase gene. b 

Cellulase activity of T. reesei RUT-C30 and the five recombinant T. reesei strains: TRB1, TRB2, TRB3, TRB4 and TRB5, using cellulose as the carbon source. 

pNPGase the β-glucosidase activity; pNPCase the CBH activity; CMCase the CMC activity; FPase the filter paper activity. The error bars indicate the 

standard deviation of three replicates, though in some cases they are too small to see on the graphical scale being used
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as that by cellulose, while it was only 3.0 IU/mL by cello-

biose (Fig. 3a). �ese results suggested that the observed 

outperformance of TRB1 over RUT-C30 was independ-

ent of carbon sources, a flexibility enabling its wide use in 

industry.

Trichoderma reesei TRB1 shows a better resistance 

to carbon catabolite repression than T. reesei RUT-C30

�e resistance of strain TRB1 to carbon catabolite repres-

sion (CCR) by glucose was evaluated in flask cultures with 

2 % avicel plus different concentrations of glucose (0, 1, 2, 3, 

5 and 10 %). �e time course of the activities of pNPGase, 

pNPCase, CMCase, pNPXase and FPase is shown in Fig. 4. 

�e CMCase activity in RUT-C30 is decreased gradually 

as the concentration of glucose in present is increased, 

while the CMCase activity in TRB1 was not affected by the 

present glucose with no more than 3 % and was rescued 

sharply by ~50 % in the presence of 5 % glucose (Fig. 4c). 

�e pNPCase activity of TRB1 is depressed noticeably 

by 50  % in the presence of glucose. But the correspond-

ing pNPCase activity in concrete numerical values 2.7, 

1.2, 1.7 and 0.4 IU/ mL in the presence of 0, 1, 2 and 5 % 

glucose respectively, is still higher than that of RUT-C30 

(1.0, 0.9, 1.0 and 0.06 IU/mL) which is unaffected by glu-

cose when the glucose concentration is no more than 

3 % (Fig. 4b). When the glucose concentration is beyond 

Fig. 2 Cellulolytic enzyme activities in the culture supernatants of T. reesei Rut-C30 and TRB1 which were collected on day 3, 5, 7 on 2 % microcrys-

talline cellulose for 7 days. The activities of pNPGase (the BGL activity), pNPCase (the CBH activity), CMCase (the CMC activity), and FPA (the filter 

paper activity), and the protein concentration are listed in a–e respectively. The error bars indicate the standard deviation of three replicates, though 

in some cases they are too small to see on the graphical scale being used



Page 5 of 13Li et al. Microb Cell Fact  (2016) 15:151 

3 %, all components of cellulase production in TRB1 and 

RUT-C30 reduced sharply (Fig.  4), indicating a strong 

CCR effect exits at 5  % or higher glucose concentration. 

Since RUT-C30 is evolved from T. reesei QM6a through 

three rounds of mutagenesis followed by a screening for 

alleviated carbon catabolite repression and high cellulase 

activity [23], so it is not surprising to see that RUT-C30 

exhibited a good resistance to glucose. However, TRB1 

exhibited even better resistance to glucose. Especially, 

the pNPGase activity of TRB1 even increased by 20–40 % 

in the presence of 1–3 % glucose in comparison with the 

absence of glucose, which is not observed in RUT-C30 

(Fig. 4a). �e presence of glucose did not affect the extra-

cellular protein concentration of TRB1 no matter what the 

glucose concentration is, but reduced that of RUT-C30 

with the concentration of more than 2 % (Fig. 4e). No cel-

lulase production was detected in TRB1 when using glu-

cose as the sole carbon source (data not shown). Here we 

Fig. 3 Cellulolytic enzyme activities in the extracellular culture supernatant of T. reesei RUT-C30 and TRB1 which were collected on day 3, 5, 7 on cel-

lobiose and lactose for 7 days. The activities of pNPGase (the BGL activity), pNPCase (the CBH activity), CMCase (the CMC activity), and FPA (the filter 

paper activity), and the protein concentration are listed in a–e respectively. The error bars indicate the standard deviation of three replicates, though 

in some cases they are too small to see on the graphical scale being used
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demonstrated that TRB1 displays a better resistance to 

carbon catabolite repression than RUT-C30.

Biomass sacchari�cation

�e hydrolysis efficiency of crude cellulase prepara-

tion produced by strain RUT-C30 (CC-RUT) and TRB1 

(CC-TRB1) was tested using PCS and microcrystal-

line cellulose as substrates (Fig.  5). Both CC-RUT and 

CC-TRB1 showed higher hydrolysis ability on PCS than 

on microcrystalline cellulose. CC-TRB1 released more 

reducing sugar than CC-RUT on both PCS and cellu-

lose during the whole hydrolysis incubation time. At 

72 h, CC-TRB1 released 23.2 and 14.3 mg/mL reducing 

sugar on PCS and cellulose respectively, while CC-RUT 

yielded 20.6 and 7.8 mg/mL reducing sugar individually. 

�ere is about 11 and 45 % increase in the hydrolysis effi-

ciency of CC-TRB1 on PCS and cellulose respectively as 

compared to CC-RUT. Clearly, the high concentration 

of β-glucosidase in CC-TRB1 helps improve its biomass 

saccharification ability.

Fig. 4 Effects of glucose on the cellulolytic enzyme activities of T. reesei RUT-C30 and TRB1 which were induced on cellulose. The activities of 

pNPGase (BGL activity), pNPCase (CBH activity), FPA (Filter paper activity), CMCase (CMC activity) on day 7, and the protein concentration are listed 

in a–e respectively. The error bars indicate the standard deviation of three biological replicates. The activities of pNPGase (BGL activity), pNPCase 

(CBH activity), FPA (Filter paper activity), CMCase (CMC activity) on day 7 in the absence of glucose are arbitrarily assigned as 100 % in TRB1 and RUT-

C30 individually and the corresponding activities are referred to Fig. 1. The error bars indicate the standard deviation of three replicates, though in 

some cases they are too small to see on the graphical scale being used
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Characterization of secretome of T. reesei TRB1 

by SDS-PAGE and MUG-zymogram analysis

�e supernatants from T. reesei RUT-C30 and TRB1 cul-

tured in TMM with 2 % avicel on day 7 were profiled by 

SDS-PAGE. When equal protein loading was used, the 

protein profile secreted by TRB1 is different from that 

by the parent strain RUT-C30 (Fig.  6a). TRB1 secreted 

more BGL1, CBH1 and EG1 than RUT-C30, which is 

consistent with the above observed increases of the 

pNPGase, CMCase and pNPCase activities and can be 

used to explain such increases. Furthermore, identifica-

tion of β-glucosidases in the supernatant of both T. ree-

sei RUT-C30 and TRB1 grown on cellulose was done by 

the MUG-zymogram assay (Fig. 6b). We observed three 

bands from each sample on the MUG gel, probably rep-

resenting three types of β-glucosidases. Notably, the first 

upper band was enhanced substantially in the superna-

tant of T. reesei TRB1, compared to that of RUT-C30. It 

seems that the elevated extracellular β-glucosidase activ-

ity we observed in TRB1 is due to the increased amount 

of secreted β-glucosidase, not due to more types of 

β-glucosidases that were secreted into the supernatant of 

TRB1.

The expression of cel3D is disrupted in recombinant T. 

reesei TRB1

In T. reesei TRB1, the expression of T. reesei bgl1 is prob-

ably not the cause of cellulase hyper-production, because 

other four recombinant T. reesei strains with the expres-

sion of T. reesei bgl1 gene did not show cellulase hyper-

production (Fig. 1). Hence, we analyzed the transcription 

of genes related to cellulase production, including cel-

lulase transcription activator ace2 and xyr1, cellulase 

transcription repressor ace1, the β-glucosidase transcrip-

tion factor bglR, the global regulator vel1 (essential for 

cellulase production) [25], and other 9 β-glucosidases 

Fig. 5 Saccharification of PCS and microcrystalline cellulose by T. ree-

sei RUT-C30 and TRB1 using the equal culture supernatants. The error 

bars indicate the standard deviation of three biological replicates. The 

error bars indicate the standard deviation of three replicates, though 

in some cases they are too small to see on the graphical scale being 

use

Fig. 6 a SDS-PAGE analysis of secretome of T. reesei RUT-C30 and TRB1 grown on cellulose for 1 week. Lane M DNA molecular weight marker. Equal 

protein loading was used. Based on the molecular weight, the estimated position for BGL, CBH and EG1 was labeled, respectively. b Identification of 

β-glucosidases in the culture supernatant of T. reesei RUT-C30 and TRB1 by MUG-zymogram assay
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(cel1A, cel1B, cel3B, cel3D, cel3C, cel3E, cel3F, cel3G 

and cel3H) on day 5 by qRT-PCR (Fig. 7a). �e transcrip-

tional levels of all the assayed genes in T. reesei TRB1 

were not affected when compared to T. reesei RUT-C30, 

except vel1, xyr1, bglR, cel3C and cel3D. �e transcrip-

tion abundance of vel1, xyr1 and cel3C in T. reesei TRB1 

was slightly upregulated, while the mRNA expression of 

bglR was increased remarkably in TRB1. Interestingly 

enough, the mRNA expression of cel3D was not detected 

in T. reesei TRB1 during the whole cellulase production 

process. It seems that the expression of cel3D was com-

pletely inhibited in TRB1. We assumed that the open-

reading frame (ORF) of cel3D was modified during the 

random insertion of bgl1 expression cassette mediated by 

AMT. To prove this, the open-reading frame of cel3D was 

cloned by PCR using DNA template from both T. reesei 

RUT-C30 and TRB1 (Fig. 7b). �ere was PCR product of 

cel3D for RUT-C30, but not for TRB1. As positive con-

trols, the ORFs of both cel3B and cel7B were success-

fully cloned in both strains. �is demonstrated that the 

open-reading frame (ORF) of cel3D was indeed mutated 

in TRB1, leading to the undetected mRNA expression 

of cel3D in TRB1. On the other hand, not only was the 

ORF of cel3D successfully cloned in other recombinant 

strains TRB2, TRB3 and TRB4 (Fig. 7c), but also the tran-

scription level of cel3D was detected in these mutant 

strains during the whole cellulose production (Fig.  7d). 

�ese results together suggested that the absence of 

cel3D in TRB1 is probably involved in its cellulase hyper-

production and cel3D may be a repressor of cellulase in 

RUT-C30.

qRT-PCR analysis of the transcriptional levels of the 

major extracellular β-glucosidase BGL1 (cel3A), the 

major cellobiohydrolase CBHI (cel7A), the major endo-

glucanase CMC (cel7B) in both strain TRB1 and RUT-

C30 was performed to determine whether the transcript 

levels of major cellulolytic enzyme genes were influenced 

in TRB1 that exhibits cellulase hyper-production and 

lacks expression of gene cel3D (Fig.  7e). �e transcrip-

tional level of cel3A (BGL1) was significantly increased 

in TRB1, showing greater increase on day 3 (19-fold) 

and day 5 (2.4-fold) than on day 7 (1.3-fold). As com-

pared with RUT-C30, the bgl1 transcription level in 

other recombinant strains TRB3 and TRB4 was elevated 

1.6- and 2.1-fold respectively (Additional file  1: Figure 

S1), sharing a similar increase with that in TRB1, but 

TRB2 and TRB3 did not exhibit β-glucosidase hyper-

production. �is result demonstrated that a marked 

expansion of the bgl1 transcription level is not enough 

to endow the recombinant strains with the phenotype of 

β-glucosidase hyper-production, supporting that the dis-

ruption of cel3D in strain TRB1 might play a part in the 

excellent performance of strain TRB1 for β-glucosidase 

production. For reasons unknown, the bgl1 transcription 

level in strain TRB2 was not affected noticeably (Addi-

tional file 1: Figure S1). �ere is no obvious difference for 

the transcription level of cel7A (CBHI)and cel7B (CMC) 

between TRB1 and RUT-C30 during the whole cellulase 

production process, which is contradictory to the find-

ing that TRB1 showed a moderate increase of both the 

endoglucanase (EG) activity and the exoglucanase (CBH) 

activity. �ese results indicate that the increased cellulase 

production in strain TRB1 is not mainly resulted from 

the upregulated transcriptional level of the correspond-

ing genes.

Discussion

Several advantages were observed in the recombi-

nant strain T. reesei TRB1 which we constructed in this 

study over the parental T. reesei RUT-C30, including 

a significant enhancement of the pNPGase activity, a 

moderate increase of both the CMCase activity and the 

pNPCase activity, a minor increment of the FPase activ-

ity, and a rapid cellulase induction. �ese advantages 

make TRB1 economic feasible and desirable in indus-

trial application, since producing cellulase with all the 

components in optimal amounts in a shorter period will 

reduce the cost and improve the efficiency of T. reesei 

cellulase. Although extensive genetic research has been 

performed to increase the extracellular β-glucosdiase 

activity in T. reesei [8–12], such research only focused on 

the improvement of β-glucosidase activity [8, 9, 11, 12]. 

In TRB1, not only the extracellular β-glucosidase activ-

ity was increased remarkably, but also the activities of 

CBH and EG were improved. �e β-glucosdiase activity 

of 18 IU/mL produced in TRB1 was less than the highest 

β-glucosdiase activity of 30  IU/mL in T. reesei reported 

in the literature [8]. But we’d like to point out that the 

highest β-glucosdiase activity of 34 IU/mL was obtained 

using the mixed carbon sources (2 % wheat bran and 3 % 

microcrystalline cellulose) [8], which are more complex 

and richer than the single carbon source (2  % micro-

crystalline cellulose) we utilized here. �e mixed carbon 

sources also endowed the wildtype strain RUT-C30 with 

4.4  IU/mL β-glucosdiase activity [8], much higher than 

0.7  IU/mL β-glucosdiase activity we got for RUT-C30 

under the culture conditions in this study (Fig.  2a) and 

suggesting that the different carbon sources might give 

rise to the gap of the beta-glucosidase activity between 

the literature and this study.

Accordingly, improvement of the saccharification abil-

ity of TRB1 cellulase on pretreated corn stover and cellu-

lose was observed (Fig. 5), although the total filter paper 

activity in TRB1 was only increased slightly (Fig.  2d). 

Only the three major cellulolytic components: CBH, 

EG and BGL, are not enough for high efficiency of the 
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Fig. 7 a qRT-PCR analysis of the transcript abundance of genes encoding β-glucosidases and transcriptional factors in T. reesei  TRB1 and RUT-C30 

grown on 2 % microcrystalline cellulose for 5 days. b Gene clone of cel3D in strain RUT-C30 and the recombinant strains: TRB1, TRB2, TRB3 and TRB4. 

M: DNA marker; c Gene clone of cel3D, cel7B and cel3B in strain Rut-C30 and TRB1; d qRT-PCR analysis of the transcript abundance of gene cel3D in 

strain Rut-C30 and the recombinant strains: TRB1, TRB2, TRB3 and TRB4. e qRT-PCR analysis of the transcript abundance of cellulase gene expression 

in strain RUT-C30 and TRB1. The values show the mean of three replicates, and the error bar indicates the standard deviation, though in some cases 

they are too small to see on the graphical scale being used
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cellulose hydrolysis, which was demonstrated by the low 

cellulose hydrolysis yield from the reconstituted mix-

ture consisting of CBH, EG and BGL [2]. Low abundant 

essential enzymes in the supernatant of T. reesei culture 

are also important for the high efficiency of T. reesei cel-

lulase. �ese enzymes were possibly reduced in TRB1, 

considering that the total protein production of TRB1 

is not changed, as compared to RUT-C30 (Fig. 2e). �is 

restricts the improvement of total filter paper activity in 

TRB1. A mixture of TRB1 cellulase and RUT-C30 cel-

lulase might compensate for each other’s enzyme defi-

ciency, resulting higher cellulase efficiency of T. reesei 

cellulase. Such research is undergoing in our lab by test-

ing the saccharification ability of both the cellulase mix-

ture from T. reesei RUT-C30 and TRB1, and the cellulase 

production by co-culturing T. reesei RUT-C30 and TRB1.

Deletion of cel1A (BGL2) [13], cel1B [14], and cel3A 

(BGL1) [24] individually in T. reesei has been reported 

to cause the delay in the induction of cellulase genes by 

cellulose, while engineered T. reesei strains with the over-

expression of an thermotolerant exotic β-glucosidase 

exhibited higher β-glucosidase and total cellulase activi-

ties within a shorter incubation time (24 h) compared to 

the parental strain [12]. It seems that the β-glucosidase 

activity is related positively to the time of cellulase induc-

tion. �e higher the β-glucosidase activity is, the faster 

the cellulase induction is, which is further confirmed by 

our result that a faster cellulase induction was observed 

along with the remarkable enhancement of β-glucosidase 

production in TRB1 (Fig. 2).

�e performance of T. reseei mutants often relies heav-

ily on what kind of carbon source is available for them 

and sometimes various results were obtained when dif-

ferent carbon sources were utilized [14, 22]. In this study, 

the superiority of T. reesei TRB1 over RUT-C30 was 

observed when using cellulose, cellobiose and lactose as 

the carbon source individually for the cellulase produc-

tion, indicating that the excellent performance of TRB1 

is not dependent on carbon source. Furthermore, T. ree-

sei TRB1 showed better resistance to carbon catabolite 

repression than RUT-C30. TRB1 displays great cellulase 

production on cellulose even in the presence of 3 % glu-

cose. �ese merits of TRB1 might benefit the co-culture 

of T. reesei with other microorganisms for valuable bio-

mass-based products where high glucose concentration 

in the media would increase the substrate flow to these 

microorganisms and subsequently increase the produc-

tivity [25]. Meanwhile, we surprisingly discovered that 1, 

2 and 3 % glucose can stimulate slightly the activity of cel-

lulases especially BGL1 in TRB1, which was not observed 

in RUT-C30. In the previous study, the stimulation of the 

activity of BGLs of the glycolysis family 1 by glucose has 

been reported [26], but not BGLs of family 3.

Understanding the molecular mechanism underlying 

the performance of strain TRB1 could help unravel the 

regulation mechanism of cellulase production in T. reesei. 

Characterization of secretome of TRB1, and transcrip-

tion analysis of genes related with cellulase production 

were performed to identify key factors contributing to 

the better performance of TRB1 over RUT-C30. Accord-

ing to the SDS-PAGE and MUG-zymogram analysis, the 

amount of CBH, EG and BGL in the supernatant of T. 

reesei indeed increased along with the enhanced activities 

of these three enzymes. However, no significant upregu-

lation was observed with the mRNA expression of CBH 

and EG, with the exception of cel3A. �e seemingly con-

flicting results between the protein expression level and 

mRNA expression level are normal, since many other fac-

tors can influence protein expression such as the mRNA 

lifetime, the protein degradation rate, etc. �e transcrip-

tion level of the well-known cellulase transcription fac-

tors ace2, xyr1, ace1, and vel1 in TRB1 was not affected 

significantly in comparison with that in RUT-C30. In 

the same way, the mRNA of all the β-glucosidase genes 

tested in this study was not affected in TRB1, except for 

cel3D that was mutated by the random insertion by AMT 

and was not expressed in TRB1. �e lack of cel3D expres-

sion in TRB1 might be related to the cellulase hyper-

production of TRB1, implying that cel3D might play a 

part on cellulase production, especially on extracellular 

β-glucosidase production in T. reesei. cel3D, a putative 

intracellular β-glucosidase, was expressed at a lower level 

in a T. reesei mutant with the deletion of β-glucosidase 

regulator bglR than the parental strain PC-3-7, when 

cellobiose was used as the carbon source [20]. �e puri-

fied cel3D that was heterologously expressed in E.coli 

displayed very low enzyme activity towards cellobiose 

and other oligosaccharides [15]. Clearly, very few studies 

have been performed on cel3D and the role of cel3D on 

the cellulase production remains unexplored. Although 

studies on other β-glucosidases show that β-glucosidase 

in T. reesei is involved in cellulase induction and produc-

tion [6, 17, 19, 20], further investigations are required to 

understand whether and how in TRB1 the lack of cel3D 

is correlated to the remarkable increase of extracellular 

β-glucosidase production.

�e random insertion of a certain gene into chromo-

some for overexpression is a common strategy that 

people harness to study the gene function or improve 

cellulase production in T. reesei. �is random insertion 

is possible to interfere or disrupt other genes’ expres-

sion and in turn affect the performance of T. reseei in 

addition to the overexpression of the gene. Hence, differ-

ent recombinant strains with the overexpression of the 

same gene might display varied performance, which was 

observed in our study. However, this effect in most cases 
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has not been taken into account for the performance of 

the mutant strains in previous studies [8–12]. �e effect 

of the insertion position should definitely be considered 

when dealing with gene modification by random integra-

tion into chromosome in the future.

Conclusions

�e T. reesei recombinant strain TRB1 constructed in 

this study should be more desirable for industrial appli-

cations than the parental strain RUT-C30 because it 

shows extracellular β-glucosidase hyper production, high 

cellulase production within a shorter time, and a better 

resistance to carbon catabolite repression. Disruption of 

β-glucosidase cel3D in TRB1 was identified, which might 

link to the better performance of TRB1 than RUT-C30 

and act in the cellulase production. We suggested that T. 

reesei TRB1 would serve as a great platform to study the 

role of cel3D on extracellular β-glucosidase production 

and cellulase production.

Methods

Strains, plasmids and culture conditions

Plasmid construction and propagation was performed 

in Escherichia coli DH5α. Agrobacterium tumefaciens 

AGL-1 was used as a T-DNA donor for T. reesei trans-

formation by Agrobacterium tumefaciens-mediated 

transformation (AMT) [27]. T. reesei RUT-C30 (CICC 

13052) was utilized as a parental strain for transforma-

tion. Escherichia coli and Agrobacterium tumefaciens 

were cultivated in LB medium with 220  rpm at 37 and 

28 °C, respectively. T. reesei is grown on potato dextrose 

agar (PDA) plate for conidia culture and in Trichoderma 

minimal media (TMM) [25] with 2  % (w/t) avicel or 

other carbon sources as indicated in the context for cel-

lulase production at 28 °C with 200 rpm. Plasmid pDHt/

sk was provided friendly by Professor Zhihua Zhou from 

Key Laboratory of Synthetic Biology, Shanghai [21]. Bgl1 

gene was amplified from T. reesei RUT-C30 cDNA with 

primers for amplication of bgl1 listed in Additional file 1: 

Table S1. All chemicals used in this study were purchased 

from Sigma-Aldrich (St. Louis, MO, USA).

Construction of recombinant T. reesei strains

�e total RNA of T. reesei RUT-C30 was extracted with 

the RNA extraction Kit (Omega Bio-Tek, Inc, USA) fol-

lowing the manufacturer’s protocol. �e first-strand 

cDNA was synthesized from RNA using HiScript 1st 

Strand cDNA Synthesis Kit (Vazyme, Nanjing, China). 

Bgl1 gene was amplified from T. reesei RUT-C30 cDNA 

with primers for amplication of bgl1 listed in Additional 

file  1: Table S1, and cloned into the backbone plasmid 

pDht/sk at XbaI using the ClonExpress One Step Cloning 

Kit (Vazyme, Nanjing, China), generating plasmid pBGL. 

Plasmid pBGL was transformed into T. reesei RUT-C30 

by AMT method [27]. After transferring the putative 

transformants on PDA medium containing hygromycin 

B successive for five generations, single spore colonies 

were isolated and five recombinant T. reesei strains were 

obtained: TRB1, TRB2, TRB3, TRB4, and TRB5, which is 

confirmed by PCR.

Shake �ask cultivation

To induce cellulase production, the conidial suspension 

(0.5 mL, 107/mL) was inoculated into a 50 mL Erlenmeyer 

flask containing 10 mL sabouraud dextrose broth (SDB) 

and incubated for 48 h with 200 rpm at 28 °C. �e culture 

was then transferred into a 50 mL flask containing 10 mL 

TMM media (pH 6) [19] with 2  % (w/t) avicel or other 

carbon sources as indicated in the context for cellulase 

production at 28 °C with 200 rpm. �e TMM media was 

prepared as follows (all concentrations in g/L unless oth-

erwise noted): urea, 1.00; (NH4)2SO4, 4.00; KH2PO4, 6.59; 

K2HPO4, 1.15; FeSO4·7H2O, 0.005; MnSO4·H2O, 0.0016; 

ZnSO4·7H2O, 0.0014; CoCl2·6H2O, 0.002; MgSO4, 0.60; 

CaCl2, 0.60; Tween-80, 0.0186 % (v/v); 2.00 % (w/t) avicel 

or other carbon sources as indicated in the context [25].

Enzyme assay

Fermentation broth was centrifuged to remove T. reesei 

cells and other solid materials. Culture supernatant was 

diluted properly for enzyme assays. All enzyme activi-

ties were presented as specific activities using interna-

tional units (IU) per mL supernatant. One IU was defined 

as the amount of enzyme required to liberate 1 μmol of 

product per minute under the standard assay conditions. 

Protein concentration was determined using commercial 

Bio-Rad protein assay kit which is based on the method 

of Bradford using bovine serum albumin as a standard. 

�e FPase (FPA) activity and endoglucanase (EG) activ-

ity were measured by the DNS method with glucose as 

a standard, as described in [28, 29]. �e β-glucosidase 

activity was determined using p-Nitrophenyl-β-D-

glucopyranoside (pNPG) as a substrate based on the 

reported method by Takashima [30] and Ma [8]. �e 

properly diluted supernatants (20  μL) were incubated 

with 90 μL of 4 mM pNPG dissolved in 50 mM acetate 

buffer (pH 5.0) at 50 °C for 10 min. �en, 100 μL of each 

sample was transferred to 96-well microplate wells, fol-

lowed by addition of 100 μL 2 % sodium carbonate. �e 

absorbance was measured at 405 nm on a Multiscan FC 

microplate reader (�ermo Fisher, Shanghai). �e exo-

1,4-β-glucanase (CBH) activity was measured as reported 

by Deshpande [31] and Ma [8]. �e properly diluted 

supernatants (20 μL) were mixed with 90 μL 4 mM pNPC 

dissolved in 50  mM acetate buffer (pH 5.0) containing 

1  mg/mL -glucono-1, 5-σ-lactone, and incubated at 
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50 °C for 30 min. �en, 100 μL of each sample was trans-

ferred to 96-well microplate wells containing 100 μL 2 % 

sodium carbonate solution. �e absorbance was detected 

at 405 nm on a Multiscan FC microplate reader (�ermo 

Fisher, Shanghai).

Preparation of ethylenediamine-pretreated corn stover 

(PCS) and biomass sacchari�cation

Corn stover was harvested in suburb of Tianjin (China), 

air-dried, milled and passed through a 2 mm sieve before 

pretreatment. �e moisture of the milled corn stover 

was 4 %. �e milled corn stover was pretreated by ethyl-

enediamine (EDA) in a vacuum drying oven as previous 

described [32, 33]. EDA pretreatment conditions used 

for this study include: EDA to biomass loading = 1.0 mL 

EDA/g dry biomass, temperature 130 °C, residence time 

20 min and drying time 60 min. After pretreatment, the 

pretreated solid was post-washed for three times using 

total 30 mL water per g solid. �e solid was dried at room 

temperature until the moisture was less than 10  %. �e 

compositions of the pretreated corn stover (PCS) were 

determined following the Laboratory Analytical Proce-

dure (LAP) of the National Renewable Energy Laboratory 

(NREL). We found that PCS has 44.8  % glucan, 20.3  % 

xylan and 4.8 % acid-insoluble lignin in dry matter.

PCS and microcrystalline cellulose were used as the 

substrates for biomass saccharification according to the 

reported method by Cheng with slight modifications [34]. 

Briefly, 10  % (w/v) substrate in 1.5  mL buffer (50  mM 

sodium citrate buffer at pH 5.0 with 1 mM sodium azide 

to prevent microbial contamination) and 34  μl crude 

enzyme were mixed and incubated at 50 °Cwith 400 rpm 

for 72  h. For a control sample, the crude enzyme was 

replaced with the buffer. Samples were taken every 24 h 

and subjected to determination of the reducing sugar 

level in the supernatant by DNS method.

SDS-PAGE and MUG-zymogram analysis

SDS-PAGE analysis was carried out on 10  % Tris–HCl 

polyacrylamide gels using culture supernatants from 

day 7 with an equal protein concentration of 30  μg for 

each sample. Proteins were stained by Coomassie blue 

stain reagent. In-gel β-glucosidase activity was detected 

by MUG-zymogram analysis. Proteins from the cul-

ture supernatants were analyzed by native PAGE using 

8 % separation gel and 5 % stacking gels as described by 

Dashtban [11]. Electrophoresis was run at a constant 

current of 25  mA at 4  °C for 3  h under non-reducing 

conditions. After electrophoresis, the gel was washed 

twice with MiliQ water and incubated with the sub-

strate 4-methylumbelliferyl-β-D-glucopyranoside (MUG, 

Sigma-Aldrich, USA) in 50  mM sodium citrate buffer 

(pH 5.0) for 30  min at 50  °C. �e fluorescent reaction 

product was visualized under UV light.

RNA preparation and real-time quantitative PCR

Fresh mycelia of T. reesei TRB1 and T.reesei RUT-C30 

cultivated under different conditions were prepared and 

the total RNA was extracted with the RNA extraction 

Kit (Omega Bio-Tek, Inc, USA) following the manufac-

turer’s protocol. �e first-strand cDNA was synthesized 

from RNA using HiScript 1st Strand cDNA Synthesis Kit 

(Vazyme, China). Reverse transcription (RT) was per-

formed using the AceQ qPCR SYBR Green Master Mix 

(Takara, Dalian, China). �e reversed RNA concentration 

was determined at 260 nm using a NanoDrop ND-2000 

(�ermo Fisher Scientific, Wilmington, DE). qRT-PCR 

was performed on the ABI StepOne instrument Plus 

(ABI, Germany) with software Version 2.3 (ABI, Ger-

many). �e primers for qRT-PCR are shown in Addi-

tional file 1: Table S1. At least three biological triplicates 

were performed, and qRT-PCR of each gene was per-

formed in three triplicates. �e expression of pgk1 was 

chosen as the reference gene for data normalization.
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