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1 Introduction

The new class of 4d N = 2 SU(r + 1) (or Ar) quiver gauge theories introduced in [4]

has attracted much interest. This class of theories can be viewed as arising from the 6d

Ar (2,0) theory compactified on C × R
1,3, where C is a genus g Riemann surface with

n punctures, and each puncture is labelled by a Young tableaux with r + 1 boxes. The

resulting theories, usually denoted T(n,g)(Ar), include not only conventional gauge theories

but also more general theories that are not weakly-coupled gauge theories.

The 4d T(n,g)(Ar) theories were subsequently related to 2d conformal Ar Toda field

theories [5, 6] and to Ar quiver matrix models [7]. In particular, the Nekrasov instanton

partition functions for the 4d gauge theories are identified with certain conformal blocks

in the 2d Toda theory [5].
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Surface operators provide a particularly interesting class of observables in the T(n,g)(Ar)

theories. A proposal for how to describe them in the dual 2d CFT was presented in [1]

(other observables such as Wilson and ’t Hooft loops have also been studied [1, 8–10]).

Recently arguments have been presented that indicate that surface operators probe the six-

dimensional origin of the theory and may be useful for addressing the problem of classifying

conformal 4d N = 2 gauge theories [11]. In [1] only single surface operator insertions in

the A1 quiver gauge theories were treated (and only in a semi-classical limit). In this paper

we study and generalise this proposal.

A central theme in this work is the use of methods and ideas from topological string

theory. It is well known that the A-model topological string partition function for the

toric Calabi-Yau which engineers a certain N = 2 quiver gauge theory is equal to the

Nekrasov instanton partition function for the corresponding (five-dimensional) gauge the-

ory formulated on R
4×S1 [12–16]. The relation to topological string theory offers a powerful

computational framework that allow us to use various techniques (both A and B model)

to study surface operators and Toda theories.

On the B-model side we propose and check by explicit compuatations that the effects

of multiple surface operator insertions can be calculated using the B-model topological

recursion approach [21–23]. This method also allows us to go beyond the semi-classical

limit in a systematic order-by-order expansion. Furthermore, we argue that summing up

all the corrections leads an expression for the partition function in the form of a “Baker-

Akhiezer” function. Compared to the A-model approach, which is only applicable in a

certain patch of the moduli space, the topological recursion method has the advantage

that it allows one to explore the full moduli space of the theory.

On the mirror A-model side we find that when a gauge theory surface operator is

present, the A-model topological string partition function should be modified by the inser-

tion of a toric brane. This is in agreement with the earlier proposal by Gukov [2, 3]. We

provide several explicit checks of this proposal. In particular, we show that open topologi-

cal string amplitudes with multiple toric branes, computed using the (refined) topological

vertex [17–19], are related to multiple insertions of degenerate operators in the 2d CFT

and thus, according to the proposal of [1], to multiple insertions of surface operators in the

gauge theory.

Our A-model computations were motivated by an argument which, by combining the

conjectures in [5] and [1], allows us to obtain a conjectural expression for the Nekrasov

instanton partition function for a four-dimensional N = 2 SU(N) gauge theory in the

presence of a surface operator. The resulting expression has the right qualitative fea-

tures, involving sums over both conventional four-dimensional instantons as well as “two-

dimensional instantons” and agrees with the result obtained from the A-model calculations

with the toric brane insertion.

The toric point of view can also be used to analyze the TN (= T3,0(AN−1)) theories.

In [20] certain five-brane webs were argued to describe (a five-dimensional version of) the TN

theories. Viewing these diagrams as toric diagrams, we show explicitly that the topological

string partition function for the T2 geometry is a q-deformation of the (chiral) Liouville

three-point function. The toric point of view may also be used to analyse three-point

functions in the higher-rank cases, although this is technically much more difficult.

– 2 –
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The organisation of this paper is as follows. In the next section we briefly review the

conjecture in [1] relating surface operators in 4d N = 2 SU(2) gauge theories to insertions

of degenerate operators in the dual 2d Liouville theory and summarise our conjectures. In

section 3 we perform some computations in the Ar Toda field theories that will be used in

later sections, and also make some comments about the extension to degenerate operators

and surface operators in the SU(N) theories.

In section 4 we introduce our approach based on topological recursion in the context

of a simple theory known as T2, which has the advantage that explicit calculations are

possible. We also discuss a more complicated theory, the SU(2) theory with Nf = 4.

In section 5 we study the topological string partition function with toric brane inser-

tions. This corresponds to the five-dimensional version of the instanton partition function

with surface operator insertions [2, 3] and generalises the relation between topological

string partition functions and Nekrasov instanton partition functions. The relation to toric

brane insertions provides a constructive method for determining the gauge theory instan-

ton partition function including the effects of surface operators. We illustrate the method

explicitly in some examples using the (refined) topological vertex.

Then in section 6 we use the conjecture in [1] together with the AGT conjecture [5] to

obtain a closed expression for the Nekrasov partition function in the presence of a surface

operator. The resulting expression has the right qualitative features and appears consistent

with the expectation that it should arise from a localisation problem. We also show that

it agrees with the result in section 5 (reduced to four dimensions).

We conclude with a brief summary and outlook. In the appendix some technical details

are collected.

2 Review of surface operators and summary of conjectures

Surface operators are objects in 4d gauge theories that are supported on 2d submanifolds,

just like ’t Hooft loops are supported on 1d submanifolds. Having been largely ignored

for a long time, they have recently attracted a bit more interest, see e.g. [24–26] for some

recent work.

One way to define a surface operator is by specifying the (singular) behaviour of the

fields in the gauge theory near the submanifold where the surface operator is localised.

In general, there are several different consistent possibilities leading to different surface

operators. It has been argued that there is a correspondence between different surface

operators localised on an R
2 submanifold and the so-called Levi subgroups of the gauge

group [24]. In the case of N = 2 gauge theories, the surface operator depends on one

complex parameter for each U(1) factor in the Levi subgroup (see [1, 11, 24] for further

details). In this paper we focus on the simplest type of surface operator which depends on

only one parameter.

Given the AGT relation between the 4d T(n,g)(Ar) theories and the 2d Ar conformal

Toda field theories, a natural question to ask is what the surface operators correspond

to in the 2d CFT. This question was addressed in [1] where it was argued that inserting

surface operators in SU(2) quiver gauge theories should correspond to inserting vertex oper-

– 3 –



J
H
E
P
0
8
(
2
0
1
0
)
0
4
2

ators corresponding to certain degenerate operators/null states into the relevant correlation

function in the dual Liouville theory.

Assuming this correspondence, the authors of [1] then went on to argue how, in a

certain semi-classical limit, the surface operators should affect the partition function in the

gauge theory. Let us briefly recall the line of reasoning here. In the absence of surface

operators the AGT relation [5] equates (up to an overall factor) the Nekrasov partition

function to a certain conformal block in the 2d Toda theory. The momenta of the Toda

theory primary fields, αi, are related to the masses, mi, in the gauge theory (the exact

form of the relations depend on conventions for the gauge theory masses). Furthermore,

the internal momenta in the chiral block, denoted by σk in this paper, are linearly related

to the ak Coulomb moduli. Finally, the parameters ǫ1 and ǫ2 in the instanton partition

function are related to the parameter b in the Toda theory via

b = ǫ1 ,
1

b
= ǫ2 . (2.1)

For simplicity, let us focus on the N = 2 SU(2) theory with Nf = 4. This theory is a

T4,0(A1) theory that can be obtained by compactifying the 6d, (2, 0) supersymmetric theory

on C, which in this case is a sphere with four punctures. The low energy dynamics of the

gauge theory is encoded in the Seiberg-Witten curve Σ (a double cover of C) equipped

with the Seiberg-Witten differential λSW. The Seiberg-Witten curve can be written [4] as:

x2 + ψ2(z) = 0 , (2.2)

and the Seiberg-Witten differential is λSW = xdz. The Nekrasov instanton partition

function of the gauge theory has the general form:

Z = e
− 1

ǫ1ǫ2
(F0+(ǫ1+ǫ2)H1/2+(ǫ1+ǫ2)2H1+ǫ1ǫ2F1+···). (2.3)

Each term in this expansion is identified, via the AGT relations, with a corresponding term

in the semi-classical expansion of the four-point conformal block in the Liouville theory on

C. The (conformal) Liouville theory has the central charge c = 1+6Q2 where Q = b+1/b,

and a set of primary fields, Vα = e2αφ, with conformal dimensions ∆(α) = α(Q − α),

i.e. L0Vα = ∆(α)Vα.

It is convenient to fix three of the points to 0, 1,∞ and use a bra-ket notation which

has the property 〈α|α〉 = 1, and is such that

〈α1|Vα2(1)Vα3(ζ)|α4〉 = 〈VQ−α1(0)Vα2(1)Vα3(ζ)Vα4(∞)〉 . (2.4)

The semi-classical expansion is obtained on the CFT side by scaling all momenta1 (both

internal and external) as αi → αi/~ and performing a double expansion in ~ and Q =

b + 1
b , related to the topological (or genus) expansion of the dual gauge theory and to

its Quantisation, respectively. The conformal block (suitably normalised) corresponding

to (2.4) takes the form

e−
1

~2 F0−
Q
~

H1/2−F1−Q2H1+···. (2.5)

1An equivalent alternative point of view, used in [1], is to rescale the ǫi appearing in the gauge theory

partition function as ǫi → ~ ǫi leaving the momenta unchanged.
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In [1], it was argued that in the presence of a surface operator and in the semi-classical

limit, the corresponding CFT expression should behave as

Znull =
〈α1|Vα2(1)Vα3(ζ)V−b/2(z)|α4+

b
2〉

〈Vα1 |Vα2(1)Vα3(ζ)|α4〉
= e−

b
~
G0(z)+··· . (2.6)

Here we have normalised the expression with respect to the chiral four-point function, (2.4)

(if this is not done there will in general be additional terms at order ~
−1 coming from the

expansion (2.5) which do not go to zero as b→ 0). We have also shifted α4 in the numerator

by b/2. This shift does not affect the G0(z) term, but is important at higher orders. The

location of the degenerate operator insertion, z, is related to the parameter describing the

surface operator [1].

In the Liouville theory, the primary field V−b/2 satisfies the null state condition (L2
−1 +

b2L−2)V−b/2 = 0. This implies that

∂2
z 〈α1|Vα2(1)Vα3(ζ)V−b/2(z)|α4〉 + b2〈α1|Vα2(1)Vα3(ζ)T (z)V−b/2(z)|α4〉 = 0 . (2.7)

It was shown in [5] that

〈α1|Vα2(1)Vα3(ζ)T (z)V−b/2(z)|α4〉 →
ψ2(z)

~2
〈α1|Vα2(1)Vα3(ζ)V−b/2(z)|α4〉 , (2.8)

in the semi-classical limit ~ → 0. Note that ψ2(z) appearing here is the same as for the

theory without the surface operator insertion (this follows from the limit we are taking).

Furthermore, a WKB-type argument implies that, to leading order, acting with ∂2
z

on (2.6) brings down b2

~2 (∂zG0(z))
2. Collecting the above facts we obtain

(∂zG0)
2 + ψ2(z) = 0 . (2.9)

By comparing this expression to the Seiberg-Witten curve, (2.2), one finds that

∂zG0(z)dz is equal to the Seiberg-Witten differential, λSW, on one of the two sheets of

the Seiberg-Witten curve. By integration one finally finds [1]

G0(z) =

∫ z

x(z′) dz′ . (2.10)

This argument shows that (in the semi-classical limit) the effect of the surface operator

insertion is contained in the function G0(z) which can be determined in terms of the

Seiberg-Witten data (i.e. the curve and the differential) via the above formula.

We now make the observation that (2.10) is nothing but the B-model topological string

disk amplitude.2

Let us elaborate on this point. Consider the type II string theory setup where the four-

dimensional N = 2 gauge theory is engineered by compactification on a toric Calabi-Yau

three-fold. On the type IIA side it is well known [19, 27–29] that the topological string

partition function computed using the refined topological vertex reproduces the Nekrasov

2This observation is implicit in [1].
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instanton partition function in five dimensions (and in the field theory limit, the four-

dimensional partition function).

On the type IIB side the local Calabi-Yau geometries are mirror manifolds of toric

three-folds of the form:

Yu : ww′ = H(x, y;u), (2.11)

where H(x, y;u) = 0 is the mirror curve, a family of algebraic curves parameterized by

the complex structure parameters u, embedded in C
∗ × C

∗. Open topological B-model

amplitudes have boundary conditions provided by the mirror of toric A-branes that wrap

holomorphic curves in Yu with trivial bundles, defined by:

w′ = 0 = H(x0, y0;u). (2.12)

The open moduli space corresponds to deformations of the B-brane in Yu which are pa-

rameterized by the points (x0, y0) ∈ H(x, y, u). As a result, the moduli space of the open

B-model coincides with the mirror curve.

The disk amplitude [30, 31] is obtained from the line integral of the one-form on the

mirror curve, obtained by solving y as a function of x in H(x, y;u) = 0:

A
(0)
1 (z) =

∫ z

log(y(x;u))
dx

x
. (2.13)

This is exactly the way the surface operator is evaluated, in the semi-classical limit, in the

gauge theory, with the difference that (2.10) involves the M-theory differential λSW rather

than the engineering one (the field theory limit of log(y(x;u))dx
x ). We will revisit this point

in section 5.3.

We now summarise our results and conjectures. As in [2, 3] we argue that a surface

operator in the gauge theory is realized in the topological string setting by the insertion of a

single toric A brane. We gather evidence in support of this conjecture in section 5 based on

explicit topological vertex computations. In particular, we show that the topological string

partition function obtained using the refined vertex [19] agrees, in the four-dimensional

limit, with the expression for a normalised CFT correlation function with degenerate op-

erator insertions, while the computation using the usual vertex [17, 18] captures the same

expression when Q = 0.

The relation to toric branes is also natural from another viewpoint. In [32] it was

shown that, using the proposal in [7], degenerate state insertions in the Liouville CFT

correspond, in the matrix model language, to insertions of det(z − Φ) = eϕ(z) where ϕ(z)

is a chiral scalar. Insertions of a similar type were argued to be related to toric branes

in [17, 18, 33].

The topological string realisation of the AGT conjecture with surface operators makes

the generalization of the original proposal to multiple insertions immediate: multiple sur-

face operator insertions correspond to multiple toric brane insertions.

On the B-model side open amplitudes can be computed using the topological recursion

method [22, 23]. This method extends the original result (2.10) to the case with multiple

insertions of surface operators as well as beyond the semi-classical limit.

– 6 –
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Compared to the A-model (topological vertex) approach, the B-model (remodeling)

approach has the disadvantage of being perturbative in ~. However, it has the great

advantage of being non-perturbative in the complex structure parameters. As explained

in [23, 34, 35] this allows one to study the duality frame transformations of the amplitudes.

In the AGT context this is particularly interesting because of the relation to the S-duality

transformations in the gauge theory. In particular, the B-model setup makes feasible the

computation of amplitudes in patches corresponding to strong coupling limits of the gauge

theory, where the A-model setup, and consequently the Nekrasov partition function, cannot

be used.

3 CFT approach: degenerate operators in Toda field theory

In this section we derive some results for Ar conformal Toda field theories that will be useful

in later sections. We first study the structure of the correlation functions in the Liouville

theory with multiple insertions of degenerate operators, and work out the details for the two

specific examples which correspond to the T3,0(A1) and T4,0(A1) gauge theories. Then we

briefly discuss degenerate operators in the higher rank Toda theories, using the A2 theory

as an example. These degenerate operators are relevant for surface operator insertions

in SU(N) gauge theories. Finally, we discuss some facts about the T3,0(Ar) theories and

comment on the number of parameters in the Ar Toda theory (chiral) three-point functions.

3.1 The T3,0(A1) theory

In this section we discuss the T3,0(A1) (a.k.a. T2) theory. In the language of [4] this

theory arises from three punctures on a sphere and is simply a free theory with four

hypermultiplets. Although very simple it is still non-trivial enough to allow us to illustrate

our approach and methods. A bonus is that we will be able to perform exact calculations.

Later on we study more complicated examples.

The Seiberg-Witten curve of the T2 theory is x2 + ψ2(z) = 0, where (see e.g. [32])

ψ2(z) =
−α2

1z(z − 1) − α2
2z − α2

3(1 − z)

z2(1 − z)2
. (3.1)

Another way to obtain this expression is from the Liouville theory via [5]

ψ̂2(z) ≡
〈α1|T (z)Vα2(1)|α3〉

〈α1|Vα2(1)|α3〉
=

∞∑

n=0

z−n−2 〈α1|LnVα2(1)|α3〉

〈α1|Vα2(1)|α3〉

=
∆(α1)z(z − 1) + ∆(α2)z + ∆(α3)(1 − z)

z2(z − 1)2
→

ψ2(z)

~2
, (3.2)

where in the last step we rescaled αi → αi/~ and took the semi-classical limit ~ → 0. We

will comment later about the role of ψ̂2(z) and the ‘quantum’ curve.

The partition function for the T2 theory does not have any gauge theory instanton

corrections. However, we can still add surface operators to the theory (at least formally),

which will lead to non-trivial corrections. In the simplest example one adds a single surface

– 7 –
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operator, which using the arguments in [1], leads to the four-point function in the Liouville

theory where one of the αi is equal to −b/2. More precisely, the expression we are interested

in is:

Znull(z) =
〈α1|Vα2(1)V−b/2(z)|α3+

b
2〉

〈α1|Vα2(1)|α3〉
. (3.3)

As already mentioned in the previous section, the shift of α3 in the numerator is important

and ensures a simple behaviour when z → 0.

It is well known that in the Liouville theory the four-point function with one degenerate

insertion satisfies the hypergeometric differential equation; this result implies that

Znull(z) = zbα3(1 − z)bα2
2F1(A1, A2;B1; z) , (3.4)

where

A1 = b (α1 + α2 − α3) , A2 = b (α1 + α2 + α3 −Q) , B1 = 2 b α1 . (3.5)

We now introduce the following semiclassical expansion

Znull(z) = exp

{
b

~
G0(z) + b2G1(z) + b3~G2(z) + O(~2)

}
(3.6)

with

Gi(z) =
∑

n≥0

Gn
i (z)Qn. (3.7)

Since Znull(z) is known exactly in this case, (3.4), it is straightforward to obtain expressions

for the Gi(z)’s by rescaling αi → αi/~ and Taylor expanding. For instance,

G0
0(z) = −

(α2
3−α

2
1−α

2
2)

2α1
z −

(α4
3 + 2α2

3α
2
1 − 3α4

1 − 2α2
3α

2
2 − 6α2

1α
2
2+α

4
2)

16α3
1

z2 + . . . (3.8)

Next we turn to the cases corresponding to k > 1 insertions of V−b/2 i.e.

Znull(z1, · · · , zk) =
〈α1|Vα2(1)V−b/2(z1) · · · V−b/2(zk)|α3+k

b
2〉

〈α1|Vα2(1)|α3〉
. (3.9)

This expression can also be calculated exactly. The numerator was determined in [32] using

the connection to matrix models together with an earlier result of Kaneko [36]. Using this

result we find

Znull(z1, · · · , zk) =

(
k∏

i=1

zbα1
i (1 − zi)

bα2

)

2F
β
1 (A1, A2;B1; z1, . . . , zk) . (3.10)

where

A1 = b (α1 + α2 − α3) , A2 = b (α1 + α2 + α3 −Q) , B1 = 2 b α1 , (3.11)

and the function 2F
β
1 (A1, A2;B1; z1, . . . , zk) is the generalised hypergeometric function de-

fined as [36]

2F
β
1 (A1, A2;B1; z1, . . . , zk) =

∑

ξ

[A1]
β
ξ [A2]

β
ξ

[B1]
β
ξ

Cβ
ξ (z1, . . . , zk)

|ξ|!
, (3.12)

– 8 –
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where the sum is over all partitions ξ = {ξi} with at most k parts,

[X]βξ =
∏

i

(X −
1

β
(i− 1))ξi

, (3.13)

and Cβ
ξ (z1, . . . , zk) is a Jack polynomial with a particular normalisation.3 For the conve-

nience of the reader we list the first few Jack polynomials in appendix A.

The semi-classical expansion of these more general expressions can also be obtained.

In particular, for two insertions one has:

Znull(z1, z2) = exp
{b(G0(z1) +G0(z2))

~
+ b2G1(z1, z2) + O(~)

}
. (3.14)

Notice that in addition, each term has a Q expansion:

Gi(z1, · · · , zk) =
∑

n≥0

QnGn
i (z1, · · · , zk). (3.15)

As an example, by Taylor expansion we find

G0
1(z1, z2) = −

(α1−α2+α3)(α3−α1+α2)(α1+α2−α3)(α3+α1+α2)

16α4
1

(
z2
1

2
+
z2
2

2
+ z1z2

)
+ . . .

(3.16)

Similarly, for three insertions one has:

Znull(z1, z2, z3) = exp

{
b (G0(z1) +G0(z2) +G0(z3))

~
(3.17)

+b2 (G1(z1, z2) +G1(z1, z3)+G1(z2, z3))+b
3
~G2(z1, z2, z3) + O(~2)

}
.

3.2 The T4,0(A1) theory

As is well known, higher-point correlation functions in the Liouville theory can be related to

the three-point functions of primary fields, which therefore determine the entire theory [39].

For instance, inserting a complete set of states into the (chiral) four-point function one finds

〈α1|Vα2(1)Vα3(ζ)|α4〉 =

∫
dσ
∑

n,n′

〈α1|Vα2(1)|n;σ〉X−1
n;n′ (σ)〈n′;σ|Vα3(ζ)|α4〉 . (3.18)

where X
n;n′(σ) = 〈n;σ|n′;σ〉 and the intermediate states4 |n;σ〉 are descendants of the

primary state labelled by σ i.e.

|σ,n 〉 ≡ L−n1L−n2 . . . L−nr |σ〉 , (1 ≤ n1 ≤ n2 ≤ . . . ≤ nr) (3.19)

〈σ,n | ≡ 〈σ|LnsLns−1 . . . Ln1 , (1 ≤ n1 ≤ n2 ≤ . . . ≤ ns)

where n = (n1, n2, . . .) and |n| = n1 + n2 + . . .. It can be shown that 〈n′, σ|Vα3(ζ)|α4〉 is

proportional to ζ |n
′|〈σ|Vα3(ζ)|α4〉 [39]; hence (3.18) can be calculated perturbatively.

3Jack polynomials also play an important role in the recent matrix model developments [37, 38].
4Throughout this paper we will label the internal momenta by σ reserving the symbol α for the exter-

nal momenta.

– 9 –



J
H
E
P
0
8
(
2
0
1
0
)
0
4
2

For later purposes, we are interested in computing chiral k + 4-point functions with

k insertions of the degenerate operator V− b
2
. To this end it turns out to be convenient to

make use of the fact that we already know how to compute chiral k + 3-point functions

with k degenerate operator insertions. Thus we only insert a single complete set of states

and consider

Znull(ζ, z1, . . . , zk) = (3.20)
∑

n,n′〈α1|Vα2(1)V− b
2
(z1) · · ·V− b

2
(zk)|n;σ + kb

2 〉X
−1
n;n′(σ)〈n′;σ|Vα3(ζ)|α4〉

∑
m,m′〈α1|Vα2(1)|m;σ〉X−1

m;m′(σ)〈m′;σ|Vα3(ζ)|α4〉
.

This construction leads to a result symmetric in the zi, which is important for the dual

gauge theory and topological string interpretations that will be discussed in later sections,

where this symmetry is manifest.

A few comments about (3.20) are in order. As in previous sections, we have shifted the

momentum of the state closest to the degenerate operator insertions. However, in this case

there may be additional modifications needed, since the state now also involves descendants.

We have chosen to insert the degenerate operators to the left of Vα3(ζ). Another possibility

would have been to insert them to the right. This possibility is discussed in later sections.

To compute the expression

〈α1|Vα2(1)V− b
2
(z1) · · ·V− b

2
(zk)|n;σ〉 , (3.21)

one makes use of the definition of |n;σ〉 (3.19) and moves the L−ni ’s to the left using

the relations:

[Ln, Vα(z)] = zn[ (n + 1)∆(α)Vα(z) + z (∂zVα(z)) ]

= zn(n∆(α)Vα(z) + [L0, Vα(z)] ) , (3.22)

The first relation is used until one reaches Vα2(1) at which point the second relation is

used. One then moves the remaining L0 to the right, again using the first relation. As an

example, to linear order in ζ this procedure gives

ζ (∆(σ) + ∆(α2) − ∆(α1)) × (3.23)

×

[ k∑

i=1

(zi−1)∂zi+k∆(−b/2)+∆(σ)+∆(α3)−∆(α4)

]
〈α1|Vα2(1)V− b

2
(z1) · · ·V− b

2
(zk)|σ〉

and since

〈α1|Vα2(1)V− b
2
(z1) · · · V− b

2
(zk)|σ〉 (3.24)

is known exactly, cf. (3.10), one can plug in this result and carry out the differentiations.

The result of this procedure is exact in the zi, but perturbative in ζ.

As above, we can define the Gi(ζ, z1, . . . , zk)’s. As an example, we write out the first

few terms in the semi-classical expansion of G0
1(ζ, z1, z2) when k = 2 explicitly:

G0
1(ζ, z1, z2) = −

(α3+α4−σ)(α3−α4+σ)(α4−α3+σ)(α3+α4+σ)

16σ4
z1z2 (3.25)

+ ζ
(α2

3 − α2
4)(α

4
3−2α2

3α
2
4+α

4
4−2σ2α2

3−2σ2α2
4+σ

4)(−α2
1 + α2

2 + σ2)

16σ8
z1z2

+O(ζ2)
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Here we have only written terms involving both z1 and z2; terms not of this type are

sensitive to the issue discussed below (3.20), and possibly have other ambiguities as well,

and will not be considered in this paper.

3.3 W-algebra degenerate states and SU(N) surface operators

In this section we briefly discuss the extension to the higher rank case, i.e. surface operators

in SU(N) quiver gauge theories. The SU(N) quiver gauge theories are dual to the AN−1

Toda field theories [5, 6]. In the Ar Toda field theory the symmetry algebra is the Wr+1

algebra with central charge c = r + 12(b + 1
b )

2〈ρ, ρ〉, where ρ is the Weyl vector. In

the particular case of the A2 theory the W3 algebra has generators W3(z) ≡ W(z) and

W2(z) ≡ T (z) with mode expansions

T (z) =
∑

z−n−2Ln , W(z) =
∑

z−n−3Wn , (3.26)

and the central charge is c = 50 + 24b2 + 24 1
b2 . It is known that in this theory Vα with

α = −bΛ1, where Λ1 is the weight of the fundamental representation, is a degenerate

operator. This degenerate operator satisfies [40–42]

(
W−1 −

3w

2∆
L−1

)
Vα = 0 ,

(
W−2 −

12w

∆(5∆ + 1)
L2
−1 +

6w(∆ + 1)

∆(5∆ + 1)
L−2

)
Vα = 0 , (3.27)

(
W−3 −

16w

∆(∆+1)(5∆+1)
L3
−1 +

12w

∆(5∆+1)
L−1L−2 +

3w(∆−3)

2∆(5∆ + 1)
L−3

)
Vα = 0 ,

where

∆ = −

(
1 +

4b2

3

)
, w = −i

(3 + 4b2)

9

√
2(3 + 5b2)

3(5 + 3b2)
. (3.28)

To proceed we need the general results

(L−1V ) = ∂ V , (L−n−2V ) =
1

n!
(∂nT V ) , (W−n−3V ) =

1

n!
(∂nW V ) . (3.29)

The conventionally normalised primary field W(z) is related to the fields U3(z) and U2(z) ≡

T (z) appearing in the Miura transform as (see e.g. [43])

W = i

√
48

22 + 5c

(
U3(z) −

1

2
∂U2

)
. (3.30)

It was shown in [44] that in the semiclassical limit

〈Un(z)V · · ·V 〉 →
ψn(z)

~2
〈V · · ·V 〉 . (3.31)

Here ψn(z) are the objects appearing in the Seiberg-Witten curve [4]

xr+1 + ψ2(z)x
r−1 + · · · + ψr+1(z) = 0 . (3.32)
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In order to be consistent with the semi-classical approximation we need to neglect

〈∂T (z)V · · ·V 〉 compared to 〈U3(z)V · · ·V 〉. This means that we may neglect the L−3

term in the last equation in (3.27) and also implies that L−1L−2 effectively can be re-

placed by L−2L−1. Considering a correlation function with a degenerate state insertion

and using the same argumentation as in the rank one (Liouville) case we then find (in the

semi-classical limit)

(G′
0(z))

3 +G′
0(z)ψ2(z) + ψ3(z) = 0 . (3.33)

Comparing this result to the Seiberg-Witten curve (3.32) with r = 2 we find that G′
0(z) is

equal to the Seiberg-Witten differential on one of the three sheets of the Seiberg-Witten

curve. Thus the expression (2.10) appears to be universal (this was also argued in [1] from

an M-theory perspective).

Note that the limit we are taking is different from the limit sometimes used in Toda

theories (see e.g. [42]), which corresponds to rescaling the momenta as α→ α/b and taking

b → 0. In this limit an equation very similar to the above result (3.33) was derived

in [42], see eq. (3.21). The difference stems from the way the limits were taken. In [42]

〈∂T (z)V · · ·V 〉 was not neglected compared to 〈U3(z)V · · · V 〉.

3.4 Number of parameters in the general Toda three-point function

The TN (or T3,0(AN−1)) theory should presumably correspond to some (chiral) three-point

function in the AN−1 Toda theory. It is known (see e.g. [6, 42, 45]) that, except for the rank

one case, the three-point functions of W primary fields do not determine the higher-point

correlation functions. Instead further data is required. For instance, in the rank two case

(corresponding to the W3 algebra), one also needs e.g. the additional three-point functions

(where n is a positive integer)

〈α1|(W
n
−1Vα2)|α3〉 . (3.34)

One way to understand this fact is to note that the number of Ward identities is 8 (cor-

responding to L0, L±1, W0, W±1 and W±2) whereas the number of “basis states” is 9

(corresponding to Ln
−1Vα, W n

−1Vα, and W n
−2Vα for each of the three αi’s). Therefore one of

the basis states is left unconstrained and can be chosen e.g. as in (3.34) above.

There is a slight puzzle here since the T3 theory depends on seven (continuous) pa-

rameters (six masses and one Coulomb modulus), whereas the set of three-point functions

depend on six parameters coming from the αi plus the set of positive integers labelling

the expressions (3.34). However, by Taylor expansion, a function of one variable whose

dependence is analytic contains the same amount of information as a set of parameters

labelled by a positive integer. Therefore, it seems natural to package the set of three-point

functions (3.34) into a generating function.

For a general N the corresponding counting works as follows. The remaining number

of unconstrained sets of positive integers (number of analytic parameters) is

3 ×
N−1∑

i=1

i−
N−1∑

i=1

(2i+ 1) =
(N − 1)(N − 2)

2
, (3.35)
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which together with the number of parameters, 3(N − 1), in the three αi gives the total

number of parameters
(N + 4)(N − 1)

2
. (3.36)

This number precisely agrees with the number of parameters in the TN theory, as extracted

from [4, 46], which in turn also agrees with the number of parameters in the proposed five-

brane web description of TN [20].

4 B-model approach: the topological recursion

In this section we show how the topological recursion method, applied to Gaiotto’s ver-

sion of the Seiberg-Witten curve equipped with the M-theory differential, generates the

semiclassical expansion of conformal blocks in the Liouville theory.

We already mentioned in section 2 that our motivation to employ the B-model ap-

proach comes from the topological string engineering setup. However, applying the topo-

logical recursion in this context is fairly natural even without appealing to the relation

to topological strings and to the five-dimensional lift. Since the insertion of a degenerate

operator in the Liouville theory is captured, in the semiclassical limit, by the integral of the

Seiberg-Witten differential (2.10), it is natural to expect that multiple insertions should

correspond to integrals of multiple differentials on the Seiberg-Witten curve Σ.

The topological recursion is the natural formalism to generate multiple differentials

on algebraic curves [21, 47]. This method was developed in the context of matrix models

as a new way of solving loop equations using the spectral curve of the matrix model;

however, the recursion turns out to be quite general and it can be use to generate multiple

differentials (and closed symplectic invariants) on arbitrary algebraic curves.

The basic ingredients of the recursion method are an algebraic curve equipped with a

differential together with the Bergmann kernel B(p, q) — the unique double differential on

the curve with a double pole at p = q (with residue one).

The topological recursion generates a set of multiple meromorphic differentials

W
(g)
k (p1 · · · pk)dp1 · · · dpk of genus g. We conjecture that the semiclassical expansion in

powers of ~ of the conformal blocks with k degenerate operator insertions can be written

in terms of the genus g open (k-point) B-model amplitudes:

A
(g)
k (z1, · · · , zk) =

∫ z1

· · ·

∫ zk

dp1 · · · dpkW
(g)
k (p1, · · · , pk) . (4.1)

For the case of one insertion we have the following expression5

Znull(z)
∣∣
Q=0

= exp

[∑

g,k

~
2g−2+k 1

k!
A

(g)
k (z, · · · , z)

]
(4.2)

= exp

[
1

~
A

(0)
1 (z)+

1

2!
A

(0)
2 (z, z)+~

(
A

(1)
1 (z) +

1

3!
A

(0)
3 (z, z, z)

)
+ · · ·

]
.

5Note that this is the expansion of a determinant, see e.g. (3.35), (3.36) in [48]. This is perfectly

consistent with the fact that, as mentioned in section 2, the insertion of a degenerate operator in the 2d

CFT corresponds to the insertion of a determinant in the matrix model language of [7].
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By comparing to the CFT expressions, this in particular implies that the following equalities

should hold

G0(z)
∣∣
Q=0

= A
(0)
1 (z), G1(z)

∣∣
Q=0

=
1

2!
A

(0)
2 (z, z), G2(z)

∣∣
Q=0

= A
(1)
1 (z) +

1

3!
A

(0)
3 (z, z, z) .

(4.3)

We will provide non-trivial checks of these relations below for the T3,0(A1) and

T4,0(A1) theories.

For multiple insertions the only change in the above expression (4.2) is

A
(g)
j (z, · · · , z) →

k∑

i1,...,ij=1

A
(g)
j (zi1 , · · · , zij ) . (4.4)

This more general expression will also be compared to the CFT expressions below. For

instance, we will verify that

G1(z1, z2)
∣∣
Q=0

= A
(0)
2 (z1, z2) +

1

2
(A

(0)
2 (z1, z1) +A

(0)
2 (z2, z2)) . (4.5)

We note that the form of the expansion (4.2) is closely related to a ‘Baker-Akhiezer’

function [21, 49] of the classical integrable system6 Ψ(z) = (ψ1 · · ·ψd)

ψ(z)i = exp

[∑

g,k

~
2g−2+k 1

k!

∫ z

νi

· · ·

∫ z

νi

dp1 · · · dpkW
(g)
k (p1, · · · , pk)

]
(4.6)

= exp

[
1

~
A

(0)
1 (z) +

1

2!
A

(0)
2 (z, z) + ~

(
A

(1)
1 (z) +

1

3!
A

(0)
3 (z, z, z)

)
+ · · ·

]
,

where νi are punctures of the differential.

In this case the Seiberg-Witten curve has genus zero and for this case it has been

shown in [21] that the Baker-Akhiezer function satisfies a Hirota equation (for the multi-

component KP hierarchy).7 It is natural to speculate that Znull(z) for generic Q will provide

the Baker-Akhiezer function for a certain Quantum integrable system. The β-ensemble

formalism may allow one to compute the Gk
i (z1 · · · zk) terms in the Q expansion (3.7) and

possibly provide a way to ‘quantize’ the integrable system with a B-model approach [51, 52].

It would be interesting to explore the relation of the β-ensemble quantization to the

recent work [53–55] (see also [56]), where it was proposed and tested in some examples, that

given a classical integrable system associated with a N = 2 gauge theory, its quantization

is provided by the Nekrasov equivariant partition function.

4.1 Surface operators in the T2 theory

The Seiberg-Witten curve of the T2 theory is a genus zero Riemann surface and the Seiberg-

Witten one form reads, cf. (3.1):

λSW = xdz =

√
α2

1(1 − z) + α2
0(z

2 − z) + α2
2z

z(z − 1)
dz ≡M(z)

√
σ(z) dz, (4.7)

6We thank N. Orantin for a useful discussion on this point.
7See also [50] for the higher genus case.
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where we have introduced the notation

M(z) =
α0

z(z − 1)
, σ(z) = (z − λ1)(z − λ2) . (4.8)

The Bergmann kernel for a genus zero hyper-elliptic Riemann surface [57] is given by:

B(z1, z2) =
1

2(z1 − z2)2

[
z1z2 −

1
2 (z1 + z2)(λ1 + λ2) + λ1λ2√

(z1 − λ1)(z1 − λ2)(z2 − λ1)(z2 − λ2)
+ 1

]
dz1dz2 . (4.9)

We will also need the kernel differentials for the genus zero case [23, 57]:

χ
(n)
i (z1) =

1

(n− 1)!

1√
σ(z1)

dn−1

dzn−1
2

[
1

2M(z2)

1

z1 − z2

]

z2=λi

(4.10)

Using the above ingredients, we can then use the topological recursion to generate multi-

differentials. For example, the genus zero one-form is simply W
(0)
1 (z1) dz1 = λSW (z1), the

genus zero double differential is:

W
(0)
2 (z1, z2) dz1dz2 = B(z1, z2) −

dz1dz2
(z1 − z2)2

, (4.11)

the genus zero triple differential is:

W
(0)
3 (z1, z2, z3) dz1dz2dz3 =

1

2

2∑

i=1

M2(λi)σ
′(λi)χ

(1)
i (z1)χ

(1)
i (z2)χ

(1)
i (z3)dz1dz2dz3 , (4.12)

and the genus one one-form is:

W
(1)
1 (z) dz =

1

16

2∑

i=1

χ
(2)
i (z) dz −

1

8

2∑

i=1

(∑

j 6=i

1

λi − λj

)
χ

(1)
i (z) dz . (4.13)

The open amplitudes corresponding to the above differentials are as follows.

One-point function:8

A
(0)
1 (z) = α1 log(z)+

−α2
0 + α2

1 + α2
2

2α1
z−

(α4
0−3α4

1−6α2
1α

2
2+α

4
2+2α2

0(α
2
1−α

2
2))

16α3
1

z2+· · · (4.14)

Two-point function:

A
(0)
2 (z1, z2) =

α4
0 + (α2

1 − α2
2)

2 − 2α2
0(α

2
1 + α2

2)

16α4
1

z1z2 + (4.15)

+
(α2

0 + α2
1 − α2

2)(α
4
0 + (α2

1 − α2
2)

2 − 2α2
0(α

2
1 + α2

2))

32α6
1

(z2
1z2 + z1z

2
2) + · · ·

Three-point function:

A
(0)
3 (z1, z2, z3) =

(α2
0 − α2

2)(α
4
0 + (α2

1 − α2
2)

2 − 2α2
0(α

2
1 + α2

2)

8α7
1

z1z2z3 + · · · (4.16)

8This expression was also computed in [32] in the context of matrix models where it is known as the

holomorphic effective potential.
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One-point function at genus one:

A
(1)
1 (z) =

α4
0 + (α2

1 − α2
2)

2 − 2α2
0(α

2
1 + α2

2)

32α5
1

z2 + (4.17)

+
(3α2

1 + 5(α2
0 − α2

2)
2)(α4

0 + (α2
1 − α2

2)
2 − 2α2

0(α
2
1 + α2

2)

96α7
1

z3 + · · ·

We have checked that the amplitudes (4.14)–(4.17) match with the corresponding CFT

results. For example, (4.15) is easily seen to be consistent with (3.16) using (4.5) and

identifying α3 ↔ α0. Similarly, (4.14) agrees with (3.8).

The general pattern should be clear from the above examples. In conclusion, we find

strong support in favour of the idea that the effects of multiple surface operator insertions

can be calculated using topological recursion.

We conclude this section with a comment about the the quantum curve ψ̂2(z) that we

introduced in eq. (3.2). We can clearly apply the topological recursion using the quantum

curve and compute the open amplitudes Â
(g)
h with expansion:

Â
(g)
k (z1, · · · zk) =

∑

n

QnA
(g,n)
k (z1, · · · zk) . (4.18)

Is it easy to realize that they are obtained from the classical ones by simply replacing:

α2
i → −(Q− αi)αi. (4.19)

We checked that the linear terms in Q, A
(g,1)
k (z1, · · · zk) match with the corresponding terms

in the expansion of the Gi(z1 · · · zk). However, the higher order terms do not agree. The Q

expansion of Gi(z1 · · · zk) has a very appealing ‘geometrical’ feature since powers of Q and

the number of ‘boundaries’ are correlated: k-boundary amplitudes have Qn contributions

with n ≤ k. This feature is not shared by the Â
(g)
k (z1, · · · zk). We do not understand the

origin of the mismatch. It is possible that one needs to redefine the open moduli with Q

in order to match the two expansions.

4.2 Surface operators in the SU(2) theory with Nf = 4

We will now use the topological recursion to compute amplitudes9 for the SU(2) theory

with Nf = 4 and compare them to the results in Liouville theory of section 3.

The Seiberg-Witten differential is given by (see e.g. [59]):

λSW =

√
P4(z) dz

z(z − 1)(z − ζ)
, (4.20)

with

P4(z) = m2
0

(
z4 + z3S1 + z2S2 + zS3 + S4

)
=

4∏

i=1

(z − λi), (4.21)

9An alternative (possibly related) expansion method based on the corresponding CFT expression was

developed in [58].
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where we introduced the symmetric combinations of the roots:

Sk =
∑

1≤j1<j2<...<jk≤4

λj1 · · ·λjk
. (4.22)

More explicitly we have

S1 = −
m2

0 +m2
2(ζ − 1) +m2

0ζ + 2m2m3ζ + (1 + ζ)U

m2
0

, S4 =
m2

1ζ
2

m2
0

,

S2 =
(m2

0 +m2
1 −m2

3 + 2m2m3)ζ +m2
2(ζ − 1)ζ + 2m2m3ζ

2 +m2
3ζ

2 + (1 + ζ)2U

m2
0

,

S3 = −
(m2

1 −m2
3)ζ + (m2

1 + 2m2m3 +m2
3)ζ

2 + ζ(1 + ζ)U

m2
0

. (4.23)

One can check that the residues of the double poles of λ2
SW at z = 0, 1, ζ,∞ are given

by the m2
i .

To apply the topological recursion we need the annulus amplitude. In this case the

Seiberg-Witten curve has genus one and the annulus amplitudes can be written in terms

of the Weierstrass elliptic function; alternatively we can use an expression in terms of the

branch points of the hyper-elliptic curve due to Akemann [57] which reads:

W
(0)
2 (z1, z2) dz1dz2 =

m2
0 dz1dz2

4
√
P4(z1)P4(z2)

M(z1, z2) +M(z2, z1)

(z1 − z2)2
(4.24)

−
m2

0 dz1dz2

4
√
P4(z1)P4(z2)

(λ1 − λ3)(λ2 − λ4)
E(k)

K(k)
−

dz1dz2
2(z1 − z2)2

,

where

M(z1, z2) = (z1 − λ1)(z1 − λ2)(z2 − λ3)(z2 − λ4) , (4.25)

and

k2 =
(λ1 − λ2)(λ3 − λ4)

(λ1 − λ3)(λ2 − λ4)
. (4.26)

Note that the amplitudes depend on a choice of ordering of the branch points, which

corresponds to a choice of canonical basis of cycles on the Seiberg-Witten curve that is to a

choice of duality frame for the gauge theory. A reordering of the branch points corresponds

to a generalized S-duality transformation in the gauge theory. Since we are interested in

matching to the results of section 3 where the conformal blocks are perturbative in ζ, and

correspond to a particular ordering of the vertex operators, we need to expand the gauge

theory in the duality frame corresponding to the small ζ expansion.

We also need the (inverse) mirror map to express the parameter U in terms of ζ and

a. This can be obtained as follows. By differentiating λSW w.r.t. the modulus U we obtain

the holomorphic one-form:

ω ≡
dλSW

dU
= −

(1 + ζ)dz

2
√
P4(z)

, (4.27)

and its α-cycle integral:

da

dU
=

1

2πi

∮

λ1,λ2

ω = −
1

πi

(1 + ζ)

m0

√
(λ2 − λ3)(λ1 − λ4)

K(k2) . (4.28)
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By inverting we obtain the inverse mirror map:

U = a2 + ζ

(
−

3

2
a2 +

(m2
0+m

2
1−m

2
2−m

2
3−4m2m3)

2
+

(m2
0−m

2
2)(m

2
1−m

2
3)

2a2

)
+ O(ζ2) .

(4.29)

We now have all the ingredients to compute the one-point amplitude:

A
(0)
1 (z) =

(a2 −m2
0 +m2

2)z

2a
+

(3a4 − 2a2m2
0 −m4

0 + 6a2m2
2 + 2m2

0m
2
2 −m4

2)

16a3
z2

+ζ

[
(a−m0−m2)(a+m0−m2)(a−m0+m2)(a+m0+m2)(a

2 −m2
1 +m2

3)

16a5
z

+
m2

1 −m2
3 − a2

2az
+ · · ·

]
+ O(ζ2) (4.30)

and the two-point amplitude:

A
(0)
2 (z1, z2) =

(
a4 − 2a2(m2

0 +m2
2) + (m2

0 −m2
2)

2
)

16a4
z1z2 + · · ·

+ζ

[
(a2−m2

1+m
2
3)(a

4+(m2
0−m

2
2)

2−2a2(m2
0+m

2
2))(m

2
2−m

2
0)

16a8
z1z2 + · · ·

]

+O(ζ2). (4.31)

By taking into account the dictionary (when Q = 0):

m0 = α4 , m1 = α1 , m2 = α3 , m3 = α2 , a = σ , (4.32)

we have matched these expressions to the corresponding CFT results; for instance, (4.31)

is easily seen to agree with (3.25).

5 A-model approach: toric branes and the topological vertex

Type II string theory (or M-theory) can be compactified on a Calabi-Yau threefold to

engineer a supersymmetric gauge theory on the transverse 4d (or 5d) space. Of special

interest are the toric geometries since they engineer N = 2 supersymmetric (quiver) gauge

theories with SU(N) gauge group(s) with or without matter fields in different representa-

tions. Topological string theory on toric Calabi-Yau threefolds provide a geometric way

of computing the prepotential and higher-genus gravitational corrections in these theories.

The topological vertex formalism allows one to perform all genus computations of topo-

logical string amplitudes on toric geometries. The trivalent topological vertex [17, 18] is

defined in terms of the open topological string amplitude on C
3. The partition function for

a generic toric Calabi-Yau threefold can be computed by decomposing the geometry into

C
3 patches. Then an appropriate gluing algorithm allows one to obtain the full result using

the individual contributions coming from each patch. Pictorially, each patch corresponds

to a trivalent vertex in the so-called toric diagram, which encodes the degenerating 2-cycles

of the geometry. For further details of this construction and the gluing algorithm we refer

to the original work [17, 18]. Here we just give the explicit form of the topological vertex,

– 18 –



J
H
E
P
0
8
(
2
0
1
0
)
0
4
2

which is labeled by three irreducible representations λ, µ and ν of the U(∞) algebra, each

corresponding to one of the three legs of the vertex:

Cλµν(q) = q
κ(µ)

2 sνt(q−ρ)
∑

η

sλt/η(q
−ν−ρ)sµ/η(q

−νt−ρ) . (5.1)

In this expression sλ and sλ/η denote the Schur and skew-Schur function, respectively. The

arguments of the Schur functions involve q−ν−ρ = {q−νi+i−1/2}∞i=1.

There exists an extension of topological vertex formalism [19, 27, 28] that computes

the refined topological string partition functions on toric geometries. This construction was

motivated by Nekrasov’s computation of the instanton partition function and by his con-

jecture of the relationship of this quantity to topological string partition functions [12, 13].

According to this conjecture, when the equivariant parameters ǫ1,2 in the instanton parti-

tion function sum up to zero, the remaining variable can be identified with the topological

string coupling constant gs, i.e. ǫ1 = −ǫ2 = gs, and with this identification the topological

string partition function agrees with the instanton partition function (in d = 5).

The derivation of the refined topological vertex is based on the combinatorial interpre-

tation of the topological vertex and has the following explicit form [19]:10

Cλµν(t, q) =
(q
t

) ‖µ‖2+‖ν‖2

2
t

κ(µ)
2 Pνt(t−ρ; q, t)

∑

η

(q
t

) |η|+|λ|−|µ|
2

sλt/η(t
−ρq−ν)sµ/η(t

−νt
q−ρ).

(5.2)

where q = eǫ1, t = e−ǫ2 and Pν(x; q, t) is the Macdonald function. It is known that

Pν(q−ρ; q, q) = sν(q
−ρ). Using this fact it is easy to see that the refined topological vertex

reduces to the usual vertex (5.1) in the special case t = q. Unlike the usual vertex, the

refined vertex does not possess a cyclic symmetry in the three representations labelling

its legs. Instead it has a so-called preferred direction which is chosen to be along the last

leg, labelled by ν. The gluing rules are the same as the ones for the usual vertex as long

as one pays attention to the preferred direction (see [19] for further details). The refined

topological string partition function agrees with the 5d instanton partition function with

unconstrained ǫ1,2 [19, 27–29].

For toric geometries whose toric diagrams are triangulations of a ‘strip’, a very useful

computational tool has been developed in [60]. We summarise this method in appendix B.

5.1 Toda theory (chiral) three-point functions from toric geometry?

In [20] it was proposed that a five-dimensional version of the TN (T3,0(Ar)) theory can be

obtained in a IIB setup in terms of a certain N -junction. This N -junction is a particular

configuration (web-diagram) of N D5-branes, N NS5-branes and N (1, 1) 5-branes. For

each web-diagram one can also form a dual diagram by exchanging vertices with faces.

These diagrams turn out to be the toric diagrams of a particular toric CY threefold (a

blow up of the C
3/[ZN×ZN ] orbifold).

We will argue that the toric interpretation of the web diagram should be taken seriously,

implying that topological string techniques can be used to analyse these theories. Below

10An alternative form was proposed in [27, 28].
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Figure 1. The toric diagram for the T2 geometry.

λ,Q1

ν,Q3

µ,Q2

Figure 2. Closed topological vertex with a choice of preferred direction.

we will collect some evidence in favour of this idea. As an example, consider the N = 2

case, i.e. the T2 theory. In this case the toric diagram takes the following form:

As mentioned in section 3.4, the TN theories should presumably be related, via the

AGT conjecture, to (chiral) three-point functions in the AN−1 Toda theories. There-

fore, the toric point of view may offer a possible way to compute (chiral) Toda the-

ory three-point functions as partition functions of the topological string on the toric

C
3/ZN×ZN geometries.

As a first check we analyse the T2 case using the refined topological vertex to compute

the topological string partition function of the toric geometry in figure 1. The partition

function for this geometry in the unrefined case was first computed in [61] (see also [62]).

Using the notation and preferred direction as in figure 2, the partition function for the
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T2 geometry, sometimes called the closed topological vertex, can be computed11

Z ′
T2

=
∑

λ

(−Q1)
|λ|q

‖λ‖2

2 t
‖λt‖2

2 Z̃λ(t, q)Z̃λt(q, t)
∞∏

i,j=1

(1−Q2 q
−ρj t−λt

j−ρi)(1−Q3 q
−λj−ρit−ρj )

(1 −Q2Q3 q−ρi−1/2t−ρj+1/2)

=

∞∏

i,j=1

(1 −Q1 q
−ρit−ρj)(1 −Q2 q

−ρit−ρj )(1 −Q3 q
−ρit−ρj)(1 −Q1Q2Q3 q

−ρit−ρj )

(1−Q1Q2 q
−ρi+

1
2 t−ρj−

1
2 )(1−Q1Q3 q

−ρi+
1
2 t−ρj−

1
2 )(1−Q2Q3 q

−ρi−
1
2 t−ρj+

1
2 )

,

=

∞∏

i,j=1

(1−Q1Q2 q
ρi+

1
2 t−ρj−

1
2 )(1−Q1Q3 q

ρi+
1
2 t−ρj−

1
2 )(1−Q2Q3 q

ρi−
1
2 t−ρj+

1
2 )

(1 −Q1 qρit−ρj)(1 −Q2 qρit−ρj)(1 −Q3 qρit−ρj )(1 −Q1Q2Q3 qρit−ρj)
, (5.3)

where in the final equality we have used the analytic continuation

∞∏

i,j=1

(1 −Qq−ρit−ρj ) =
∞∏

i,j=1

(1 −Qq−ρitρj )−1. (5.4)

The product expressions in (5.3) have a clear interpretation in terms of contributions

coming from wrapping various combinations of the three 2-cycles with Kähler classes Qi.

There exists an alternative way to obtain topological string partition functions using

a relation to statistical models of crystal melting [63]. In this approach one also obtains

extra multiplicative factors involving the MacMahon function related to the constant map

contribution, not included in the vertex. In the crystal approach to the closed topological

vertex discussed in [62] it was found that the topological vertex computation should be

multiplied by a single MacMahon factor in order to agree with the crystal computation.

In our computation one should therefore supplement the above result (5.3) with a factor

corresponding to a refined version of the MacMahon function. There are different proposals

for this function in the literature, all of the form

M(q, t) =

∞∏

i,j=1

(1 − qρi+
δ
2 tρj−

δ
2 )−1 =

∞∏

i,j=1

(1 − qρi+
δ
2 t−ρj−

δ
2 ) (5.5)

In [19] the choice δ = −1 was made, whereas in the later work [64] δ = 0 was argued to

be natural.

We now want to relate ZT2 = M(q, t)Z ′
T2

to a (chiral) three-point function in the

Liouville theory. The first thing to note is that ZT2 corresponds in gauge theory language

to a 5d theory and therefore should correspond to a q-deformed version of the Liouville

theory (see e.g. [65, 66]). To obtain an expression that can be compared to the usual

Liouville result we need to take the four-dimensional limit. A quick heuristic way to

perform the reduction is the following.

We use Q = e−2Rm, qρi = e2R(i− 1
2
)ǫ1 and tρj = e−2R(j− 1

2
)ǫ2 and write

∞∏

i,j=1

(1 −Qq−ρitρj ) =
∞∏

i,j=1

e−R[m+iǫ1+jǫ2−ǫ/2]2 sinh(R[m+ iǫ1 + jǫ2]). (5.6)

11The equivalence of the product representation with the refined vertex computation has been verified

up to fifth order in each Kähler parameter with the aid of a computer code. Our expression also reduces

to the result in [61] when q = t as required for consistency.
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Applying (5.6) to all the factors in (5.3), (5.5) taking the limit R→ 0, and using

Γ2(x|ǫ1, ǫ2) ∝
∞∏

i,j=0

(x+ iǫ1 + jǫ2)
−1, (5.7)

where Γ2(x|ǫ1, ǫ2) is the Barnes double gamma function, we find (Γ2(x) ≡ Γ2(x|ǫ1, ǫ2))

Γ2(m1 + ǫ/2)Γ2(m2 + ǫ/2)Γ2(m3 + ǫ/2)Γ2(m1 +m2 +m3 + ǫ/2)

Γ2(ǫ/2)Γ2(m1 +m2 + ǫ)Γ2(m1 +m3 + ǫ)Γ2(m1 +m3 + ǫ)
, (5.8)

where we chose δ = 0 in (5.5). Using the following dictionary (as usual, ǫ = Q):

m1 = −α1+α2+α3−Q/2, m2 = α1−α2+α3−Q/2, m3 = α1+α2−α3−Q/2 , (5.9)

finally leads to

Γ2(−α1+α2+α3)Γ2(α1−α2+α3)Γ2(α1+α2−α3)Γ2(α1+α2+α3−Q)

Γ2(Q/2)Γ2(2α1)Γ2(2α2)Γ2(2α3)
. (5.10)

This expression can be related to a chiral version of the Liouville three-point function. It

can be shown that, after suitably rescaling the vertex operators with multiplicative factors

depending on their momenta, the Liouville three-point function [67–69] can be written

∣∣Γ2(α1+α2+α3 −Q)Γ2(−α1+α2+α3)Γ2(α1−α2+α3)Γ2(α1+α2−α3)
∣∣2 . (5.11)

Hence there is a natural definition of a chiral three-point function in the Liouville theory

as the “square root” of (5.11). We see that this expression agrees with the numerator

in (5.10). Let us also mention that in [32] the three-point function was analysed from the

matrix model perspective, essentially obtaining the same expression as in (5.10) (modulo

some subtle points that still need to be clarified).

Finally, we observe that if one chooses δ = 1 in (5.5), then the resulting expression for

the partition function precisely agrees with the chiral three-point function in (6.21)–(6.22)

in [70].

For the higher rank TN cases the situation is much more involved. For instance,

consider the T3 theory. In this case the toric diagram is given in figure 3.

In the four-dimensional limit this theory should reduce [4] to the E6 theory first con-

structed in [71]. Not much is known about this strongly-coupled theory (see however [72]

for a recent result). It is easy to see that the toric diagram in figure 3 corresponds to an

SU(2) theory with Nf = 5 in d = 5. This connection is not surprising since it was argued

in [73] that the 5d SU(2) theory with Nf = 5 is related to a five-dimensional version of the

E6 theory.

It is technically difficult to study the above toric T3 geometry. Another obstacle is that

the corresponding three-point functions on the Toda side are not known. But as a first

consistency check one can verify that the total number of independent Kähler classes in the

toric geometry agrees with the counting of parameters in the Toda three-point functions

in section 3.4. Even though an explicit product formula is not possible (because of the

presence of a non-trivial four-cycle in the geometry), one can still write down the vertex
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Figure 3. The toric diagram for the T3 geometry.

Figure 4. The toric version of SU(N) with Nf = 2Nc.

computation for the above geometry. But, it is not clear what (if anything) the result

should correspond to in the A2 Toda theory. It may be that the patch in moduli space

where the vertex computation is applicable is not the relevant patch for the comparison

with the Toda result. Furthermore, to get results in the usual Toda theory (rather than

in some q-deformed version) one should take the limit to four dimensions which may be

subtle for this theory.

5.2 Some facts about the geometric engineering of SU(N) theories

In this section we briefly review the toric geometries that engineer N = 2 SU(N) theories.

We first recall that the SU(N) theory with Nf = 2N can be engineered by the toric

geometry in figure 4.

The partition function for this geometry (which agrees with the Nekrasov instanton

partition) can be computed by gluing the left and right parts (each of which is a strip)
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Qf
Q1 Q2

Figure 5. The T̃2 strip.

along the dotted line using the refined topological vertex (see e.g. [29] for a discussion).

Each of the two strips in the above geometry is related to special case of the TN theory.

This follows from the fact that in Gaiotto’s language the SU(N) theory with Nf = 2N

theory is obtained via compactification on a sphere C with four punctures (two basic

U(1) punctures and two full SU(N) punctures). In the weakly coupled degeneration limit

where C splits into two spheres, each sphere has one basic and two full punctures (one

full puncture comes from the degeneration of the thin neck). Each sphere corresponds to

a degenerate TN theory with one basic U(1) puncture and two full SU(N) punctures. We

will refer to this theory as T̃N . Via the AGT conjecture, the T̃N theory is related to a

(chiral) AN−1 Toda three-point function with one of the three primary fields of a special

type [6].

Let us give some details for the T̃2 case. The relevant toric strip diagram for T̃2 takes

the following form

The partition function for this strip is

Z ′
eT2

=

∞∏

i,j=1

(1−Q1 q
−ρit−ρj )(1−Qf q

−ρit−ρj )(1−Q2 q
−ρit−ρj)(1−Q1QfQ2 q

−ρit−ρj )

(1 −Q1Qf q−ρi+1/2t−ρj−1/2)(1 −QfQ2 q−ρi−1/2t−ρj+1/2)
.

(5.12)

Clearly this partition function for the T̃2 geometry does not agree with the one for the T2

geometry (5.3) (the closed topological vertex), even though in this case all three punctures

are of the same type (basic). The latter geometry treats all punctures on an equal footing

and has a manifest SU(2)3 flavour symmetry. However if we identify Qf = Q1 and use the

dictionary (5.9) the partition functions (5.3) and (5.12) lead to four-dimensional expressions

that differ by a product of functions, each dependning only on one of the αi’s. This is not in

contradiction with the AGT conjecture since in the Liouville theory we have the freedom

to rescale each vertex operator by an arbitrary function of its momentum. The AGT

conjecture is not sensitive to such functions (called f(α) in [5]) and in this sense the T̃2

strip also agrees with the (chiral) three-point function in the Liouville theory (cf. also the

discussions in the previous subsection and in [32]).
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α

Figure 6. Surface operator in T̃2

The argument we gave for the T̃2 case extends also to the higher rank cases. The

topological string partition function for the T̃N strip geometry is consistent (in the above

sense) with a chiral version of the three-point function (with one vertex operator of special

type) in the AN−1 Toda theory.

In the next section we will compute open amplitudes (amplitudes with brane insertions)

for the T̃N geometries. It would also be interesting to compute open amplitudes for the

T2 geometry.

5.3 Surface operators as toric branes

In this subsection, we illustrate the claim that the gauge theory partition function in the

presence of a surface operator can be computed by an A-model topological string amplitude

with the insertion of a toric brane [2, 3]. In particular, based on results obtained in

sections 3 and 6, we arrive at the conclusion that the insertion of a single surface operator

corresponds to the insertion of a single toric brane, i.e. the allowed representations on the

external leg are given by Young tableaux in the form of columns.

We will focus on the T̃2 geometry depicted in figure 6. For this case it is possible to

obtain closed expressions for the partition function in the presence of a surface operator

also by using other methods, which provides us with non-trivial checks of our result.

The (unrefined Q = 0) strip computation for the configuration in figure 6 leads to the

following open amplitude (cf. appendix B):

Zα = sα(qρ)
∏

k

(
1 − qkQ1

)Ck(α,•) (
1 − qkQ1Q2Qf

)Ck(α,•)

(1 − qkQ1Qf )
Ck(α,•)

. (5.13)

We are interested in the special case of this expression which corresponds to the insertion

of a single toric brane, which means that the representation α should be a column of length

n. In this case we have:

Ck(α, •) =

{
1 for k ≤ n

0 otherwise
(5.14)
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and the partition function in the sector corresponding to a column of length n becomes

Z(n)(Q1, Q2, Qf , q) =

n∏

k=1

(
1 − qkQ1

) (
1 − qkQ1QfQ2

)

(1 − qk) (1 − qkQ1Qf )
. (5.15)

We can now package the contributions from all columns into the total partition function:

Zopen(z) =
∞∑

n=0

znZ(n)(Q1, Q2, Qf , q) . (5.16)

With the dictionary (5.9), and in the four dimensional limit, this partition function agrees

with Znull(x)
∣∣∣
Q=0

given in (3.4). It also agrees with the result (6.12) obtained in the

next section by combining the conjectures in [5] and [1]. Furthermore, (5.16) agrees with

the conjectural q-deformed matrix model result discussed in [32]. By putting arbitrary

non-trivial representations also on the two lower legs in figure 6 one can use the resulting

diagram as a building block to obtain an expression for the partition function of the SU(2)

with Nf=4 theory with a surface operator insertion, that can be compared to the result

obtained using the method described in the next section.

Above we matched an A-model open generating function to a B-model computation,

in the same spirit as in [23]. However, there is an important difference: in [23], the B-model

open amplitudes were matched to A-model generating functions with the open moduli be-

ing holonomies trλ V in all possible representations λ. This has the interpretation that the

boundary conditions were provided by a stack of infinitely many toric branes which can

carry arbitrary representations. In the present case, the A-model amplitude receives con-

tributions only from representations with a single column since we only have a single toric

brane insertion, which dovetails nicely with the fact that it corresponds to a single surface

operator insertion on the gauge theory side. We will provide more evidence supporting this

claim in what follows by showing that the number of surface operator insertions is equal

to the number of columns in the representations. Furthermore, it is interesting to note

that the M-theory and the engineering differentials appear to distinguish these two cases,

i.e. the first one computes amplitudes with one-column representations while the second is

relevant for stacks of branes. Although the integrals over closed cycles are not sensitive to

different choices of Seiberg-Witten differentials, open integrals clearly are.

Let us work out the open topological amplitude corresponding to multiple surface

operator insertions. We need to put a stack of branes on the external leg consisting of as

many branes as the number of surface operators inserted, say m branes. In this case, we

need to consider representations with m columns and figure out the exponents Ck(α, •) for

such a representation. If we look at the definition of these exponents we realize that they

can be written in a more suggestive form:

∑

k

Ck(α, •)q
k = q

dα∑

i=1

q−i
αi−1∑

j=0

qj =

dα∑

i=1

αi−i∑

j=1−i

qj. (5.17)
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This implies that for the ith column the exponents are 1 for 1 − i ≤ k ≤ αi − i, and 0

otherwise. Hence, for the ith column we have

∏

k

(
1 − qkQ

)Ck(α,•)
∣∣∣∣∣
αi

=

αi−i∏

k=1−i

(
1 − qkQ

)
=

αi−1∏

k=0

(
1 − qk−i+1Q

)
=
(
Qq1−i; q

)
αi
,

where (a; q)k is known as the q-shifted factorial. The factors appearing in the open ampli-

tude can then be written as:

∏

k

(
1 − qkQ

)Ck(α,•)
=

dα∏

i=1

(
Qq1−i; q

)
αi
. (5.18)

The above form of the open topological string amplitude makes it easier to compare with

the Liouville result. However, we need to keep in mind that the Liouville theory provides

a result which corresponds to a 4d gauge theory expression whereas the topological vertex

computation gives the 5d gauge theory result before taking the field theory limit. It is

known in many cases that the 4d and 5d results are related by the so-called q-deformation.

Here we will show that the vertex result is a certain q-deformation of the generalized

hypergeometric function which appears in the 4d theory, cf. (3.12). The hypergeometric

function obeys a differential equation and its q-deformation a difference equation.12 The

qt-deformed hypergeometric function [74], is defined as

rΦ
(q,t)
s (a1, . . . , ar; b1, . . . , bs; z) =

∑

λ

∏r
i=1 (ai)

(q,t)
λ

{
(−1)|λ|qn(λt)

}s+1−r

∏s
i=1 (bi)

(q,t)
λ h′λ(q, t)

Pλ(z; q, t). (5.19)

The notation in this definition requires some clarification: Pλ(z; q, t) is the Macdonald

polynomial (function), with z = (z1, . . . , zk), (a)
(q,t)
λ is defined in terms of the arm-colength

a′(s) = j − 1 and leg-colength ℓ′(s) = i− 1 of the Young diagram λ, and

(a)
(q,t)
λ =

∏

s∈λ

(
tℓ

′(s) − qa′(s) a
)
. (5.20)

The function h′λ(q, t) is defined as a product of factors including the arm-length a(s) = λi−j

and the leg-length ℓ(s) = λt
j − i

h′λ(q, t) =
∏

s∈λ

(
1 − qa(s)+1tℓ(s)

)
. (5.21)

Lastly, n(λ) =
∑

(i− 1)λi.

We now show that the qt-deformed hypergeometric function is related to the strip

computation when we set t = q and manipulate the factors:

(a)
(q,q)
λ = qn(λ)

dλ∏

i=1

λi∏

j=1

(1 − a qj−i) = qn(λ)
dλ∏

i=1

(
a q1−i; q

)
λi
, (5.22)

12The possibility that normalized open string amplitudes obeys difference equations was suggested to one

of us by D. Gaiotto.
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Qf,1
Q1 Q2

α

QN

Figure 7. Surface operator in T̃N

where we have used the identity n(λ) =
∑

s∈λ ℓ
′(s). By using (5.18) we get

(a)
(q,q)
λ = qn(λ)

∏

k

(
1 − a qk

)Ck(λ,•)
. (5.23)

The form of the strip result imposes s = 1 and r = 2, hence, s+ 1 − r = 0. We have three

factors of qn(λ), two in the numerator and one on the denominator. The remaining factor

can be combined with h′λ(q, q) in the denominator to give the Schur function:

sλ(1, q, q2, . . .) = qn(λ)
∏

s∈λ

1

1 − qa(s)+ℓ(s)+1

= q−
|λ|
2 sλ(q−ρ) . (5.24)

Having reproduced also the Schur function as the pre-factor in the strip computation we find

agreement between the vertex computation and the qt-deformed hypergeometric function.

The factor q−
|λ|
2 can be absorbed in the Macdonald function and the definition of the the

open moduli z.

We can further generalize our proof of the equivalence to the SU(N) gauge theory with

2N hypermultiplets in the fundamental representation. Half of the geometry engineering

this theory, in our language T̃N , is depicted in figure 7.

This theory was studied in [60] and the normalized result of the strip computation

with all external legs labeled non-trivially (the upper legs by {αi} and lower ones by {βi})

is given by:

Kα1···αN
β1···βN

=
Kα1···αN

β1···βN

K•···•
•···•

(5.25)

= sα1sβ1 · · · sαN
sβN

∏

k

∏
i≤j(1−q

kQαiβj
)Ck(αi,βj)

∏
i<j(1−q

kQβiαj
)Ck(βt

i ,α
t
j)

∏
i<j(1−q

kQαiαj )
Ck(αi,αt

j)(1 − qkQβiβj
)Ck(βt

i ,βj)
,
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where the Kähler parameters Qα,β are:

Qαiαj = Qij (5.26)

Qαiβj
= QijQj

Qβiαj
= QijQ

−1
i ,

Qβiβj
= QijQ

−1
i Qj ,

with Qij =
∏j−1

k=i QkQf,k.

When we insert m branes on one of the external legs this corresponds, in the strip

language, to putting all the representations trivial except one, say α1 = α. As before we

can show that the coefficients Ck(α, •) match the q-shifted factorials in the definition of the

q-deformed hypergeometric function. Notice that there are r = N factors in the numerator

and s = N − 1 in the denominator. Finally the prefactor sα can be reproduced following

the argument given above.

We close this section by sketching how to extend the above results to the refined case.

The starting point is the refined strip partition function for the T̃N geometry [29]:

Kα1α2...
β1β2... =

∏

a

[
q

‖αa‖2

2 t
‖βa‖2

2 Z̃αa(t, q)Z̃βa(q,t)

]
(5.27)

×
∞∏

i,j=1

∏

1≤a≤b≤N

(
1−Qαaβb

t−αt
a,i+j− 1

2 q−βt
b,j+i− 1

2

)

×
∏

1≤a<b≤N

(
1−Qβaαb

t−βa,i+j− 1
2 q−αb,j+i− 1

2

)

×
∏

1≤a<b≤N

(
1 −Qαaαb

t−αt
a,i+jq−αb,j+i−1

)−1 (
1 −Qβaβb

t−βa,i+j−1q−βt
b,j+i

)−1
,

where Z̃ν(t, q) =
∏

s∈ν(1 − ta(s)+1qℓ(s))−1. As above, we set all the representations trivial

except one, say βN = β. To match to the qt-deformed hypergeometric function (5.19), we

need to normalise the above amplitude by the closed one; in this way we are left with N

factors in the numerator and N − 1 in the denominator, as in the unrefined case.

Let us focus on a particular factor in the numerator normalized by the corresponding

closed one. Taking the logarithm, expanding and using the following identities:

∞∑

i,j=1

(
tj−1q−βt

j+i − tj−1qi
)

=

dβt∑

j=1

tj−1
∞∑

i=1

(
q−βt

j+i − qi
)

=

dβt∑

j=1

βt
j∑

i=1

tj−1q−(i−1) =
∑

s∈βt

ta
′(s)q−ℓ′(s), (5.28)

we get:

∏∞
i,j=1

(
1 −Qtj−1/2q−βt

j+i−1/2
)

∏∞
i,j=1

(
1 −Qtj−1/2qi−1/2

) = q−n(βt)(Q̃)
(t,q)
βt , (5.29)
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where Q̃ = Qt1/2q−1/2. Notice we have only one factor of q−n(βt) which combines with

t
‖βa‖2

2 to give a refined framing factor, up to factors that can be absorbed in the open mod-

uli. Finally the factor h′β(q, t) in the denominator of eq. (5.19) matches Z̃β(q, t) in (5.27).

6 AGT approach: gauge theory and instanton counting

In the previous section we made a gave an explicit prescription for how to determine the

instanton partition function for an SU(N) quiver gauge theory in the presence of a surface

operator using the conjectural relation [2, 3] to an A-model topological string partition

function with toric brane insertions. To obtain similar closed expressions directly in gauge

theory would require extending the instanton counting method to gauge theories with

surface operator insertions. However, as we shall see, even without the full machinery

some insights can be gained by using the conjectures in [1, 5]. We start by recalling some

pertinent facts about the instanton counting method (for further details, see e.g. [12, 13, 75–

77]).

The Nekrasov partition function (from which the prepotential and the Seiberg-Witten

curve can be obtained) factorises into two parts as

Z = Zpert Zinst , (6.1)

where Zpert is the contribution from perturbative calculations (there are contributions only

at tree and one-loop level), and Zinst is the contribution from instantons.

The instanton partition function for an arbitrary Ar quiver theory with matter mul-

tiplets in bifundamental and fundamental representations can be written down in closed

form using various building blocks that involve partitions (or equivalently Young tableaux)

in a fundamental way.

The Coulomb branch of an Ar quiver gauge theory is parameterised by the Coulomb

branch moduli âI
n, where n = 1, . . . NI and I label the various nodes of the quiver. Since

we are interested in SU(NI) gauge groups rather than U(NI) we impose the restrictions∑NI
n=1 â

I
n = 0. In the particular case of SU(2) this translates into â = (a,−a). For each âI

m

Coulomb modulus (i.e. before restricting to SU(NI)) there is an associated Young tableau;

e.g. for SU(2) one has a pair of Young tableaux.

It is convenient to define

E(x, Y I
n , Y

J
m, sI) = x− ǫ1LY J

m
(s) + ǫ2(AY I

n
(s) + 1) , (6.2)

where sI = (i, j) and i refers to the vertical position and j to the horizontal position of a

box in the Young tableau Y I
n . Furthermore, LY J

m
= km,i − j and AY I

n
= kT

n,j − i, where km,i

is the length of the ith row of Y J
m and kT

n,j is the height of the jth column of Y I
n .

For a bifundamental matter multiplet of mass m connecting node I with node J one

gets the contribution

[E(aI
n − aJ

m, Y
I
n , Y

J
m, sI) −m][ǫ− E(aJ

m − aI
n, Y

J
m, Y

I
n , sJ) −m] , (6.3)
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where ǫ ≡ ǫ1 + ǫ2. The gauge multiplet of node I contributes

1

E(aI
n − aI

m, Y
I
n , Y

I
m, s)[ǫ− E(aI

n − aI
m, Y

I
n , Y

I
m, s)]

, (6.4)

and a matter field of mass m transforming in the fundamental representation of gauge

group I contributes a factor

P (aI
n, Yn, s,m) = aI

n + (j − 1)ǫ1 + (i− 1)ǫ2 −m. (6.5)

As an example, the instanton partition function for the SU(N) × SU(N) theory with

one bifundamental hypermultiplet and N fundamentals at each of the two nodes can be

written

∑

~Y , ~W

y|
~Y |z|

~W |
N∏

n,m=1

∏

s∈Yn

[E(â1
n − â2

m, Yn,Wm, s) −m]
∏N

f=1 P (â1
n, Yn, s,mf )

E(â1
n − â1

m, Yn, Ym, s)[E(â1
n − â1

m, Yn, Ym, s) − ǫ]

×
∏

t∈Wn

[ǫ− E(â2
n − â1

m,Wn, Ym, t) −m]
∏N

f=1 P (â2
n,Wn, t, m̃f )

E(â2
n − â2

m,Wn,Wm, t)[E(â2
n − â2

m,Wn,Wm, t) − ǫ]
, (6.6)

where, for the first node, ~Y denotes the N -dimensional vector of Young tableaux,

(Y1, Y2, . . . , YN ), ~a1 = (â1
1, . . . , â

1
N ) are the corresponding moduli, and y = e2πiτ1 , where

τ1 is the complexified gauge coupling constant, and |~Y | (the instanton number) is the total

number of boxes in all the Yn’s. The objects ~W , â2
n, and z = e2πiτ2 denote the corresponding

quantities for the second node.

The AGT relation relates the instanton partition function of an Ar quiver theory to a

certain chiral block in the Ar Toda theory. For instance, the above expression (6.6) should

be related to a five-point chiral block. For SU(2) quivers, multi-point conformal blocks

have been matched to the corresponding instanton partition functions in [5, 78].

The extension of the AGT conjecture presented in [1] states that certain degenerate

vertex operator insertions should correspond to surface operator insertions on the gauge

theory side. Consider the prototypical case of inserting a single V−b/2 operator into the four-

point function in the Liouville theory. In the perturbative approach, using the degenerate

fusion rules, the resulting expression can be viewed as a restriction of a generic five-point

function; schematically

〈α1|Vα2 |σ〉〈σ|Vα3 |α4+
b
2 〉〈α4+

b
2 |V− b

2
|α4〉 = 〈α1|Vα2 |σ〉〈σ|Vα|σ̃〉〈σ̃|Vα3 |α4〉

∣∣∣∣σ̃=α4+b/2
α3=−b/2

(6.7)

Now, via the AGT conjecture, a five point function can be related to the instanton partition

function in the SU(2)×SU(2) theory with a bifundamental matter multiplet of mass m and

two fundamental matter multiplets in each of the two SU(2) factors. This is simply the

above expression (6.6) restricted to N = 2. We write ~̂a1 = (a,−a) and ~̂a2 = (ã,−ã).

Furthermore, using the AGT relation (in our conventions)

−α1 − α2 = m1 −
ǫ
2 , −α4 − α3 = m̃1 −

ǫ
2 ,

α1 − α2 = m2 + ǫ
2 , α4 − α3 = m̃2 + ǫ

2 ,

σ = a+ ǫ
2 , α = m, σ̃ = ã+ ǫ

2 ,

(6.8)
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the restrictions in (6.7) can also be translated into gauge theory language:

ã = m̃2 = −m̃1 + ǫ1 . (6.9)

Imposing these restrictions allows us to simplify the expression. Since ã = m̃2 only terms in

the sum with only W2 non-empty give non-vanishing contributions [79]. If we furthermore

set m̃1 = −ã + ǫ1 then only those W2 tableaux that have boxes only in the first column

survive [79] (in other words kT
2,j is only non-zero for j = 1, so that i = 1, . . . , kT

2,1 and

k2,i = 1). Using this result we find

∞∑

ℓ=0

∑

~Y

y|
~Y |zℓ

2∏

n,m=1

∏

s∈Yn

[E(â1
n, Yn,W, s) −m4 − ǫ]

∏3
f=1 P (â1

n, Yn, s,mf )

E(â1
n − â1

m, Yn, Ym, s)[E(â1
n − â1

m, Yn, Ym, s) − ǫ]

×
∏

t∈W

[−E(−â1
m,W, Ym, t) −m4]

[m4 −m3 + ǫ+ ǫ2 (p− 1)][ǫ2 p]
. (6.10)

where we have introduced the notation

m3 = m+ ã− ǫ , m4 = m− ã− ǫ . (6.11)

(Note that the product over f in the numerator of (6.10) runs over three masses.) Fur-

thermore, in (6.10) W denotes a Young tableaux with only one column, where p = 1, . . . , ℓ

label the boxes.

To recap, we started from a four point function/conformal block in the Liouville theory

with an additional degenerate insertion and used the AGT conjecture to rewrite it in terms

of a instanton partition function in an SU(2)×SU(2) theory with additional restrictions,

which could be further simplified to the expression (6.10).

But if the conjecture in [1] is correct (6.10) should correspond to the instanton partition

function for the SU(2) gauge theory with four fundamental matter multiplets together with

a surface operator insertion. The above expression (6.10) has a form which agrees with

general expectations. It has a sum over conventional instantons labelled by a pair of Young

tableaux as well as a sum over “two-dimensional instantons” due to the surface operator,

labelled by an integer ℓ. Thus it seems very plausible that the above expression really

represents the gauge theory partition function in the presence of a surface operator.

In particular, the terms with ℓ = 0 are easily seen to reproduce the usual instanton

expansion, whereas for the terms with |~Y | = 0 one finds

Z2d inst =

∞∑

ℓ=0

(A1)ℓ(A2)ℓ
(B1)ℓ

zℓ

ℓ!
, (6.12)

where

A1 =
1

ǫ2
(m4 + a+ ǫ) , A2 =

1

ǫ2
(m4 − a+ ǫ) , B1 =

1

ǫ2
(m4 −m3 + ǫ) (6.13)

and (X)n = X(X +1) · · · (X +n− 1) is the Pochhammer symbol. This is simply the series

expansion of the hypergeometric function 2F1(A1, A2;B1; z). Translating to CFT language

using b = 1/ǫ2 and

m4 = α3 + α4 −
3
2ǫ , m3 = α3 − α4 −

1

2
ǫ , a = −σ +

1

2
ǫ , (6.14)
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we find that (6.13) becomes

A1 = b (α4 + α3 − σ) , A2 = b (α4 + α3 + σ − ǫ) , B1 = 2 b α4 (6.15)

The above expression is easily seen to agree with the result we obtained using the A-model

topological string in the previous section as well as with the result in section 3.

In the usual instanton counting method an alternative way to write the instanton

expansion is in terms of certain contour integrals together with a particular choice of

contour, leading to a prescription for which poles are picked up by the integration. Such an

expression is also possible for the above result (6.12) which alternatively can be written as

∞∑

ℓ=0

zℓ

ǫℓ2ℓ!

∮ ℓ∏

i=1

d ξi
(ξi + µ1)(ξi + µ2)

(ξi − ν)(ξi + ν)

∏

1≤i<j≤ℓ

(ξi − ξj)
2

(ξi − ξj − ǫ2/2)(ξi − ξj + ǫ2/2)
(6.16)

where we used the notation

ν =
1

2
(−m3 +m4) , µ1 = −

1

2
(m3 +m4) + a− ǫ , µ2 = −

1

2
(m3 +m4) − a− ǫ , (6.17)

and the poles with positive ǫ2 part in (6.16) are selected (if there is no ǫ2 part then the

poles with positive ν part are selected). This expression can be viewed as arising from a

localisation problem. See [80] for a discussion of similar issues. The above integrals can also

be viewed as computing the character of an (equivariant) instanton deformation complex.

Above the degenerate state was inserted using a particular ordering of the vertex

operators. However, other orderings can also be treated using the above method. For

instance, another way to introduce a degenerate state is via:

〈α1|Vα2 |σ−
b
2〉〈σ−

b
2 |V− b

2
|σ〉〈σ|Vα3 |α4〉 = 〈α1|Vα2 |σ

′〉〈σ′|Vα|σ〉〈σ|Vα3 |α4〉

∣∣∣∣σ′=σ−b/2
α=−b/2

(6.18)

Again, the restrictions can be translated into gauge theory language and the resulting

expression can be simplified. We expect the result to be related to the insertion of a toric

brane on an internal line in the toric diagram.

Using the above arguments it is clear that one can also obtain (conjectural) gauge the-

ory expressions corresponding to insertions of other degenerate states in the class V−p b
2
−q 1

2b

as well as expressions for the higher rank SU(N) theories.13

7 Summary and outlook

In this paper we studied surface operators and their conjectured interpretation as degen-

erate operators in the dual Toda field theories.

In particular, we analysed the surface operators using methods from topological string

theory. We showed that by making use of the B-model topological recursion method one

13The conditions reducing the sums in the SU(N) Nekrasov partition function to a sum over only columns

were discussed in [79, 81].
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can compute the partition function including the effects of (one or many) surface operators

beyond the semi-classical limit order-by-order.

An alternative viewpoint is the interpretation of the surface operator as a toric brane in

the A-model topological string [2, 3]. This identification extends the usual relation between

the topological string partition function and the Nekrasov instanton partition function, and

makes algorithmic computations possible using the (refined) topological vertex.

There are several remaining questions and possible extensions of our work. Here we

briefly mention some of them.

• The gauge theory instanton counting method in the presence of surface operators

should be developed. Our results in sections 6 and 5 should provide important clues.

The brane realisation of a surface operator [24, 82] may be a useful tool.

• The classification of surface operators and the precise relation to the classification

of degenerate operators and toric branes should be clarified and developed in full

generality.

• The topological recursion method was only used for the case ǫ = 0. It would be

desirable to extend it also to the ǫ 6= 0 setting (beta deformed case). Is there a way

to understand the recursion method directly in the CFT?14

• The toric approach to the TN theories may provide insights into the important prob-

lem of calculating general three-point functions in the AN−1 Toda field theories.

• The B-model approach has the advantage that (using mirror symmetry techniques)

it can be used in all regions of the moduli space. It should therefore be a useful tool

to address strong coupling questions such as S-duality and crossing symmetry.

• It seems natural to view the TN diagrams as composite vertices. These vertices can

be glued15 and lead to a sort of fattening of the diagrams drawn in [4]. What do the

resulting toric diagrams describe and are they useful?
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A Jack polynomials

The Jack polynomials are homogeneous polynomials of k variables that depend on a con-

tinuous parameter β = − 1
b2 , and are indexed by partitions. They are eigenfunctions of

the hamiltonian

1

2

∑

i

x2
i

∂2

∂x2
i

− b2
∑

i<j

1

(xi − xj)

(
x2

i

∂

∂xi
− x2

j

∂

∂xi

)
. (A.1)

The first few Jack polynomials are:

Cβ
1 (x) = σ1(x) ,

Cβ
2 (x) = σ1(x)

2 +
2

b2 − 1
σ2(x) ,

Cβ
12(x) = −

2

b2 − 1
σ2(x) ,

Cβ
3 (x) = σ1(x)

3 +
6

b2 − 2
σ2(x)σ1(x) +

6

(b2 − 1)(b2 − 2)
σ3(x) ,

Cβ
21(x) = −

6

b2 − 2
σ2(x)σ1(x) −

18

(2b2 − 1)(b2 − 2)
σ3(x) , (A.2)

Cβ
13(x) =

6

(b2 − 1)(2b2 − 1)
σ3(x) .

Here σn(x) =
∑

i1<···<xin
xi1 · · · xin are the elementary symmetric polynomials in k vari-

ables. There are various different normalisations of Jack polynomials used in the literature;

the normalisation above is such that
∑

|ξ|=d C
β
ξ (x) = σ1(x)

d.

B Vertex on the strip

In this subsection we review a very useful technique for computing topological string ampli-

tudes for geometries whose toric diagrams appear as the dual diagrams of a triangulation

of a strip. This formalism was originally developed for the unrefined topological string par-

tition functions [60] (to which we refer for additional details), and was later extended to

the refined case as well [29]. This technique is particularly useful since half of the geometry

giving rise to SU(N) theories with different hypermultiplets can be obtained from different

triangulations of a strip (see figure 4 for an example).

Let us demonstrate the rules of the strip for the following toric diagram

The red lines denote the triangulation of the strip and the black ones the toric diagram.

The upper and lower external legs are labeled by irreducible representations αi and βi,

respectively. Some of the external legs may have trivial representations, but let us keep

all of them non-trivial for bookkeeping. The external legs extending in the horizontal

directions are assumed to have trivial representations. We will consider the pairings of the

constituent topological vertices on the strip. The contributions from the pairings depend

on the local geometry. From the toric diagram, we conclude that the adjacent P
1’s in the

base are touching each other at one point and locally two types of line bundles over these

P
1’s are possible, either O(−1)⊕O(−1) 7→ P

1 or O(−2)⊕O(0) 7→ P
1. For each pairing, the
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Figure 8. Strip

contribution is of either of these two types. More precisely, if in a pairing O(−1)⊕O(−1)

appears an odd number of times the contribution is the same type, otherwise it is of type

O(−2) ⊕ O(0). Note that the contributions coming from these two types of curves are

each other’s inverses, hence, let us write the whole amplitude in terms of one of them, say

O(−1)⊕O(−1) and denote it by {αβ}Q. For O(−2)⊕O(0) we then write 1/{αβ}Q. The

subscript in this notation denotes the product of the Kähler factors involved in the pairing.

The pairing is computed to be [60]

{αβ}Q =
∏

k

(
1 −Qqk

)Ck(α,β)
exp

[
∞∑

n=1

Qn

n(2 sin(ngs

2 ))2

]
, (B.1)

where the exponents are defined in terms of expansion coeeficients

∑

k

Ck(α, β)qk =
q

(q − 1)2


1+(q−1)2

dα∑

i=1

q−i
αi−1∑

j=0

qj




1+(q−1)2

dβ∑

i=1

q−i
βi−1∑

j=0

qj




−
q

(1 − q)2
. (B.2)

and dα is the number of rows of α. Finally, we want to give the rule how to get the total

amplitude using the pairings. To this end we will divide, following [60], the vertices into

two groups and label them by A and B: if the first vertex on the strip has the form Cµ•βi

(where µ belongs to an internal leg, and we label the vertex clockwise) then we call this

an A type vertex, otherwise, of type B. If two vertices are connected by a P
1 with a

O(−1) ⊕ O(−1) bundle over it, we change the type, otherwise not. For example, for the

sequence of vertices in figure 8, we get (A,B,B,A). The total amplitude is given by all

possible pairings of the external legs except the horizontal ones. Once we have associated

the A and B labels to the vertices, the pairings are given as follows:

i-th vertex of typeA ⇐⇒ {βi·} and {·βt
i}

i-th vertex of typeB ⇐⇒ {βt
i ·} and {·βi}
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This labeling is particularly convenient when we glue two strips to obtain a SU(N) theory.

We also multiply the pairings by sβi
(qρ) for each external leg with a non-trivial represen-

tation βi.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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