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As an object of course control, the ship is characterised by a nonlinear function describing static manoeuvring characteristics
that reflect the steady-state relation between the rudder deflection and the rate of turn of the hull. One of the methods which
can be used for designing a nonlinear ship course controller is the backstepping method. It is used here for designing
two configurations of nonlinear controllers, which are then applied to ship course control. The parameters of the obtained
nonlinear control structures are tuned to optimise the operation of the control system. The optimisation is performed using
genetic algorithms. The quality of operation of the designed control algorithms is checked in simulation tests performed on
the mathematical model of a tanker. In order to obtain reference results to be used for comparison with those recorded for
nonlinear controllers designed using the backstepping method, a control system with the PD controller is examined as well.
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1. Introduction

Numerous investigations performed in the past have bee
oriented on designing an integrated ship control system.
Despite significant advances in automation, course con-
trol is still an active field of research, especially in low
speed regimes. Navigation at this speed is difficult due
to manoeuvring problems connected with a relatively big
mass of the ship and a limited dimension of the rudder,
which must be significantly deflected to obtain the re-
quired change in the ship’s course. This effect is espe-
cially noticeable on tankers. The reduced controllability
of those ships can be compensated for by the use of au-
tomatic control systems, which change the course of the
ship in a desired way by proper movements of the rudder.
The present state of the art and problems occurring in the
control of seagoing ships are discussed in (Fossen, 2002).

Nowadays, autopilots installed on ships usually use
the algorithm of the PID controller. The measured ship
course is compared with the required (set) value and the
calculated difference makes the input signal passed to the
controller. The control signal, obtained at the output of

the controller, is then transmitted to the servo-mechanism
of the steering gear and provokes a required change in the
rudder deflection angle. The automatic ship course con-
trol system (autopilot) is expected to execute two tasks.
The first one consists in course changing when the ship
moves along the desired trajectory, and in this case the ma-
noeuvre should be performed fast and precisely. This is of
special importance when the maneuvres are performed in
high-traffic water regions, or in restricted waters. The sec-
ond task consists in keeping the ship on the desired con-
stant course—in this case the rudder activity and the so-
called “ship yawing effect” should be minimised to reduce
fuel consumption. To combine simultaneously these two
requirements, very different in their nature, two different
structures of the controller are alternatively used depend-
ing on the task to be performed (Lim and Forsythe, 1983;
Moradi and Katebi, 2001).

The difficulties observed in ship control result mainly
from neglecting nonlinear dynamic characteristics and
changes in ship motion parameters. Numerous attempts,
published in the literature, to overcome these difficulties
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make use of methods that linearise the system for cer-
tain operation points, like, e.g., the feedback linearisation
method. These methods, however, return solutions which
are not fully satisfying.

In the recent two decades, a number of new methods
have been developed for designing controllers to control
nonlinear dynamic systems. These are mainly recursive
methods, such as backstepping, forwarding, and various
combinations of them. A common concept of the above-
named basic recursive methods is the design of a glob-
ally stable control system, having a cascade structure, for
a class of nonlinear dynamic systems. In particular, the
backstepping method is based on Lyapunov function the-
ory (La Salle and Lefschetz, 1966), but its origin can be
found in some theories of linear control, such as the feed-
back linearisation method or the LQR method.

The beginning of the development of the backstep-
ping method applied to nonlinear control systems design
dates back to the end of the 1980s. A list and a discus-
sion of publications issued at that time can be found in the
overview by Kokotović and Arcak (2001), as well as by
Fossen (2002).

The backstepping method is based directly on the
mathematical model of the examined system, introducing
new variables into it in a form depending on the state vari-
ables, controlling parameters, and stabilising functions.
The task of a stabilising function is to compensate for non-
linearities recorded in the system and affecting the sta-
bility of its operation. The linearisation methods used in
feedback-based systems usually aim at eliminating non-
linearities existing in the system. The use of the back-
stepping method makes it possible to create, in an arbi-
trary way, additional nonlinearities and introduce them
into the control process to eliminate undesirable nonlin-
earities from the system (Fossen and Strand, 1998). This
is of great importance in the case of ship control systems
in which removing all nonlinearities would require infor-
mation on accurate models of all existing nonlinearities,
which is hardly available in practice. The backstepping
method permits to obtain global stability in the cases when
the feedback linearisation method only secures local sta-
bility.

One of the earliest books on backstepping control
methods was published by Krstić et al. (1995). Special at-
tention was paid there to adaptive and nonlinear control of
SISO-type systems, with some extensions to MIMO-type
systems. Another concept how to apply the backstepping
method in control systems design was proposed in (Sepul-
chre et al., 1997). The method proposed therein took into
account acceleration increment inertia for cascade control
systems. Krstić and Deng (1998) developed the approach
focusing on the stabilisation problem in stochastic nonlin-
ear systems.

The backstepping method was used in numerous en-
gineering applications, among other cases, for designing

a system that controls the flight trajectory (Harkegard,
2003), in the spaceship observation process (Krstić and
Tsiotras, 1999), in the design of industrial systems, elec-
tric machines and nonlinear systems of wind turbine-
based power production, as well as in robotics for control-
ling a robot moving along a desired trajectory. In particu-
lar, the backstepping method can an be an effective tool in
adaptive control design for estimating parameters (Fang et
al., 2004; Jiang, 2002) and solving various optimal control
problems. Moreover, the control algorithms based on the
backstepping method make it possible to design a robust,
nonlinear controller that limits the effect of disturbances
acting in both deterministic and stochastic manners (Do
et al., 2004; Skjetne et al., 2005). As a result, a control
process is obtained which is globally stable in the entire
area of its operation.

In the marine technology, the presented backstep-
ping method was used in systems that steer the ship on its
course (Do et al., 2004; Pettersen and Nijmeijer, 2004),
to secure course stabilisation. Fossen and Strand (1999)
focused on the practical use of the backstepping method
in mechanical systems and its application to ship steering.
However, attempts to apply this method in real marine sys-
tems revealed numerous problems which needed solving.
One of them is the structure and selection of the stabili-
sation functions and identification of their parameters. In
order to obtain optimal quality of control for the designed
nonlinear course controller, its parameters need tuning.
The design systems presented in the literature which make
use of the backstepping method are optimised using clas-
sical methods, usually based on the solution of the Riccati
equation (Ezal et al., 2000; Krstić and Tsiotras, 1999).

The backstepping method usually assumes that the
unknown parameters of stabilising functions change lin-
early (Zhang et al., 2000). However, publications can also
be found in which the problem of determining nonlinear
stabilising functions is solved with the aid of neural net-
works. The use of the neural network at each step of
the backstepping procedure makes it possible to evalu-
ate nonlinear functions and, as a consequence, to design
a control rule in which the assumption about the linearity
with respect to the parameters is not required. The neural
network-based backstepping method is discussed in de-
tail in (He et al., 1998; Kuljaca et al., 2001; Kwan and
Lewis 2000; Zhang and Hang, 2000). Moreover, Zhang
and Hang (2000) give proofs of the theorems concerning
the stability of the designed controller.

The article describes a new concept of the ship au-
topilot in which control rules are derived for nonlinear
controllers designed with the aid of the backstepping
method and used for controlling the ship’s motion on its
course. Earlier autopilot design tasks performed using
the backstepping method did not take into account the
presence of the steering gear. This time, the backstep-
ping method was used in the nonlinear controller design
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process for checking the effect of the accuracy of the
mathematical model that describes the ship’s dynamics
taking into account the dynamic properties of the steering
gear. Two structures of the nonlinear controller were de-
signed and tested. The first structure concerned the math-
ematical model, which was the Norrbin model (Ameron-
gen, 1982)—a nonlinear second-order model (the control
rules were determined in three steps), while the second
structure was designed based on a complex model of ship
dynamics, i.e. Bech and Wenger’s model (Astrom and
Wittenmark, 1989) (the control rules were determined in
three steps). The nonlinear controllers required selecting
optimal values for parameters, which was done with the
aid of a genetic algorithm. So far, this technique has not
been employed to solve this kind of problems. The oper-
ation of the genetic algorithm bases on the generation of
solutions by imitating the evolutionary process (Goldberg
1989; Michalewicz, 1996).

2. Model of the Ship

The geometry of the ship motion is defined in the coordi-
nate system Xo, Yo, while the motion of the ship itself is
described in the relative coordinate system (x, y), which
is fixed to the ship. The motion of the ship is shown in
Fig. 1. The control system discussed in the article was
designed for steering a ship on the course. In the system,
the controlled parameter is the ship course, ψ(t), while
the controlling parameter is the rudder angle, δ(t). The
equations describing dynamic characteristics of the ship
were derived from Newtonian dynamics laws. It was as-
sumed that for large displacement ships, e.g. tankers, the
transverse movements can be neglected.
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Fig. 1. Ship motion coordinate system.

In the present investigations, the mathematical model
of the dynamic characteristics of the ship was taken from a
model tanker described by Astrom and Wittenmark (1989)
and modelled by a nonlinear third-order differential equa-
tion, referred to as Bech and Wenger’s model (Åström and
Wittenmark, 1989). The use of this model for evaluating

the quality of the designed control algorithms was justified
by its simplicity, with simultaneous high accuracy in map-
ping the response of the ship course to the rudder angle.
The model has two sets of parameters for the states of bal-
lasting and a full load, respectively. The model is obtained
from the second-order Nomoto model, in which the angu-
lar velocityψ(t) was replaced by a nonlinear manoeuvring
characteristicH

(
ψ̇(t)

)
, the coefficients of which were de-

termined from a spiral test.
The obtained model is given by the following equa-

tion (Amerongen, 1982; Åström and Wittenmark, 1989):

...
ψ(t) +

( 1
T1

+
1
T2

)
ψ̈(t) +

1
T1T2

H(ψ̇(t))

=
K

T1T2
(T3δ̇(t) + δ(t)), (1)

where H
(
ψ̇(t)

)
is a nonlinear function of the angular ve-

locity ψ̇ (t). The function H
(
ψ̇(t)

)
expresses the steady-

state relation between δ(t) and ψ̇(t), when
...
ψ(t) = ψ̈(t) =

δ̇(t) = 0.
The experiment performed to determine the shape of

the curve H
(
ψ̇(t)

)
is called a “spiral test” and for the

tanker examined in the present article it is approximated
by the following function:

H
(
ψ̇(t)

)
= αψ̇3(t) + βψ̇(t), (2)

where α and β are real constants taking the values α =
β = 1 in the model. The parameters K,T1, T2, T3 are
defined as

K = K0

( u
L

)
, (3)

Ti = Ti0

(
L

u

)
, i = 1, 2, 3, (4)

where u is the longitudinal speed of the ship in [m/s], and
L is the ship length in [m]. In the article, the tanker is
examined in two loading states. In the first state, called
the ballasting state, the ship is without cargo (liquid). In
this case ballast tanks are filled with water. For the tanker
in this state the model parameters take on the following
values:

K0 = 5.88, T10 = −16.91, T20 = 0.45, T30 = 1.43.

The second state of the tanker’s operation refers to the
tanks fully loaded with the transported liquid and is called
the full load state. In this case the model parameters are

K0 = 0.83, T10 = −2.88, T20 = 0.38, T30 = 1.07.

The model parameters were determined for the speed u =
5 [m/s]. The length of the tanker is L = 350 [m].
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In order to write the differential equation (1) in the
form of nonlinear state equations, the following substitu-
tions were made:

a =
1
T1

+
1
T2
, b =

1
T1T2

,

c =
KT3

T1T2
, d =

K

T1T2
.

After these substitutions, Eqn. (1) can be written as
...
ψ(t) = −αψ̈(t) − bH(ψ̇(t)) + cδ̇(t) + dδ(t). (5)

Since the input variable, which is the rudder angle, is
present in Eqn. (5) along with its derivative, the following
assumption is introduced here:

ẋ3(t) =
...
ψ(t) − cδ̇(t), (6)

the task of which is to remove the rudder angle derivative
.

δ (t) from the state equations. Hence

x3(t) = ψ̈(t) − cδ(t). (7)

After introducing the first state derivative x1(t), which is
the ship course, into Eqn. (5),

x1(t) = ψ(t), (8)

whose derivative, ẋ1(t), is the yawing speed

ẋ1(t) = ψ̇(t) = x2(t), (9)

the derivative of the second state variable, x2(t), becomes
equal to

ẋ2(t) = ψ̈(t). (10)

After substituting the ship course second derivative
ψ̈(t), determined from Eqn. (7), into Eqn. (10), we get the
relation for the derivative of the second state variable,

ẋ2(t) = x3(t) + cδ(t). (11)

Finally, substituting (5) and the state variables (8), (9) into
Eqn. (6), we obtain the third state equation,

ẋ3(t) = −a
(
x3(t) + cδ(t)

)
−b

(
x3

2(t) + x2(t)
)

+dδ(t).
(12)

As a result of the above substitutions, the following
system of state equations is obtained:

ẋ1(t) = x2(t), (13a)

ẋ2(t) = x3(t) + cδ(t) (13b)

ẋ3(t) = −a (x3(t) + cδ(t)) − b
(
x3

2(t) + x2(t)
)

+ dδ(t) (13c)

For the zero initial conditionsψ (0) = ψ̇ (0) = ψ̈ (0) = 0,
the initial values of the state variables are the following:

x1 (0) = x2 (0) = 0 and x3 (0) = ψ̈(0) − cδ(0) or
x3 (0) = −cδ(0).

The model of the dynamic characteristics of the ship
was complemented by the model of the steering gear, as
schematically shown in Fig. 2. The input signal passed
to the steering gear comes from the autopilot and has the
form of the set rudder angle, δz(t), while the output sig-
nal is the current rudder angle, δ(t). For the majority of
ships the rudder angle and the speed of its change are kept
within certain limits (Amerongen, 1982), where

δmax = 35[deg], 2.3 ≤ δ̇max ≤ 7[deg/s].

It is usually required for the steering blade to move
from one limiting position to another in a time shorter than
30 [s]. In this article it is assumed that the rate of rudder
motion is approximately limited to δ̇max = 6 [deg/s] until
|δz − δ| ≤ 3 [deg], when the rudder operates in the linear
region of the characteristic. The maximum rudder angle
is δmax = 35 [deg].

For this assumption the steering gear dynamic char-
acteristic was given by the following equation:

δ̇(t) =
KR

TR
δz(t) − 1

TR
δ(t), (14)

where TR = 156 [s] and KR = 96 [deg].
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Fig. 2. Block diagram of the steering gear system.

The discussed model of the dynamic characteristics
of the tanker and the model of the steering gear were im-
plemented in Simulink.

3. Designing Nonlinear Controllers

As has been mentioned before, the controllers were de-
signed using the backstepping method. When designing
steering rules with the aid of this method, new state vari-
ables zi and stabilising functions αi are introduced, in a
recurrent way, in the i-th step. The number of steps de-
pends on the number of the state variables used in the
mathematical model of the examined object. In each con-
secutive design step, complex mathematical operations
are performed. To simplify this process, one should tend
to reduce the number of design steps, but this implies a re-
duction in the number of state equations used in the math-
ematical model and should only be done to such an extent
as not to lose the credibility of the representation of real
dynamic characteristics by the mathematical model.
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In the present article, the backstepping method was
used for developing two algorithms of nonlinear ship
course control (nonlinear controllers), denoted as Ver-
sions A and B.

The form of the dynamical characteristics of the ship
used in Version A for deriving control rules for the nonlin-
ear controller was reduced by an order and is given by (1).
For this purpose, the Wenger and Bech model was reduced
to the form of the Norrbin model given by (15).

When deriving the rules of the nonlinear control,
the dynamic characteristics of the steering gear described
by (14) were taken into account. Using the reduced form
of the dynamic characteristics of the ship with a steering
gear, the control rules were obtained in three steps. In Ver-
sion B the control rules were derived for the full nonlinear
Wenger and Bech mathematical model given by (1) with
the steering gear dynamic equation (14). In this case the
control rules were determined in four steps.

Version A

In order to design the control algorithm using the back-
stepping method, Eqn. (1) is transformed into the non-
linear model proposed by Norrbin in the following form
(Amerongen, 1982):

T ψ̈(t) +HN

(
ψ̇(t)

)
= Kδ(t), (15)

where T = T0(L/u), T0 = T10 + T20 − T30, and K

was determined from (3). HN

(
ψ̇

)
is a nonlinear function

obtained from Eqn. (2) as

HN

(
ψ̇(t)

)
=
α

β
ψ̇3(t) + ψ̇(t), (16)

where α = β = 1. The mathematical model of the ship
was complemented by the equation of the steering ma-
chine (14). The nonlinear differential equations (15) and
(14) can be written in the form of the state equation system

ẋ1(t) = x2(t), (17a)

ẋ2(t) = − 1
T
HN (x2(t)) + x3(t), (17b)

ẋ3(t) = − 1
TR

x3(t) +
KR

TR
u(t), (17c)

HN (x2(t)) =
α

β
x3

2(t) + x2(t), (17d)

where x3(t) is the rudder angle and u(t) is the control-
ling input. For an object described by the state equations
(17), the nonlinear control will be determined using the
backstepping method.

Step 1.

In the first step, new variables are introduced. The first
virtual variable z1 is the control error defined as

z1 = Δψ(t) = ψ(t) − ψz(t) = x1(t) − ψz(t), (18)

while the variables z2 and z3 are the virtual variables de-
termined from the relation

z2 = x2(t) − α1 (z1) , (19)

z3 = x3(t) − α2 (z1, z2) , (20)

where α1 (z1) and α2 (z1, z2) are the virtual controls in-
troduced in the first and second steps. Differentiating (18)
with respect to time and using (17a) and (19), we obtain

ż1 = ẋ1(t) − ψ̇z(t) = x2(t) − ψ̇z(t)
= z2 + α1 (z1) − ψ̇z(t). (21)

Then the first Lyapunov function is defined as

V1 (z1) =
1
2
z2
1 . (22)

The derivative of the first Lyapunov function takes the
form

V̇1 (z1) = z1ż1. (23)

Substituting (21) into (23), we get

V̇1 (z1) = z1

[
α1 (z1) − ψ̇z(t)

]
+ z1z2. (24)

From (24) it follows that the virtual control α1 (z1) is

−k1z1 = α1 (z1) − ψ̇z(t). (25)

Transforming (25) leads to

α1 (z1) = −k1z1 + ψ̇z(t). (26)

Substituting (26) into (24), we get the formula for the
first derivative of the Lyapunov function in this step,

V̇1 (z1) = −k1z
2
1 + z1z2. (27)

Comparing Eqns. (23) and (27) yields the formula for the
first derivative of the newly introduced variable z1,

ż1 = −k1z1 + z2. (28)

The derivative α̇1 (z1) for the next design step is

α̇1(z1) =
∂α1

∂z1
ż1 +

∂α1

∂ψ̇z
ψ̈z(t). (29)

From (29) and (26) we see that

α̇1(z1) = −k1 (−k1z1 + z2) + ψ̈z(t), (30)

which is the virtual control derivative in Step 1.
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Step 2.

The derivative of the second variable is determined
from (19) and (20),

ż2 = ẋ2(t) − α̇1(z1) (31)

= − 1
T
HN (x2(t)) + x3(t) − α̇1(z1).

Taking into account (20), (31) becomes

ż2 = − 1
T
HN (x2(t)) + z3 + α2 (z1, z2) − α̇1(z1). (32)

The second Lyapunov function takes the form

V2 (z1, z2) = V1 (z1) +
1
2
z2
2 . (33)

The time derivative of V2 along the solution (32) is

V̇2 (z1, z2) = −k1z
2
1 + z1z2 + z2ż2. (34)

Substituting (32) into (34), we get

V̇2(z1, z2) = −k1z
2
1 + z2

[
z1 − 1

T
HN (x2(t)) (35)

+ α2(z1, z2) − α̇1(z1)
]

+ z2z3.

From the second derivative given by (35), the virtual con-
trol is determined as

α2 (z1, z2) = −k2z2 − z1 +
1
T
HN (x2(t))

+ α̇1(z1). (36)

Substituting the obtained virtual control rule (36) into
(35), we obtain the second derivative of the Lyapunov
function,

V̇2 (z1, z2) = −k1z
2
1 − k2z

2
2 + z2z3. (37)

Step 3.

The derivative of the third variable is determined
from (20) and (17c),

ż3 = ẋ3(t) − α̇2(z1, z2) (38)

= − 1
TR

x3(t) +
KR

TR
u(t) − α̇2(z1, z2).

The third Lyapunov function and its time derivative along
the solution (38) take the form

V3 (z1, z2, z3) = V2 (z1, z2) +
1
2
z2
3 , (39)

V̇3 (z1, z2, z3) = −k1z
2
1 − k2z

2
2 + z2z3 + z3ż3

= −k1z
2
1 − k2z

2
2 + z3

[
z2 − 1

TR
x3(t)

+
KR

TR
u(t) − α̇2(z1, z2)

]
. (40)

From the third derivative given by (40), the control is
determined as

u(t)=
TR
KR

(
− k3z3+

1
TR

x3(t)+α̇2(z1, z2)−z2
)
, (41)

where the time derivative α̇2 (z1, z2) is described by

α̇2(z1, z2) = −k2ż2 − ż1 +
1
T
ḢN (x2(t)) + α̈1, (42)

α1(z1) = −k1(−k1ż1 + ż2) +
...
ψz(t) (43)

ḢN (x2(t)) = 3
α

β
x2

2ẋ2 + ẋ2. (44)

Substituting the obtained control rule (41) into (40), we
deduce the final form the Lyapunov function derivative,

V̇3 (z1, z2, z3) = −k1z
2
1 − k2z

2
2 − k3z

2
3 , (45)

which is negative definite for k1, k2, k3 > 0. The para-
meters k1, k2 and k3 of the control rule derived using the
backstepping method and given by (41) are tuned using
the genetic algorithm described in Section 4.

Version B

The second version of the control rules for the nonlin-
ear controller was designed using the mathematical ship
model given by the full form of Eqn. (1), including the
steering gear dynamics equation (14). The ship motion
state equations used for determining the nonlinear control
have the following form:

ẋ1(t) = x2(t), (46a)

ẋ2(t) = x3(t), (46b)

ẋ3(t) = −bH (x2(t)) − ax3(t) + x4(t), (46c)

ẋ4(t) = − 1
TR

x4(t) +
KR

TR
u(t), (46d)

whereH(x2(t)) = αx2(t)+βx3
2(t) is the nonlinear func-

tion, x4(t) = δ(t) is the rudder angle and u(t) is the con-
trolling input.

Step 1.

In the first step the following new state variables are intro-
duced: z1, which represents the minimised course error,
z2, which is the stabilised angular speed of the ship ψ̇(t),
z3, which refers to the acceleration, and z4, which refers
to the rudder angle. In the system examined here, the new
state variables are defined by the following equations:

z1 = eψ(t) = x1(t) − ψz(t), (47)

z2 = x2(t) − α1(z1), (48)

z3 = x3(t) − α2(z1, z2), (49)

z4 = x4(t) − α3(z1, z2, z3), (50)

where ψz(t) is the set ship course, and α1(z1), α2(z1, z2),
α3(z1, z2, z3) are stabilising functions. The dynamic
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equation of the sub-system designed in the first step is
given by the derivative of (47) as

ż1 = z2 + α1(z1) − ψ̇z(t), (51)

where α1 is the first stabilising function, the role of which
is the stabilisation of Eqn. (51) with respect to the Lya-
punov function

V1(z1) =
1
2
z2
1 . (52)

The derivative of the Lyapunov function takes the
form

V̇1(z1) = z1ż1 = z1[α1 − ψ̇z(t)] + z1z2. (53)

The stabilising function α1(z1) should be selected in such
a way as to guarantee the convergence z1 → 0. In
the present analysis, the following form of the stabilising
function was assumed:

α1(z1) = −k1z1 + ψ̇z(t). (54)

Finally, the derivative of the Lyapunov function for
the first sub-system is defined by

V̇1(z1) = −k1z
2
1 + z1z2. (55)

Substituting (54) into (51) gives

ż1 = −k1z1 + z2, (56)

where k1 > 0 is the tuned parameter.

Step 2.

The dynamic characteristic equation of the sub-system de-
signed in the second step is given by the derivative deter-
mined from (48),

ż2 = z3 + α2(z1, z2) − α̇1(z1), (57)

where α2(z1, z2) is the second stabilising function. The
derivative of the first stabilising function α̇1(z1) takes the
form

α̇1(z1) =
∂α1

∂z1
ż1 +

∂α1

∂ψ̇z
ψ̈z(t), (58)

and, after determining components,

α̇1(z1) = −k1 (−k1z1 + z2) + ψ̈z(t). (59)

The second Lyapunov function is defined as

V2 (z1, z2) = V1 (z1) +
1
2
z2
2 , (60)

and its derivative is

V̇2(z1, z2) = V̇1(z1) + z2ż2

= −k1z
2
1 + z2

[
z1 + α2(z1, z2) − α̇1(z1)

]

+ z2z3. (61)

In (61) a substitution was made to retain the negative def-
initeness of the derivative V̇2(z1, z2). Its form is the fol-
lowing:

−k1z2 = z1 + α2(z1, z2) − α̇1(z1). (62)

The obtained relation (62) allows the equation defining the
second stabilising function α2(z1, z2) to be determined as

α2(z1, z2) = −k2z2 − z1 + α̇1(z1). (63)

Finally, the derivative of the Lyapunov function for
the second sub-system is defined by

V̇2(z1, z2) = −k1z
2
1 − k2z

2
2 + z2z3. (64)

Substituting the relation (63) into (57), we obtain

ż2 = −k2z2 − z1 + z3 (65)

where k2 > 0 is the tuned parameter.

Step 3.

From (49) and (46c) we obtain the following dynamics
equation for the third sub-system:

ż3 = −bH (x2(t)) − ax3(t) + z4

+ α3(z1, z2, z3) − α̇2(z1, z2), (66)

where the time derivative of the function α2 is

α̇2(z1, z2) =
δα2

δz1
ż1 +

δα2

δz2
ż2 +

δα2

δα̇1
α̈1(z1) (67)

= −ż1 − k2ż2 + α̈1(z1)

= (k2 − 1)ż1 − (k1 + k2)ż2 +
...
ψz(t).

The Lyapunov function for the third sub-system has
the form

V3(z1, z2, z3) = V2(z1, z2) +
1
2
z2
3 , (68)

and its derivative, determined from the mathematical
model of the ship (5), is given by

V̇3(z1, z2, z3) = V̇2(z1, z2) + z3ż3

= −k1z
2
1 − k2z

2
2 + z3

[
z2 − bH (x2(t))

− ax3(t) + α3(z1, z2, z3)

− α̇2(z1, z2)
]

+ z3z4. (69)

In the obtained equation for the Lyapunov function
derivative (69), the following substitution for the term in
the square brackets was made:

−k3z3 = z2 − bH (x2(t)) − ax3

+ α3(z1, z2, z3) − α̇2(z1, z2), (70)
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from which a stable rule of virtual control α3 is obtained,

α3(z1, z2, z3) = bH(x2(t)) + ax3(t) + α̇2(z1, z2)
− k3z3 − z2. (71)

Step 4.

From (50) and (46d) we obtain the dynamics equation for
the fourth sub-system,

ż4 = − 1
TR

x4(t) +
KR

TR
u(t) − α3(z1, z2, z3), (72)

where

α̇3(z1, z2) = bḢ(x2(t)) + aẋ3(t) + α̈2(z1, z2)
− k3ż3 − ż2

= b(αẋ2(t) + 3βx2
2(t)ẋ2(t)) + aẋ3(t)

+ (−k3
1 + 2k1 + k2)ż1

+ (k2
1 − 1 + k1k2 + k2

2 − 2)ż2
− (k1 + k2 + k3)ż3 + ψ(4)

z (t)
− k3ż3 − ż2, (73)

The Lyapunov function for the third sub-system has
the form

V4(z1, z2, z3, z4) = V3(z1, z2, z3) +
1
2
z2
4 , (74)

and its derivative is given by

V̇4(z1, z2, z3)
= −k1z

2
1−k2z

2
2−k3z

2
3

+ z4

[
z3− 1

TR
x4(t)+

KR

TR
u(t)−α̇3(z1, z2, z3)

]
. (75)

In the obtained equation for the Lyapunov function
derivative (75), the following substitution for the term in
the square brackets was made:

−k4z4 = z3 − 1
TR

x4(t) +
KR

TR
u(t)

− α̇3(z1, z2, z3), (76)

from which a stable rule of control is obtained for u(t) in
the system of new variables,

u(t)=
TR
KR

( 1
TR

x4(t)+α̇3(z1, z2, z3)−k4z4 − z3

)
. (77)

For the above control u(t), the Lyapunov function is
positive definite and its derivative takes negative values
for each variable z1 �= 0, z2 �= 0, z3 �= 0, z4 �= 0. Now,
the time derivative V̇4(z1, z2, z3, z4) takes the final form

V̇4(z1, z2, z3, z4) = −k1z
2
1 − k2z

2
2 − k3z

2
3 − k4z

2
4 . (78)

The above analysis was performed in a limited range tak-
ing into account the presence of a nonlinear device, which
was the steering gear.

4. Parameters of Nonlinear Controllers

The process of optimising the parameters for the derived
control rules of the nonlinear controllers given by (41)
and (77) was performed using genetic algorithms, which
have recently gained the status of one of the most popu-
lar optimisation methods (Fleming and Purshiuse, 2002;
Goldberg, 1989; Michalewicz, 1996). Figure 3 shows
the structure of the genetic algorithm used in the present
analysis to tune the parameters of the examined ship
course controllers.

 Generating initial
population

Decoding

 Simulation
and

evaluation cost

i < size_pop
Yes

Selection

 Crossover

Mutation

j < max_gen

No

Yes

No

End
 

Fig. 3. Block diagram of the operations performed by
a genetic algorithm.

The tuning program works until stopping conditions
(i.e. the ones which yield quitting the main loop) are met.
Two types of such conditions are possible. The first one
consists in limiting the maximum number of generations
in the optimisation process, while in the second one the al-
gorithm checks whether the newly generated populations
improve considerably the previously obtained solutions.
The entire process is repeated until a maximum number
of generations is reached. In the examined case the max-
imum number of generations was equal to 100. Based on
the experience gained in earlier investigations, this num-
ber was assumed satisfactory. Particular steps of operation
of the genetic algorithm are described below.
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Creating the initial population. In order to determine
the initial population, the chromosomes are generated ran-
domly using the bit-by-bit method. The length of the chro-
mosome depends on the number of the parameters to be
coded, and on their accuracy n, according to the formula

(kmax − kmin)10ni ≤ 2mi − 1, (79)

where ni is the number of significant decimal places defin-
ing the accuracy of the parameter, and mi denotes the
length of the code sequence for the coded parameter.

Decoding the parameters of the controller. From the
chromosome, successive sequences of bits are extracted
that correspond to the coded parameters. The decimal
value for each parameter is calculated using the follow-
ing formula:

k = kmin

+ decimal (1010 . . .0112)
(kmax − kmin)

2mi − 1
, (80)

where decimal(1010 . . .0112) is equal to the decimal
value of a binary chain.

Simulation and evaluation cost. The control quality of
the ship course controller was evaluated using a digitised
version of the integral performance index, having the form

JE =
1
N

N∑

i=1

(Δψi(t))
2 + λ

1
N

N∑

i=1

δ2i (t), (81)

where N is an integer number of iterations in control
simulations, λ is the scale factor (in the examined case
λ = 0.1), Δψi(t) is the i-th course error determined by
subtracting the obtained course from its set value, δi(t)
is the i-th rudder deflection angle. The genetic algorithm
minimises the value of the function (81) by minimising
both the course error Δψ and the rudder angle δ(t). The
component connected with the rudder angle is scaled to
have a magnitude similar to that of the course error.

Genetic operations. Genetic operations comprise selec-
tion, crossover, and mutation.

Selection. It is the first, out of the three genetic opera-
tors, used for generating a new population. The selection
process adopted in the algorithm for tuning course con-
troller parameters consists in selecting the chromosomes
for the parent pool, for which the areas of the roulette
fields are the biggest. The process of selecting individ-
uals for the parents pool was executed as many times as
there are population dimensions (Goldberg, 1989).

Crossover. Crossover is a process in which new individ-
uals are generated using a group of individuals selected
from the previous population. The process of crossover is
not performed on all pairs in the population and this de-
pends on the adopted probability of crossover pci. If it is

higher than the earlier assumed probability of crossover
pc, i.e. pci > pc, then the crossing is not executed for this
pair and the chromosomes are passed unchanged on to the
next population. Crossing is only executed on those pairs
of chromosomes for which the randomly generated prob-
ability of crosover pci is lower than the assumed value,
pci < pc (Goldberg, 1989).

Mutation. Mutation is performed on bits based on the
assumed probability of mutation, pm. For each bit in
the set of the chromosomes obtained from the process of
crossover, a probability of mutation pmi is generated. If
a bit with the probability of mutation lower than the as-
sumed value, pmi < pm , exists in the population, then its
mutation is performed, i.e. its value is changed from 0 to
1 or from 1 to 0. All bits in all chromosomes and in the
entire population have equal chances to undergo mutation
(Michalewicz, 1996).

5. Simulation Tests

In order to evaluate the quality of the derived algorithms of
nonlinear control, simulation tests were performed using
Matlab/Simulink. Moreover, to compare the obtained re-
sults, additional tests were performed on a classical, con-
ventional PD controller with the following control rule:

δz(t) = KPΔψ(t) −KDψ̇(t), (82)

where Δψ(t) is the course error defined by the formula
Δψ(t) = ψz(t) − ψ(t), and ψz(t) is the set ship course.
The settings of the PD controller were chosen using the
genetic algorithm described in Section 4.

The simulation tests were performed in the configu-
ration shown in Fig. 4. In the window “Ship” the equa-
tions of the ship dynamic characteristics, given by (1),
were modelled. The model was complemented by the dy-
namics of the steering gear, which is shown in Fig. 2. In
the window “Course controller” the examined ship course
controllers, given by (41), (77) and (82), were placed.

Tuning the course controller parameters employing
the genetic algorithm made use of the ship dynamic char-
acteristic equations, with the parameters set for the bal-
lasting state. The set course was rapidly changed by 40
[deg]. The quality coefficient, given by (81), was deter-
mined from test trials performed within 500 [s] with a
sampling period of 0.01 [s].

Tuning the parameters of the linear PD controller

First, the genetic algorithm was applied to tune the pa-
rameters of the PD controller described by (82). Gener-
ally, the length of a single chromosome depends on the
required accuracy (81). The total length of the PD con-
troller chromosome, in which the parametersKP andKD

were coded, was equal to 24 genes. The parameter KP ,
determined with the accuracy up to two decimal places,



82 A. Witkowska et al.

was coded on 10 bits, while the parameter KD, deter-
mined with the accuracy up to one decimal place, was
coded on 14 positions.

δz(t) ψ(t)Course
controller

ψ
z
(t) Steering

gear
Ship

Dynamics

δ(t)

Ship

 

Fig. 4. Block diagram of the examined control system.

The initial populations of the coefficients KP and
KD were generated at random. On the basis of prelim-
inary experiments with different values of the crossover
probability, for the simulation tests it was assumed that the
probability of crossover was pc = 0.60 and the probabil-
ity of mutation was pm = 0.01. The population consisted
of 50 chromosomes. Ten tests of tuning the PD controller
parameters using the genetic algorithm were performed,
and their results are collected in Table 1. The maximum
number of generations for each test was equal to 100. If,
during the learning process, the value of the performance
index JE was on the same level, up to the first digit place
within 5 tests, the process was stopped. The minimum
value of the performance index was obtained for Test 8.

Table 1. Results of tuning the settings for the PD controller
(82) using the genetic algorithm, N—the number
of generations after which the learning process has
stopped, JE—the performance index, see (81).

Test no. N Kp KD JE

1 100 5.62 480.8 312.5536

2 100 5.62 480.8 312.5536

3 43 6.88 568.2 312.3128

4 100 6.95 578.1 312.3168

5 100 7.53 615.7 312.5365

6 57 5.92 499.9 312.4398

7 32 6.23 519.8 312.3704

8 50 6.67 554.1 312.3055

9 34 6.38 534.9 312.3331

10 11 6.53 544.0 312.3186

Tuning the parameters of a nonlinear controller
(Version A—3 parameters)

The total length of the chromosome for the nonlinear con-
troller with three parameters k1, k2 and k3 (Version A)
was equal to 32 genes. The parameter k1 was determined
with an accuracy of two decimal places and coded on 9
bits, while k2, determined with an accuracy of one dec-
imal place, was coded on 13 bits, and the parameter k3,
determined with an accuracy of four decimal places, was
coded on 10 bits.

The parameters of the genetic algorithm were the
same as for tuning the PD controller, i.e. the probability
of crossover was pc = 0.60, and the probability of muta-
tion was pm = 0.01. The results of tuning the parameters
of the nonlinear controller with three tuned parameters are
collected in Table 2. In this case identical minimum values
of the performance index were obtained in three tests. The
process of tuning parameters for the nonlinear controller
with three parameters is shown in Fig. 5.

Table 2. Results of tuning the settings for the nonlinear
controller (41) using the genetic algorithm.

Test no. N k1 k2 k3 JE

1 31 190.94 746.8 0.0117 246.4789

2 32 383.33 1983.0 0.0313 238.6976

3 33 199.95 1871.0 0.0176 234.8573

4 16 467.43 1788.1 0.0235 233.9404

5 19 436.07 1973.3 0.0196 232.3283

6 19 436.07 1973.3 0.0196 232.3283

7 55 460.01 1996.3 0.0196 232.3341

8 19 436.07 1973.3 0.0196 232.3283

9 71 90.58 1499.9 0.0941 283.6504

10 59 451.26 1995.6 0.0196 232.3300

Tuning the parameters of a nonlinear controller
(Version B—4 parameters)

The total length of the chromosome for the nonlinear con-
troller with four parameters k1, k2 and k3, k4 was equal
to 42 genes. The parameter k1 was determined with an
accuracy of two decimal places and coded on 9 bits, while
k2, determined with an accuracy of one decimal place,
was coded on 13 bits, and the parameters k3 and k4, de-
termined with an accuracy of four decimal places, were
coded on 10 bits.

Table 3. Results of tuning the settings for the nonlinear
controller (77) using the genetic algorithm.

Test
no. N k1 k2 k3 k4 JE

1 10 118.98 535.2 0.1260 0.2598 234.5242

2 26 145.59 812.0 0.0944 0.5512 234.6294

3 71 125.24 605.9 0.0079 0.5118 234.5425

4 48 56.75 121.5 0.1653 0.4252 234.0173

5 26 145.59 812.0 0.0945 0.5512 234.629

6 52 54.79 115.8 0.0078 0.7716 233.9628

7 13 90.02 311.9 0.0315 0.9685 234.3603

8 58 131.89 677.4 0.0157 0.8976 234.5729

9 32 131.50 629.5 0.2677 0.2441 234.5972

10 31 197.26 717.507 1.0394 0.48819 234.9652
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(a) 

(b) 

    (c) 

     (d) 

Fig. 5. Process of tuning parameters for the nonlinear controller
with three parameters: (a) the performance index for the
best controller, (b) the parameter k1, (c) the parameter
k2, (d) the parameter k3.

The probability of crossover was pc = 0.60, and the
probability of mutation was pm = 0.01. The obtained
parameters of the nonlinear controller with four tuned pa-
rameters are collected in Table 3. The minimum level of
the performance index was obtained in the sixth sample.

Comparing the results of tuning

The best values of the tuned parameters for the examined
controllers were collected in Tables 4 and 5. These are the
parameter values at which the minimum values of the per-
formance index were obtained when tuning with the use of
the genetic algorithm. Further investigations consisted in
comparing the results of the tuned PD controller with the
nonlinear controllers having three and four parameters.
The investigations focused on the effect of changes in sys-
tem parameters on the quality of control. All controllers
were tuned for the ship dynamic characteristic equations

Table 4. Parameters estimated for the PD controller.

KP KD

PD 6.67 554.1

Table 5. Parameters estimated for nonlinear controllers.

k1 k2 k3 k4

Version A 436.07 1973.3 0.0196 –

Version B 54.79 115.8 0.0078 0.7716

corresponding to the ballasting state, but in this part of the
analysis they were used for controlling the ship motion
with two different states of the load: ballasting and the full
load. Figure 6 presents the results of the simulation tests
performed with two controllers: the conventional linear
PD controller (82), the results of which are marked with a
dashed line, and the nonlinear controller with three para-
meters (41), marked with a solid line.

 

Fig. 6. Comparison of simulation results with tuned
controllers: PD (dashed line), a nonlinear con-
troller with four parameters (solid line).

In the first 1000 [s] of the tests, the mathematical
model of the ship made use of the parameters correspond-
ing to the ballasting state, and during the remaining time
the full load parameters were applied. The time-histories
shown in Figs. 6 and 7 reveal that the use of the PD con-
troller gave better results. The PD controller turned out
to be less sensitive to changes of system parameters. It
is especially noticeable in the time-history part revealing
the maximum over-control (Fig. 6 (a)). Figure 7 shows a
comparison of the results obtained in the simulation tests
for two nonlinear controllers: with four and three parame-
ters. The results obtained for the two examined nonlinear
controllers are very similar, but slightly better character-
istics are recorded for the four-parameter controller. The
exact values of the time performance indices, determined
from the step response of all three controllers for two load
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Table 6. Estimated values of time performance indices.

Ballasting state Full load state

tn Mp tR Jc tn Mp tR Jc

[s] [%] [s] [–] [s] [%] [s] [–]

PD 170.68 0.81 308.15 268.6663 148.34 3.29 508.38 156.2852

Version A 107.47 3.26 404.19 233.9418 100.7 60.63 708.52 267.6443

Version B 131.71 0.18 261.77 233.9747 115.09 18.00 439.77 154.307

 

Fig. 7. Comparison of simulation results with tuned
controllers: a nonlinear controller with four
parameters (dashed line), a nonlinear con-
troller with three parameters (solid line).

states, are collected in Table 6, where the following sym-
bols are used: tn—the rise time, calculated as the time
interval during which the output signal has changed from
10% to 90% of the set value, yset, Mp—maximum over-
regulation, expressed in percents and calculated as Mp =
100% (ymax − yset)yset, tR—the time of control, calcu-
lated as the time interval from zero to the instant at which
the controlled (output) signal reaches steadily the 1% ac-
curacy zone of the set value, Jc—the integral performance
index calculated as

Jc =
1
N

N∑

i=1

(Δψi)
2 + λ

1
N

N∑

i=1

δ2i , (83)

where Δψi = ψzi − ψi is the error of control, ψzi is the
set course, ψi is the real course, δi is the rudder blade
deflection, and λ is a calibrating coefficient, in simulations
taken as λ = 0.1.

6. Conclusions

The article discusses control rules derived for nonlinear
controllers designed using the backstepping method and
used for controlling the ship motion on the course, for

the system shown in Fig. 4. The backstepping method is
used for designing systems that do not reveal nonlineari-
ties with saturations. Nonlinear controllers designed with
the aid of the backstepping method require tuning their
parameters to the optimal values. The use of genetic algo-
rithms for this purpose produced excellent results. Sample
results illustrating the process of tuning the parameters for
the nonlinear controller were shown in Fig. 5. The para-
meters were tuned in the control system taking into ac-
count the presence of the steering gear and the dynamic
characteristics of the ship corresponding to the ballasting
state.

Moreover, in order to obtain reference data for com-
parison, a conventional PD controller was examined,
which was also tuned using genetic algorithms for the
same conditions as in the case of the nonlinear controllers.
The quality of operation of the examined controllers was
evaluated based on tests checking the effect of ship para-
meter changes. Two states of the ship load were analysed,
which were the ballasting and the full load. Step responses
were examined to test the set ship course change by 40
[deg]. As is shown in Table 6, the tests revealed that the
obtained results are comparable for all controllers when
the ship was in the ballasting state; slightly better results
were obtained for the backstepping method. When the
ship was in the full load state, better results were produced
by the PD controller than by the nonlinear controllers de-
signed using the backstepping method. The reason for this
regularity lies in the fact that the parameters of the con-
trollers were only tuned for the ballasting state and then
they were used unaltered for the full load state, which was
the source of some error. It turned out that the backstep-
ping method is more sensitive to changes in parameters
than the PD controller, which seems to be more robust. In
particular, it is the controller with three parameters (41)
which turned out to be the most sensitive, as it is based on
a simplified and thus inaccurate model of the ship, mak-
ing use of a smaller number of equations. Better results
were obtained using the exact model. The backstepping
method requires precise information on the model of the
examined system and its varying parameters, which is ex-
tremely difficult in practical applications. Therefore, it is
necessary to perform the analysis of the model parameters
using adaptation techniques, which will be investigated in
the near future.
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