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A BACKWARD PARTICLE INTERPRETATION
OF FEYNMAN-KAC FORMULAE

Pierre Del Moral1, Arnaud Doucet2, 3 and Sumeetpal S. Singh4

Abstract. We design a particle interpretation of Feynman-Kac measures on path spaces based on
a backward Markovian representation combined with a traditional mean field particle interpretation
of the flow of their final time marginals. In contrast to traditional genealogical tree based models,
these new particle algorithms can be used to compute normalized additive functionals “on-the-fly”
as well as their limiting occupation measures with a given precision degree that does not depend on
the final time horizon. We provide uniform convergence results w.r.t. the time horizon parameter as
well as functional central limit theorems and exponential concentration estimates, yielding what seems
to be the first results of this type for this class of models. We also illustrate these results in the
context of filtering of hidden Markov models, as well as in computational physics and imaginary time
Schroedinger type partial differential equations, with a special interest in the numerical approximation
of the invariant measure associated to h-processes.
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1. Introduction

Let (En)n≥0 be a sequence of measurable spaces equipped with some σ-fields (En)n≥0, and we let P(En) be
the set of all probability measures over the set En. We let Xn be a Markov chain with Markov transition Mn

on En, and we consider a sequence of (0, 1]-valued potential functions Gn on the set En. The Feynman-Kac
path measure associated with the pairs (Mn, Gn) is the probability measure Qn on the product state space
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E[0,n] :=
∏

0≤p≤n Ep defined by the following formula

dQn :=
1
Zn

⎧⎨⎩ ∏
0≤p<n

Gp(Xp)

⎫⎬⎭ dPn (1.1)

where Zn is a normalizing constant and Pn is the distribution of the paths (Xp)0≤p≤n of the Markov process Xp

from the origin p = 0, up to the current time p = n. We also denote by Γn = Zn Qn the unnormalized version
of (1.1). In this article we design a particle interpretation of Qn based on a backward Markovian representation
combined with a traditional mean field particle interpretation of the flow of their final time marginals.

These distributions on path spaces arise in a variety of application areas, including nonlinear filtering,
Bayesian inference, branching processes in biology, particle absorption problems in physics, and many other
instances. We refer the reader to the books [7,16] and references therein. In filtering problems, we are given a
Markov process (Xn, Yn) taking values in some product space (En × E′

n), with transition probabilities of the
following form

P ((Xn, Yn) ∈ d(xn, yn)|(Xn−1, Yn−1) = (xn−1, yn−1)) = Mn(xn−1, dxn) gn(xn, yn) λn(dyn)

with some density functions gn w.r.t. some reference measure λn on E′
n. In this model (Xn)n≥0 is unobserved, or

the hidden Markov process, while only (Yn)n≥0 is observed. Given a series of observations Y0 = y0, . . . , Yn = yn,
and setting Gn := gn(., yn) in (1.1) we find that

Qn = Law((X0, . . . , Xn) | ∀0 ≤ p < n, Yp = yp).

Feynman-Kac models also play a central role in the numerical analysis of certain partial differential equations. It
offers a natural way to solve these functional integral models by simulating random paths of stochastic processes.
These Feynman-Kac models were originally presented by Kac in 1949 [21] for continuous time processes. Since
then they have also been used in molecular chemistry and computational physics to calculate the ground state
energy of some Hamiltonian operators associated with some potential function V describing the energy of a
molecular configuration (see for instance [3,10,17,28], and references therein). To better connect these partial
differential equation models with (1.1), let us assume that Mn(xn−1, dxn) is the Markov probability transition
Xn = xn � Xn+1 = xn+1 coming from a time discretization Xn = X ′

tn
of a continuous time E-valued Markov

process X ′
t. Let the time mesh be (tn)n≥0 with time step (tn − tn−1) = Δt. For potential functions of the form

Gn = e−V Δt, the measures Qn �Δt→0 Qtn represents the time discretization of the following distribution:

dQt =
1
Zt

exp
(
−
∫ t

0

V (X ′
s) ds

)
dPX′

t (1.2)

where PX′
t stands for the distribution of the random paths (X ′

s)0≤s≤t with a given infinitesimal generator L.
The errors introduced by the discretization of time discussed above are well understood for regular models, we
refer the interested reader to [12,14,24,25] in the context of nonlinear filtering. The marginal distributions γt

at time t of the unnormalized measures Zt dQt are the solution of the so-called imaginary time Schroedinger
equation, given in weak formulations5 on every sufficiently regular function f by

d
dt

γt(f) := γt(LV (f)) with LV = L− V. (1.3)

5Consult the last paragraph of this section for a statement of the notation used in this article.
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Another way to see how these imaginary time Schroedinger equations fits into the above abstract setting is
to observe that the semigroup (PV

t )t≥0 of the above evolution equation has the following Feynman-Kac path-
integral representation

γt(f) = γ0(PV
t (f)) with PV

t (f)(x) = E

(
f(X ′

t) exp
{
−
∫ t

0

V (X ′
s)ds

}
|X ′

0 = x

)
.

The above formulation is called the probabilistic solution to the evolution equation (1.3), and the above func-
tional representation is customarily called the Feynman-Kac formula, in reference with the pioneering works
by these two researchers on this subject in the beginning of the fifties. We let E = Rd, and L be a second order
elliptic differential operator written as

L(f) =
1
2

d∑
i,j=1

ai,j∂xi∂xj (f) +
d∑

i=1

bi∂xi(f)

for C∞ functions a, b and the matrix (ai,j(x)) is non-negative definite and invertible at each x. In this situation,
the Markov process X ′

t with infinitesimal operator L is given by the following Itô stochastic differential equations:

dX ′
t = b(X ′

t)dt + σ(X ′
t)dBt (1.4)

where Bt is a d-dimensional Brownian motion and σ = (σi,j)1≤i,j≤d is chosen so that σσT = a. We can also con-
sider diffusion models on a d-dimensional smooth compact manifold E. In this situation, the elliptic differential
operator is again written as above in a given chart, and ∂xi is the differential operator w.r.t. the ith coordinate
of the underlying chart. In this context, we can also associate to the infinitesimal generator L a Markov process
with continuous trajectories (see for instance the book of Émery [18], and Ikeda and Watanabe [20]).

Continuous time filtering problems are also connected in a natural way to stochastic partial differential
equations. In this situation, the signal X ′

t is given by a time homogeneous Markov process of the form (1.4),
and the observation process is an Rd′

-valued process defined by

dYt = H(X ′
t) dt + σ dVt (1.5)

where Vt is a d′-vector standard Wiener process independent of the signal, and H is some regular function from
Rd into Rd′

. We let tn, n ≥ 0, be a given time mesh with t0 = 0 and tn ≤ tn+1. Also let Xn := X ′
[tn,tn+1]

be
the Markov chain taking values at each time n in the space En = C([tn, tn+1], Rd) of continuous paths from
[tn, tn+1] into Rd. Given the observation path Ys, 0 ≤ s ≤ tn, we define the “random” potential functions Gn

on En by setting for any xn = (x′
n(s))tn≤s≤tn+1 ∈ En,

Gn(xn) = exp
(∫ tn+1

tn

H�(x′
n(s)) dYs − 1

2

∫ tn

tn

H�(x′
n(s))H(x′

n(s)) ds

)
.

In the above definition (.)� stands for the transposition operator. The Kallianpur-Striebel formula (see for
instance [22]) states that

Qn = Law((X ′
[0,tn+1]

) | Ytn) (1.6)

where Ytn = σ(Ys, s ≤ tn) represents the sigma-field generated by the observation process. It is well known
that the marginal ηtn := Law(X ′

tn
| Ytn) of Qn w.r.t. time tn is solution of the Kushner-Stratonovich stochastic

partial differential equation defined below for sufficiently regular test functions f on Rd

ηtn(f) = ν0(f) +
∫ tn

0

ηs(L(f))ds +
∫ tn

0

[ηs(H�f)− ηs(H�)ηs(f)] (dYs − ηs(H)ds) . (1.7)
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In the above displayed formula ν0 stands for the initial distribution of the random state X ′
0. To obtain a

computationally feasible solution, a traditional discrete time approximation of the above conditional measures
consists of selecting a sequence of meshes (tn+1− tn) = Δ > 0 and an Euler type approximation

(
X ′,Δ

tn
, Y Δ

tn

)
of

the pair diffusion processes (X ′
t, Yt) given in (1.4) and (1.5). If we set in (1.1), Xn = X ′,Δ

tn
and for any xn ∈ Rd

Gn(xn) := exp
(

H�(xn)
(
Y Δ

tn+1
− Y Δ

tn

)
− 1

2
H�(xn)H(x′

tn
)Δ
)

then, we find that
Qn = Law((X ′,Δ

0 , . . . , X ′,Δ
tn+1

) | Y Δ
0 , . . . , Y Δ

tn
).

For further details on these approximation models, we refer the reader to [6]. The robust version of the above
continuous time filtering problem has the same form as (1.2), for some non homogeneous potential functions Vt

that depends on the observation process. For further details on this model, we refer the reader to [9].
The mean field particle approximation models associated with the continuous time flow of measures (1.3), (1.6)

and (1.7) are discussed in [6,9,10] (see also [3,17,28]). These interacting stochastic models can be interpreted in
different ways depending on the application domain. In advanced signal processing, these stochastic models are
called particle filters or sequential Monte Carlo methods. In molecular chemistry, these evolutionary type models
are often interpreted as a quantum or diffusion Monte Carlo model. In this context, particles often are referred
as walkers, to distinguish the virtual particle-like objects to physical particles, like electrons of atoms. The
numerical approximation of the full path-space measures Qt, and their discrete time versions defined in (1.1), is
clearly much more involved, mainly because it requires the use of stochastic analysis tools for Markov processes
on path spaces. A standard strategy is to keep track of the particle ancestral information in the mean field
particle interpretation of (1.3). The corresponding path-particle approximation model coincides with that of the
traditional genealogical tree based particle approximation model (see for instance [7], and references therein).

In this article, we design an original numerical approximation scheme for the discrete time distributions Qn

based on the simulation of a sequence of mean field interacting particle systems. In contrast to the more
traditional genealogical tree based approximations (see for instance [7]), the particle model presented in this
article can approximate additive functionals of the form

Fn(x0, . . . , xn) =
1

(n + 1)

∑
0≤p≤n

fp(xp), (1.8)

where ‖fp‖ ≤ 1, with an asymptotic variance which decreases to zero with the time horizon n. Moreover this
computation can be done “on-the-fly”. We now summarize our main results.

Let QN
n denote the N -particle approximation of Qn. (The precision of the algorithm corresponds to the

size N of the particle system.) Under some appropriate regularity properties, we can calibrate the performance
of the model using the following uniform and non asymptotic Gaussian concentration estimate

1
N

log sup
n≥0

P

(∣∣[QN
n −Qn](Fn)

∣∣ ≥ b√
N

+ ε

)
≤ −ε2/(2b2)

for any ε > 0, and for some finite constant b < ∞. We also prove that the asymptotic variance of
√

N [QN
n −

Qn](Fn) decreases to zero at rate 1/n. In newly obtained results [13], we have established the following non
asymptotic bias and variance bounds

sup
n≥0

∣∣E (QN
n (Fn)

)−Qn(Fn)
∣∣ ≤ c

N
and ∀n ≥ 0 E

([
QN

n (Fn)−Qn(Fn)
]2) ≤ c

N

(
1

n + 1
+

1
N

)
(1.9)

where c is some finite constant that does not depend on the time parameter n. Thus, for any large time horizon
n ≥ N , the above r.h.s. mean square error is of order 1/N2.
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In the context of filtering, QN
n corresponds to the sequential Monte Carlo approximation of the forward

filtering backward smoothing recursion [19]. Recently, another theoretical study of this problem was undertaken
by [15] – our results complement theirs. We provide new functional central limit theorems, non-asymptotic bias
and variance bounds (see [13]) as well as uniform exponential concentration inequalities. Additionally, we show
how the forward filtering backward smoothing estimates of additive functionals can be computed using a forward
only recursion. This has applications to online parameter estimation for non-linear non-Gaussian state-space
models [13,26].

For time homogeneous models (Mn, fn, Gn) = (M, f, G) with a lower bounded potential function G > δ, and
a M -reversible transition w.r.t. to some probability measure μ s.t. M(x, .) ∼ μ and (M(x, .)/dμ) ∈ L2(μ), it
can be established that Qn(Fn) converges to μh(f), as n→∞, with the measure μh defined below

μh(dx) :=
1

μ(hM(h))
h(x) M(h)(x) μ(dx).

In the above display, h is a positive eigenmeasure associated with the largest eigenvalue of the integral operator
Q(x, dy) = G(x)M(x, dy) on L2(μ) (see for instance Sect. 12.4 in [7]). This measure μh is in fact the invari-
ant measure of the h-process defined as the Markov chain with elementary Markov transitions Mh(x, dy) ∝
M(x, dy)h(y). As the initiated reader will have certainly noticed, the above convergence result is only valid
under some appropriate mixing conditions on the h-process. The long time behavior of these h-processes and
their connections to various applications areas of probability, analysis, geometry and partial differential equa-
tions, has been the subject of many papers for many years in applied probability. In our framework, using
elementary manipulations, the Gaussian estimate given above can be used to calibrate the convergence of the
particle estimate QN

n (Fn) towards μh(f), as the pair of parameters N and n→∞.
The rest of this article is organized as follows:
In Section 2, we describe the mean field particle models used to design the particle approximation mea-

sures QN
n . In Section 3, we state the main results presented in this article, including a functional central limit

theorem, and non asymptotic mean error bounds. Section 4 is dedicated to a key backward Markov chain rep-
resentation of the measures Qn. The analysis of our particle approximations is provided in Section 5. Sections 6
and 7 detail the proof of the two main theorems presented in Section 3. In Section 8, we provide some com-
parisons between the backward particle model discussed in this article and the more traditional genealogical
tree based particle model. In the final Section 9, we present a numerical example which is relevant for the
problem of maximum likelihood estimation of the model parameters of a Hidden Markov Model (HMM). The
gradient of the likelihood of the observed data can be computed using an Infinitesimal Perturbation Analysis
(IPA) representation recently proposed in [5], and we compare the numerical implementations of this gradient
using our backward particle model and the genealogical tree based particle model. The former is shown to have
significantly less variance when both methods are implemented with the same number of particles.

Results contained in standard probability texts such as the book of Shiryaev [29], Billingsley [2] or the books of
Stroock [30,31], are assumed and used without reference, as well are results from measure theory and elementary
functional analysis. A few results on local sampling estimates and on the fluctuations of Feynman-Kac particle
models are also needed and references for these are included. The study of any stochastic particle model often
involves the analysis of the stability properties of the semigroup associated with some limiting measure valued
equation. Instead of writing summations or integrals with respect to some density functions, these semigroups
are preferably expressed in terms of integral operators acting on measures or on test functions. This integral
operator framework is notationally lighter and of great practical value. Functional inequalities may be used
and it also enters in a natural way contraction coefficients of semigroup operators, and other related quantities.
For the convenience of the reader, we end this introduction with a summary of the notation used in the present
article, and also present some basic definitions from probability and operator semigroup theory.

We denote respectively byM(E), and B(E), the set of all finite signed measures on some measurable space
(E, E), and the Banach space of all bounded and measurable functions f equipped with the uniform norm
‖f‖. We let μ(f) =

∫
μ(dx) f(x), be the Lebesgue integral of a function f ∈ B(E), with respect to a measure
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μ ∈M(E). We recall that a bounded integral kernel M(x, dy) from a measurable space (E, E) into an auxiliary
measurable space (E′, E ′) is an operator f 
→M(f) from B(E′) into B(E) such that the functions

x 
→M(f)(x) :=
∫

E′
M(x, dy)f(y)

are E-measurable and bounded, for any f ∈ B(E′). In the above displayed formulae, dy stands for an infinitesimal
neighborhood of a point y in E′. The kernel M also generates a dual operator μ 
→ μM fromM(E) intoM(E′)
defined by (μM)(f) := μ(M(f)). A Markov kernel is a positive and bounded integral operator M with M(1) = 1.
Given a pair of bounded integral operators (M1, M2), we let (M1M2) the composition operator defined by
(M1M2)(f) = M1(M2(f)). For time homogeneous state spaces, we denote by Mm = Mm−1M = MMm−1 the
mth composition of a given bounded integral operator M , with m ≥ 1. In the context of finite state spaces,
these integral operations coincide with the traditional matrix operations on multidimensional state spaces.
Given a positive function G on E, we let ΨG : η ∈ P(E) 
→ ΨG(η) ∈ P(E) be the Bayes-Boltzmann-Gibbs
transformation defined by

ΨG(η)(dx) :=
1

η(G)
G(x) η(dx).

2. Description of the models

The numerical approximation of the path-space distributions (1.1) requires extensive calculations. The mean
field particle interpretation of these models are based on the fact that the flow of the nth time marginals ηn of
the measures Qn satisfy a nonlinear evolution equation of the following form

ηn+1(dy) =
∫

ηn(dx)Kn+1,ηn(x, dy) (2.1)

for some collection of Markov transitions Kn+1,η, indexed by the time parameter n ≥ 0 and the set of probability
measures P(En). The mean field particle interpretation of the nonlinear measure valued model (2.1) is the
EN

n -valued Markov chain
ξn =

(
ξ1
n, ξ2

n, . . . , ξN
n

) ∈ EN
n

with elementary transitions defined as

P (ξn+1 ∈ dx | ξn) =
N∏

i=1

Kn+1,ηN
n

(ξi
n, dxi) with ηN

n :=
1
N

N∑
j=1

δξj
n
. (2.2)

In the above displayed formula, dx stands for an infinitesimal neighborhood of the point x = (x1, . . . , xN ) ∈
EN

n+1. The initial system ξ0 consists of N independent and identically distributed random variables with common
law η0. We let FN

n := σ (ξ0, . . . , ξn) be the natural filtration associated with the N -particle approximation model
defined above. The resulting particle model coincides with a genetic type stochastic algorithm ξn � ξ̂n � ξn+1

with selection transitions ξn � ξ̂n and mutation transitions ξ̂n � ξn+1 dictated by the potential (or fitness)
functions Gn and the Markov transitions Mn+1.

During the selection stage ξn � ξ̂n, for every index i, with a probability εnGn(ξi
n), we set ξ̂i

n = ξi
n, otherwise

we replace ξi
n with a new individual ξ̂i

n = ξj
n randomly chosen from the whole population with a probability

proportional to Gn(ξj
n). The parameter εn ≥ 0 is a tuning parameter that must satisfy the constraint εnGn(ξi

n) ≤
1, for every 1 ≤ i ≤ N . For εn = 0, the resulting proportional selection transition corresponds to the so-called
simple genetic model. During the mutation stage, the selected particles ξ̂i

n � ξi
n+1 evolve independently

according to the Markov transitions Mn+1.
If we interpret the selection transition as a birth and death process, then arises the important notion of the

ancestral line of a current individual. More precisely, when a particle ξ̂i
n−1 −→ ξi

n evolves to a new location ξi
n,
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we can interpret ξ̂i
n−1 as the parent of ξi

n. Looking backwards in time and recalling that the particle ξ̂i
n−1 has

selected a site ξj
n−1 in the configuration at time (n − 1), we can interpret this site ξj

n−1 as the parent of ξ̂i
n−1

and therefore as the ancestor denoted ξi
n−1,n at level (n − 1) of ξi

n. Running backwards in time we may trace
the whole ancestral line

ξi
0,n ←− ξi

1,n ←− . . .←− ξi
n−1,n ←− ξi

n,n = ξi
n. (2.3)

More interestingly, the occupation measure of the corresponding N -genealogical tree model converges as N →∞
to the conditional distribution Qn. For any function Fn on the path space E[0,n], we have the following
convergence (to be stated precisely later) as N →∞,

lim
N→∞

1
N

N∑
i=1

Fn(ξi
0,n, ξi

1,n, . . . , ξi
n,n) =

∫
Qn(d(x0, . . . , xn)) Fn(x0, . . . , xn). (2.4)

This convergence result can be refined in various directions. Nevertheless, even under very favourable mixing
assumptions, the asymptotic variance σ2

n(Fn) of the above occupation measure around Qn increases quadratically
with the final time horizon n for additive functions of the form

Fn(x0, . . . , xn) =
∑

0≤p≤n

fp(xp)⇒ σ2
n(Fn) � n2 (2.5)

comprised of some collection of non negative functions fp on Ep. To be more precise, let us examine a time
homogeneous model (En, fn, Gn, Mn) = (E, f, G, M) with constant potential functions Gn = 1 and mutation
transitions M s.t. η0M = η0. For the choice of the tuning parameter ε = 0, using the asymptotic variance
formulae in [7], equation (9.13), p. 304, for any function f s.t. η0(f) = 0 and η0(f2) = 1 we prove that

σ2
n(Fn) =

∑
0≤p≤n

E

⎛⎜⎝
⎡⎣ ∑

0≤q≤n

M (q−p)+(f)(Xq)

⎤⎦2
⎞⎟⎠

with the positive part a+ = max (a, 0) and the convention M0 = Id, the identity transition. For M(x, dy) =
η0(dy), we find that

σ2
n(Fn) =

∑
0≤p≤n

E

⎛⎜⎝
⎡⎣ ∑

0≤q≤p

f(Xq)

⎤⎦2
⎞⎟⎠ = (n + 1)(n + 2)/2. (2.6)

We further assume that the Markov transitions Mn(xn−1, dxn) are absolutely continuous with respect to
some measures λn(dxn) on En and we have

(H) ∀(xn−1, xn) ∈ (En−1 × En) Hn(xn−1, xn) =
dMn(xn−1, .)

dλn
(xn) > 0.

In this situation, we have the backward decomposition formula

Qn(d(x0, . . . , xn)) = ηn(dxn) Mn(xn, d(x0, . . . , xn−1)) (2.7)

with the Markov transitionsMn defined below

Mn(xn, d(x0, . . . , xn−1)) :=
n∏

q=1

Mq,ηq−1(xq, dxq−1). (2.8)
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In the above display, Mn+1,η is the collection of Markov transitions defined for any n ≥ 0 and η ∈ P(En) by

Mn+1,η(x, dy) =
1

η (GnHn+1(., x))
Gn(y) Hn+1(y, x) η(dy). (2.9)

A detailed proof of this formula and its extended version is provided in Section 4. In a nonlinear filtering
context, equations (2.7)–(2.8) correspond to the forward filtering backward smoothing decomposition [19].

Using the representation in (2.7), one natural way to approximate Qn is to replace the measures ηn with
their N -particle approximations ηN

n . The resulting particle approximation measure, QN
n , is then

QN
n (d(x0, . . . , xn)) := ηN

n (dxn) MN
n (xn, d(x0, . . . , xn−1)) (2.10)

with the random transitions

MN
n (xn, d(x0, . . . , xn−1)) :=

n∏
q=1

Mq,ηN
q−1

(xq, dxq−1). (2.11)

At this point, it is convenient to recall that for any bounded measurable function fn on En, the measures ηn

can be written as follows

ηn(fn) :=
γn(fn)
γn(1)

with γn(fn) := E

⎛⎝fn(Xn)
∏

0≤p<n

Gp(Xp)

⎞⎠ = ηn(fn)
∏

0≤p<n

ηp(Gp). (2.12)

The multiplicative formula in the r.h.s. of (2.12) is easily checked using the fact that γn+1(1) = γn(Gn) =
ηn(Gn) γn(1). Mimicking the above formulae, we set

ΓN
n = γN

n (1)×QN
n with γN

n (1) :=
∏

0≤p<n

ηN
p (Gp) and γN

n (dx) = γN
n (1)× ηN

n (dx).

Notice that the N -particle approximation measures QN
n can be computed recursively with respect to the time

parameter. For instance, for linear functionals of the form (2.5), we have

QN
n (Fn) = ηN

n (FN
n )

with a sequence of random functions FN
n on En that can be computed “on-the-fly” according to the following

recursion
FN

n =
∑

0≤p≤n

[
Mn,ηN

n−1
. . .Mp+1,ηN

p

]
(fp) = fn + Mn,ηN

n−1
(FN

n−1)

with the initial value FN
0 = f0. In contrast to the genealogical tree based particle model (2.4), this new particle

algorithm requires N2 computations instead of N as

∀1 ≤ j ≤ N, FN
n (ξj

n) = fn(ξj
n) +

∑
1≤i≤N

Gn−1(ξi
n−1)Hn(ξi

n−1, ξ
j
n)∑

1≤i′≤N Gn−1(ξi′
n−1)Hn(ξi′

n−1, ξ
j
n)

FN
n−1(ξ

i
n−1).

An important application of this recursion is to parameter estimation for non-linear non-Gaussian state-space
models. For instance, it may be used to implement an on-line version of the Expectation-Maximization algorithm
as detailed in [23], Section 3.2. In a different approach to recursive parameter estimation, an on-line particle
algorithm is presented in [26] to compute the score for non-linear non-Gaussian state-space models. In fact,
the algorithm of [26] is actually implementing a special case of the above recursion and may be reinterpreted
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as an “on-the-fly” computation of the forward filtering backward smoothing estimate of an additive functional
derived from Fisher’s identity.

The convergence analysis of the N -particle measures QN
n towards their limiting value Qn, as N → ∞, is

intimately related to the convergence of the flow of particle measures (ηN
p )0≤p≤n towards their limiting measures

(ηp)0≤p≤n. Several estimates can be easily derived more or less directly from the convergence analysis of the
particle occupation measures ηN

n developed in [7], including Lp-mean error bounds and exponential deviation
estimates. It is clearly out of the scope of the present work to review all these consequences. One of the central
objects in this analysis is the local sampling errors V N

n induced by the mean field particle transitions and defined
by the following stochastic perturbation formula

ηN
n = ηN

n−1Kn,ηN
n−1

+
1√
N

V N
n . (2.13)

The fluctuations and deviations of these centered random measures V N
n can be estimated using non asymptotic

Kintchine’s type Lr-inequalities, as well as Hoeffding’s or Bernstein’s type exponential deviations [7,11]. We
also proved in [9] that these random perturbations behave asymptotically as Gaussian random perturbations.
More precisely, for any fixed time horizon n ≥ 0, the sequence of random fields V N

n converges in law, as the
number of particles N tends to infinity, to a sequence of independent, Gaussian and centered random fields Vn

such that, for any bounded function f on En, we have

E(Vn(f)2) =
∫

ηn−1(dx)Kn,ηn−1(x, dy)
(
f(y)−Kn,ηn−1(f)(x)

)2
. (2.14)

In Section 5, we provide some key decompositions expressing the deviation of the particle measures (ΓN
n , QN

n )
around their limiting values (Γn, Qn) in terms of these local random fields models. These decompositions can
be used to derive almost directly some exponential and Lp-mean error bounds using the stochastic analysis
developed in [7]. We shall use these functional central limit theorems and some of their variations in various
places in the present article.

3. Statement of some results

In the present article, we have chosen to concentrate on functional central limit theorems, as well as on non
asymptotic bias and variance theorems in terms of the time horizon. Unless otherwise is stated, we further
assume that the potential functions Gn are lower bounded. To describe our results, it is necessary to introduce
the following notation. Let β(M) denote the Dobrushin coefficient of a Markov transition M from a measurable
space E into another measurable space E′ which defined by the following formula

β(M) := sup {osc(M(f)); f ∈ Osc1(E′)}

where Osc1(E′) stands the set of E ′-measurable functions f with oscillation osc(f) less than or equal to 1, with
osc(f) = sup {[f(x)− f(y)]; x, y ∈ E

′}. Some stochastic models discussed in the present article are based on
sequences of random Markov transitions MN that depend on N random particles. In this case, β(MN ) may fail
to be measurable. For this type of models we shall use outer probability measures to integrate these quantities.
For instance, the mean value E

(
β(MN )

)
is to be understood as the infimum of the quantities E(BN ) where

BN ≥ β(MN ) are measurable dominating functions. We also recall that γn satisfies the linear recursive equation

γn = γpQp,n with Qp,n = Qp+1Qp+2 . . . Qn and Qn(x, dy) = Gn−1(x) Mn(x, dy)

for any 0 ≤ p ≤ n. Using elementary manipulations, we also check that

Γn(Fn) = γpDp,n(Fn)
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with the bounded integral operators Dp,n from Ep into E[0,n] defined below

Dp,n(Fn)(xp) :=
∫
Mp(xp, d(x0, . . . , xp−1))Qp,n(xp, d(xp+1, . . . , xn)) Fn(x0, . . . , xn) (3.1)

with
Qp,n(xp, d(xp+1, . . . , xn)) :=

∏
p≤q<n

Qq+1(xq, dxq+1).

We also let (Gp,n, Pp,n) be the pair of potential functions and Markov transitions defined below

Gp,n = Qp,n(1)/ηpQp,n(1) and Pp,n(Fn) = Dp,n(Fn)/Dp,n(1). (3.2)

Let the mapping Φp,n : P(Ep)→ P(En), 0 ≤ p ≤ n, be defined as follows

Φp,n(μp) =
μpQp,n

μpQp,n(1)
·

Our first main result is a functional central limit theorem for the pair of random fields on B(E[0,n]) defined
below

WΓ,N
n :=

√
N
(
ΓN

n − Γn

)
and W Q,N

n :=
√

N [QN
n −Qn] (3.3)

WΓ,N
n is centered in the sense that E

(
WΓ,N

n (Fn)
)

= 0 for any Fn ∈ B(E[0,n]). The proof of this surprising
unbiasedness property can be found in Corollary 5.3, in Section 5.

The first main result of this article is the following multivariate fluctuation theorem.

Theorem 3.1. We suppose that the following regularity condition is met for any n ≥ 1 and for any pair of
states (x, y) ∈ (En−1, En)

(H+) h−
n (y) ≤ Hn(x, y) ≤ h+

n (y) with (h+
n /h−

n ) ∈ L4(ηn) and h+
n ∈ L1(λn). (3.4)

In this situation, the sequence of random fields WΓ,N
n , resp. W Q,N

n , converge in law, as N →∞, to the centered
Gaussian fields WΓ

n , resp. W Q
n , defined for any Fn ∈ B(E[0,n]) by

WΓ
n (Fn) =

n∑
p=0

γp(1) Vp (Dp,n(Fn)) and W Q
n (Fn) =

n∑
p=0

Vp (Gp,n Pp,n(Fn −Qn(Fn))) .

An interpretation of the corresponding limiting variances in terms of conditional distributions of Qn w.r.t.
to the time marginal coordinates is provided in Section 8.1.

The second main result of the article is the following non asymptotic theorem.

Theorem 3.2. For any r ≥ 1, n ≥ 0, Fn ∈ Osc1(E[0,n]) we have the non asymptotic estimates

√
N E

(∣∣[QN
n −Qn](Fn)

∣∣r) 1
r ≤ ar

∑
0≤p≤n

b2
p,n cN

p,n (3.5)

for some finite constants ar <∞ whose values only depend on the parameter r, and a pair of constants (bp,n, cN
p,n)

such that
bp,n ≤ sup

x,y
(Qp,n(1)(x)/Qp,n(1)(y)) and cN

p,n ≤ E
(
β(PN

p,n)
)
.

In the above display, PN
p,n stands for the random Markov transitions defined as Pp,n by replacing in (3.1) and (3.2)

the transitions Mp by MN
p .
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For linear functionals of the form (2.5), with fn ∈ Osc1(En), the Lr-mean error estimate (3.5) is satisfied
with a constant cN

p,n in (3.5) that can be chosen so that

cN
p,n ≤

∑
0≤q<p

E

(
β
(
Mp,ηN

p−1
. . . Mq+1,ηN

q

))
+
∑

p≤q≤n

b2
q,n β(Sp,q) (3.6)

with the Markov transitions Sp,q from Ep into Eq defined for any function f ∈ B(Eq) by the following formula
Sp,q(f) = Qp,q(f)/Qp,q(1).

We emphasize that the Lr-mean error bounds described in the above theorem enter the stability properties of
the semigroups Sp,q and the one associated with the backward Markov transitions Mn+1,ηN

n
. In several instances,

the term in the r.h.s. of (3.6) can be uniformly bounded with respect to the time horizon. For instance, in the
toy example we discussed in (2.6), we have the variance formula (see Sect. 8 for more details)

E
(
W Q

n (Fn)2
)

= (n + 1)

and the non asymptotic Lr-estimates

bp,n = 1 and cN
p,n ≤ 1 =⇒

√
N E

(∣∣[QN
n −Qn](Fn)

∣∣r) 1
r ≤ ar (n + 1).

In more general situations, these estimates are related to the stability properties of the Feynman-Kac semigroup.
To simplify the presentation, let us suppose that the state space En, and the pair of potential-transitions
(Gn, Mn) are time homogeneous (En, Gn, Hn, Mn) = (E, G, H, M), and chosen so that the following regularity
condition is satisfied

(M)m ∀(x, x′) G(x) ≤ δ G(x′) and Mm(x, dy) ≤ ρ Mm(x′, dy) (3.7)

for some m ≥ 1 and some parameters (δ, ρ) ∈ [1,∞)2. Under this rather strong condition, we have

bp,n ≤ ρδm and β(Sp,q) ≤
(
1− ρ−2δ−m

)�(q−p)/m�
.

See for instance Corollary 4.3.3. in [7] and the more recent article [4]. On the other hand, let us suppose that

inf
x,y,y′

(H(x, y)/H(x, y′)) = α(h) > 0.

In this case, we have

Mn,η(x, dy) ≤ α(h)−2 Mn,η(x′, dy) =⇒ β
(
Mp,ηN

p−1
. . .Mq+1,ηN

q

)
≤ (1− α(h)2

)p−q
.

For linear functional models of the form (2.5) associated with functions fn ∈ Osc1(En), it is now readily checked
that √

N E

(∣∣[QN
n −Qn](Fn)

∣∣r) 1
r ≤ ar b (n + 1) (3.8)

for some finite constant b <∞ whose values do not depend on the time parameter n. The above non asymptotic
estimate is not sharp for r = 2. To obtain better bounds, we need to refine the analysis of the variance using
first order decompositions to analyze separately the bias of the particle model. In a companion paper [13], we
prove that

sup
n≥0

∣∣E (QN
n (Fn)

)−Qn(Fn)
∣∣ ≤ c

N
and E

(
W Q,N

n (Fn)2
) ≤ c (n + 1)

(
1 +

n + 1
N

)
where c is once again a finite time-independent constant.
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With some information on the constants ar, the above Lr-mean error bounds can turned to uniform expo-
nential estimates w.r.t. the time parameter for normalized additive functionals of the following form

Fn(x0, . . . , xn) :=
1

n + 1

∑
0≤p≤n

fp(xp).

To be more precise, by Lemma 7.3.3 in [7], the collection of constants ar in (3.8) can be chosen so that

a2r
2r ≤ (2r)! 2−r/r! and a2r+1

2r+1 ≤ (2r + 1)! 2−r/r!. (3.9)

In this situation, it is easily checked that for any ε > 0, and N ≥ 1, we have the following uniform Gaussian
concentration estimates:

1
N

log sup
n≥0

P

(∣∣[QN
n −Qn](Fn)

∣∣ ≥ b√
N

+ ε

)
≤ −ε2/(2b2).

This result is a direct consequence of the fact that for any non negative random variable U(
∀r ≥ 1, E (U r)

1
r ≤ ar b

)
⇒ log P (U ≥ b + ε) ≤ −ε2/(2b2).

To check this claim, we develop the exponential to prove that

log E
(
etU
) ∀t≥0

≤ bt +
(bt)2

2
⇒ log P (U ≥ b + ε) ≤ − sup

t≥0

(
εt− (bt)2

2

)
·

We end this section with a brief discussion on the regularity condition (M)m introduced in (3.7).
Firstly, we recall the mixing condition stated in the r.h.s. of (3.7) is satisfied for any aperiodic and irreducible

Markov chains on finite state spaces, as well as for bi-Laplace exponential transitions on the real line associated
with a bounded drift function, and for Gaussian transitions with a mean drift function that is constant outside
some compact domain. We also mention that this condition is met with m = 1 for the Δ-time step Markov
transition M of a continuous time regular diffusion models on some compact manifold. In this context, the
r.h.s. of (3.7) is satisfied with m = 1 and ρ = a exp (b/Δ), for some a, b <∞ (see for instance [1]). Of course,
when applied to a particular situation the uniform estimates presented above are not sharp. They only reflect
the worst case error in a rather large class of models.

Moreover these two regularity conditions are sometimes not satisfied in some important applications. In
particular, this is the case for Coulomb interactions in molecular Hamiltonian models as well as indicator type
potential functions in hard obstacle particle absorption models. In these singular settings a more refined analysis
is required. Several strategies can be underlined:

The first classical idea is to use cutoff techniques, such as replacing the original process Xn by its restriction
to a given bounded subset of the state space, or by replacing the original potential Gn by the cutoff function
(Gn∨ε), for some parameter ε > 0. These cutoff techniques can be thought as another approximation level. For
singular potential models, using stochastic perturbation type arguments the expected performance of our particle
technology applied to cutoff approximation models depends on the stability properties of the corresponding
limiting flow of Feynman-Kac measures.

Another strategy, which is more probabilistic in nature, is to change the reference probability measure Pn so as
to work with a new Markov chain model Xn whose elementary transitions depend on the potential function Gn.
For instance, for indicator type potential functions Gn := 1A associated with some measurable subset A ⊂ En,
we can choose a reference Markov chain X̂n with elementary transitions restricted to the set A, and a new
potential function Ĝn that reflects the probability to stay in the desired set A starting from some given state.
In the context of particle absorption models, this rather well known technique is sometimes used to turn a hard
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obstacle model into a soft obstacle one (see for instance [8]). From the pure mathematical point of view, these
change of probability models have the same form as the one given in (1.1), but their mean field particle model
differs. For more details on this change of measure technique and the corresponding particle approximations,
we refer the reader to Section 3 in the book [7], as well as [8].

When the potential functions Gn vanish in some regions of the state space, we also mention that the particle
model is only defined up to the first time τN = k we have ηN

k (Gk) = 0. When γn(1) > 0, we can prove
that the event {τN ≤ n} has an exponentially small probability to occur, and the estimates presented in the
above theorems can be extended to these singular situations by replacing QN

n (Fn) by the particle estimates
QN

n (Fn) 1τN≥n. The stochastic analysis of these singular models are quite technical, for further details we refer
the reader to Sections 7.2.2 and 7.4 in the book [7].

4. A backward Markov chain formulation

This section is mainly concerned with the proof of the backward decomposition formula (2.7). Before pro-
ceeding, we recall that the measures (γn, ηn) satisfy the nonlinear equations

γn = γn−1Qn and ηn+1 := Φn+1(ηn) := ΨGn(ηn)Mn+1

and their semigroups are given by

γn = γpQp,n and ηn(fn) := ηpQp,n(fn)/ηpQp,n(1)

for any function fn ∈ B(En). In this connection, we also mention that the semigroup of the pair of measures
(Γn, Qn) defined in (1.1) for any 0 ≤ p ≤ n and any Fn ∈ B(E[0,n]), we have

Γn(Fn) = γpDp,n(Fn) and Qn(Fn) = ηpDp,n(Fn)/ηpDp,n(1). (4.1)

These formulae are a direct consequence of the following observation

ηpDp,n(Fn) =
∫

Qp(d(x0, . . . , xp)) Qp,n(xp, d(xp+1, . . . , xn))Fn(x0, . . . , xn).

Lemma 4.1. For any 0 ≤ p < n, we have

γp(dxp) Qp,n(xp, d(xp+1, . . . , xn)) = γn(dxn) Mn,p(xn, d(xp, . . . , xn−1)) (4.2)

with
Mn,p(xn, d(xp, . . . , xn−1)) :=

∏
p≤q<n

Mq+1,ηq(xq+1, dxq).

In particular, for any time n ≥ 0, the Feynman-Kac path measures Qn defined in (1.1) can be expressed in
terms of the sequence of marginal measures (ηp)0≤p≤n, with the following backward Markov chain formulation

Qn(d(x0, . . . , xn)) = ηn(dxn) Mn,0(xn, d(x0, . . . , xn−1)). (4.3)

Before entering into the details of the proof of this lemma, we mention that (4.3) holds true for any well
defined Markov transition Mn+1,ηn(y, dx) from En into En+1 satisfying the local backward equation

ΨGn(ηn)(dx) Mn+1(x, dy) = Φn+1(ηn)(dy) Mn+1,ηn(y, dx)

or equivalently
ηn(dx) Qn+1(x, dy) = (ηnQn+1)(dy) Mn+1,ηn(y, dx). (4.4)
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In other words, we have the duality formula

ΨGn(ηn) (f Mn+1(g)) = Φn+1(ηn) (g Mn+1,ηn(f)) . (4.5)

Also notice that for any pair of measures μ, ν on En s.t. μ � ν, we have μMn+1 � νMn+1. Indeed, if we
have νMn+1(A) = 0, the function Mn+1(1A) is null ν-almost everywhere, and therefore μ-almost everywhere
from which we conclude that μMn+1(A) = 0. For any bounded measurable function g on En we set

Ψg
Gn

(ηn)(dx) = ΨGn(ηn)(dx) g(x)� ΨGn(ηn)(dx).

From the previous discussion, we have Ψg
Gn

(ηn)Mn+1 � ΨGn(ηn)Mn+1 and it is easily checked that

Mn+1,ηn(g)(y) =
dΨg

Gn
(ηn)Mn+1

dΨGn(ηn)Mn+1
(y)

is a well defined Markov transition from En+1 into En satisfying the desired backward equation. These manip-
ulations are rather classical in the literature on Markov chains (see for instance [27], and references therein).
Under the regularity condition (H) the above transition is explicitly given by the formula (2.9).

Now, we come to the proof of Lemma 4.1.

Proof of Lemma 4.1. We prove (4.2) using a backward induction on the parameter p. By (4.4), the formula is
clearly true for p = (n− 1). Suppose the result has been proved at rank p. Since we have

γp−1(dxp−1) Qp−1,n(xp−1, d(xp, . . . , xn)) = γp−1(dxp−1) Qp(xp−1, dxp) Qp,n(xp, d(xp+1, . . . , xn))

and
γp−1(dxp−1) Qp(xp−1, dxp) = γp(dxp) Mp,ηp−1(xp, dxp−1).

Using the backward induction we conclude that the desired formula is also met at rank (p − 1). The second
assertion is a direct consequence of (4.2). The end of the proof of the lemma is now completed. �

We end this section with some properties of backward Markov transitions associated with a given initial prob-
ability measure that may differ from the one associated with the Feynman-Kac measures. These mathematical
objects appear in a natural way in the analysis of the N -particle approximation transitions MN

n introduced
in (2.11).

Definition 4.2. For any 0 ≤ p ≤ n and any probability measure η ∈ P(Ep), we denote by Mn+1,p,η the
Markov transition from En+1 into E[p,n] = (Ep × . . .× En) defined by

Mn+1,p,η (xn+1, d(xp, . . . , xn)) =
∏

p≤q≤n

Mq+1,Φp,q(η)(xq+1, dxq).

Notice that this definition is consistent with the definition of the Markov transitions Mp,n introduced in
Lemma 4.1:

Mn+1,p,ηp (xn+1, d(xp, . . . , xn)) =Mn+1,p (xn+1, d(xp, . . . , xn)) .

Also observe thatMn+1,p,η can alternatively be defined by the pair of recursions

Mn+1,p,η (xn+1, d(xp, . . . , xn)) =Mn+1,p+1,Φp+1(η) (xn+1, d(xp+1, . . . , xn))×Mp+1,η(xp+1, dxp)

= Mn+1,Φp,n(η)(xn+1, dxn) Mn,p,η (xn, d(xp, . . . , xn−1)) . (4.6)

The proof of the following lemma follows the same lines of arguments as the ones used in proof of Lemma 4.1.
For the convenience of the reader, the details of this proof are postponed to the appendix.
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Lemma 4.3. For any 0 ≤ p < n and any probability measure η ∈ P(Ep), we have

ηQp,n(dxn) Mn,p,η(xn, d(xp, . . . , xn−1)) = η(dxp) Qp,n(xp, d(xp+1, . . . , xn)).

In other words, we have

Mn,p,η(xn, d(xp, . . . , xn−1)) =
(η ×Qp,n−1)(d(xp, . . . , xn−1))Gn−1(xn−1) Hn(xn−1, xn)

(ηQp,n−1) (Gn−1 Hn(., xn))
(4.7)

with the measure (η ×Qp,n−1) defined below

(η ×Qp,n−1)(d(xp, . . . , xn−1)) := η(dxp) Qp,n−1(xp, d(xp+1, . . . , xn−1)).

5. Particle approximation models

We provide in this section some preliminary results on the convergence of the N -particle measures (ΓN
n , QN

n )
to their limiting values (Γn, Qn), as N → ∞. Most of the forthcoming analysis is developed in terms of the
following integral operators.

Definition 5.1. For any 0 ≤ p ≤ n, we let DN
p,n be the FN

p−1-measurable integral operators from B(E[0,n]) into
B(Ep) defined below

DN
p,n(Fn)(xp) :=

∫
MN

p (xp, d(x0, . . . , xp−1))Qp,n(xp, d(xp+1, . . . , xn))Fn(x0, . . . , xn)

with the conventions DN
0,n = Q0,n, and resp. DN

n,n =MN
n , for p = 0, and resp. p = n

The main result of this section is the following theorem.

Theorem 5.2. For any 0 ≤ p ≤ n, and any function Fn on the path space E[0,n], we have

E
(
ΓN

n (Fn)
∣∣ FN

p

)
= γN

p

(
DN

p,n(Fn)
)

and WΓ,N
n (Fn) =

n∑
p=0

γN
p (1) V N

p

(
DN

p,n(Fn)
)

Proof of Theorem 5.2. To prove the first assertion, we use a backward induction on the parameter p. For p = n,
the result is immediate since we have

ΓN
n (Fn) = γN

n (1) ηN
n

(
DN

n,n(Fn)
)
.

We suppose that the formula is valid at a given rank p ≤ n. In this situation, we have

E
(
ΓN

n (Fn)
∣∣ FN

p−1

)
= γN

p (1) E
(
ηN

p

(
DN

p,n(Fn)
) ∣∣ FN

p−1

)
= γN

p−1(1)
∫

ηN
p−1(Gp−1Hp(., xp)) λp(dxp) DN

p,n(Fn)(xp). (5.1)

Using the fact that

γN
p−1(1) ηN

p−1(Gp−1Hp(., xp)) λp(dxp) Mp,ηN
p−1

(xp, dxp−1) = γN
p−1(dxp−1)Qp(xp−1, dxp)

we conclude that the r.h.s. term in (5.1) takes the form∫
γN

p−1(dxp−1)MN
p−1(xp−1, d(x0, . . . , xp−2))Qp−1,n(xp−1, d(xp, . . . , xn))Fn(x0, . . . , xn) = γN

p−1

(
DN

p−1,n(Fn)
)
.
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This ends the proof of the first assertion. The proof of the second assertion is based on the following
decomposition

(
ΓN

n − Γn

)
(Fn) =

n∑
p=0

[
E
(
ΓN

n (Fn)
∣∣ FN

p

)− E
(
ΓN

n (Fn)
∣∣ FN

p−1

)]
=

n∑
p=0

γN
p (1)

(
ηN

p

(
DN

p,n(Fn)
)− 1

ηN
p−1(Gp−1)

ηN
p−1

(
DN

p−1,n(Fn)
))

where FN
−1 is the trivial sigma field. By definition of the random fields V N

p , it remains to prove that

ηN
p−1

(
DN

p−1,n(Fn)
)

= (ηN
p−1Qp)

(
DN

p,n(Fn)
)
.

To check this formula, we use the decomposition

ηN
p−1(dxp−1) MN

p−1(xp−1, d(x0, . . . , xp−2)) Qp−1,n(xp−1, d(xp, . . . , xn)) = ηN
p−1(dxp−1)Qp(xp−1, dxp)

×MN
p−1(xp−1, d(x0, . . . , xp−2)) Qp,n(xp, d(xp+1, . . . , xn)).

(5.2)

Using the fact that

ηN
p−1(dxp−1)Qp(xp−1, dxp) = (ηN

p−1Qp)(dxp) Mp,ηN
p−1

(xp, dxp−1)

we conclude that the term in the r.h.s. of (5.2) is equal to

(ηN
p−1Qp)(dxp) MN

p (xp, d(x0, . . . , xp−1)) Qp,n(xp, d(xp+1, . . . , xn)).

This ends the proof of the theorem. �

Several consequences of Theorem 5.2 are now emphasized. On the one hand, using the fact that the random
fields V N

n are centered given FN
n−1, we find that

E
(
ΓN

n (Fn)
)

= Γn(Fn).

On the other hand, using the fact that

γp(1)
γn(1)

=
γp(1)

γpQp,n(1)
=

1
ηpQp,n(1)

we prove the following decomposition

W
Γ,N

n (Fn) =
√

N
(
γN

n (1) QN
n −Qn

)
(Fn) =

n∑
p=0

γN
p (1) V N

p

(
D

N

p,n(Fn)
)

(5.3)

with the pair of parameters
(
γN

n (1), D
N

p,n

)
defined below

γN
n (1) :=

γN
n (1)

γn(1)
and D

N

p,n(Fn) =
DN

p,n(Fn)
ηpQp,n(1)

· (5.4)
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Using again the fact that the random fields V N
n are centered given FN

n−1, we have

E

(
W

Γ,N

n (Fn)2
)

=
n∑

p=0

E

(
γN

p (1)2 E

[
V N

p

(
D

N

p,n(Fn)
)2 ∣∣ FN

p−1

])
.

Using the estimates

‖DN
p,n(Fn)‖ ≤ ‖Qp,n(1)‖ ‖Fn‖

‖DN

p,n(Fn)‖ ≤ ‖Qp,n(1)‖ ‖Fn‖ with Qp,n(1) =
Qp,n(1)

ηpQp,n(1)
(5.5)

we prove the non asymptotic variance estimate

E

(
W

Γ,N

n (Fn)2
)
≤

n∑
p=0

E
(
γN

p (1)2
) ‖Qp,n(1)‖2 =

n∑
p=0

[
1 + E

(
[γN

p (1)− 1]2
)] ‖Qp,n(1)‖2

for any function Fn such that ‖Fn‖ ≤ 1. On the other hand, using the decomposition(
γN

n (1) QN
n −Qn

)
=
[
γN

n (1)− 1
]

QN
n +

(
QN

n −Qn

)
we prove that

E

([
QN

n (Fn)−Qn(Fn)
]2)1/2

≤ 1√
N

E
(
WΓ

n (Fn)2
)1/2

+ E

([
γN

n (1)− 1
]2)1/2

.

Some interesting bias estimates can also be obtained using the fact that

E
(
QN

n (Fn)
)−Qn(Fn) = E

([
1− γN

n (1)
] [

QN
n (Fn)−Qn(Fn)

])
and the following easily proved upper bound

∣∣E (QN
n (Fn)

)−Qn(Fn)
∣∣ ≤ E

([
1− γN

n (1)
]2)1/2

E

([
QN

n (Fn)−Qn(Fn)
]2)1/2

.

Under the regularity condition (M)m stated in (3.7), we proved in a recent article [4], that for any n ≥ p ≥ 0,
and any N > (n + 1)ρδm we have

‖Qp,n(1)‖ ≤ δmρ and N E

[(
γN

n (1)− 1
)2] ≤ 4 (n + 1) ρ δm.

From these estimates, we readily prove the following corollary.

Corollary 5.3. Assume that condition (M)m is satisfied for some parameters (m, δ, ρ). In this situation, for
any n ≥ p ≥ 0, any Fn such that ‖Fn‖ ≤ 1, and any N > (n + 1)ρδm we have

E

(
W

Γ,N

n (Fn)
)

= 0 and E

(
W

Γ,N

n (Fn)2
)
≤ (δmρ)2(n + 1)

(
1 +

2
N

ρδm(n + 2)
)

.

In addition, we have

N E

([
QN

n (Fn)−Qn(Fn)
]2) ≤ 2(n + 1)ρδm

(
4 + ρδm

[
1 +

2
N

(n + 2)
])
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and the bias estimate

N
∣∣E (QN

n (Fn)
)−Qn(Fn)

∣∣ ≤ 2
√

2 (n + 1)ρδm

(
4 + ρδm

[
1 +

2
N

(n + 2)
])1/2

.

6. Fluctuation properties

This section is mainly concerned with the proof of Theorem 3.1. Unless otherwise is stated, in the further
developments of this section, we assume that the regularity condition (H+) presented in (3.4) is satisfied for
some collection of functions (h−

n , h+
n ). Our first step to establish Theorem 3.1 is the fluctuation analysis of the

N -particle measures (ΓN
n , QN

n ) given in Proposition 6.2 whose proof relies on the following technical lemma.

Lemma 6.1.

MN
n (xn, d(x0, . . . , xn−1))−Mn(xn, d(x0, . . . , xn−1)) =

∑
0≤p≤n

[
Mn,p,ηN

p
−Mn,p,Φp(ηN

p−1)
]

× (xn, d(xp, . . . , xn−1)) MN
p (xp, d(x0, . . . , xp−1)).

The proof of this lemma follows elementary but rather tedious calculations; thus it is postponed to the
appendix. We now state Proposition 6.2.

Proposition 6.2. For any N ≥ 1, 0 ≤ p ≤ n, xp ∈ Ep, m ≥ 1, and Fn ∈ B(E[0,n]) such that ‖Fn‖ ≤ 1, we
have

√
N E

(∣∣DN
p,n(Fn)−Dp,n(Fn)(xp)

∣∣m) 1
m ≤ a(m) b(n)

(
h+

p

h−
p

(xp)
)2

(6.1)

for some finite constants a(m) <∞, resp. b(n) <∞, whose values only depend on the parameters m, resp. on
the time horizon n.

Proof. Using Lemma 6.1, we find that

DN
p,n(Fn)−Dp,n(Fn) =

∑
0≤q≤p

[
Mp,q,ηN

q
−Mp,q,Φq(ηN

q−1)
] (

T N
p,q,n(Fn)

)
with the random function T N

p,q,n(Fn) defined below

T N
p,q,n(Fn)(xq , . . . , xp) :=

∫
Qp,n(xp, d(xp+1, . . . , xn)) MN

q (xq , d(x0, . . . , xq−1)) Fn(x0, . . . , xn).

Using formula (4.7), we prove that for any m ≥ 1 and any function F on E[q,p]

√
N E

(∣∣∣[Mp,q,ηN
q
−Mp,q,Φq(ηN

q−1)
]
(F ) (xp)

∣∣∣m ∣∣ FN
q−1

) 1
m ≤ a(m) b(n) ‖F‖

(
h+

p

h−
p

(xp)
)2

for some finite constants a(m) <∞ and b(n) <∞ whose values only depend on the parameters m and n. Using
these almost sure estimates, we easily prove (6.1). This ends the proof of the proposition. �

Now, we come to the proof of Theorem 3.1.

Proof of Theorem 3.1. Using Theorem 5.2, we have the decomposition

WΓ,N
n (Fn) =

n∑
p=0

γN
p (1) V N

p (Dp,n(Fn)) + RΓ,N
n (Fn)



A BACKWARD PARTICLE INTERPRETATION OF FEYNMAN-KAC FORMULAE 965

with the second order remainder term

RΓ,N
n (Fn) :=

n∑
p=0

γN
p (1) V N

p

(
FN

p,n

)
and the function FN

p,n := [DN
p,n −Dp,n](Fn).

By Slutsky’s lemma and by the continuous mapping theorem it clearly suffices to check that RΓ,N
n (Fn) converge

to 0, in probability, as N →∞. To prove this claim, we notice that

E

(
V N

p

(
FN

p,n

)2 ∣∣ FN
p−1

)
≤ Φp

(
ηN

p−1

)((
FN

p,n

)2)
.

On the other hand, we have

Φp

(
ηN

p−1

) ((
FN

p,n

)2)
=
∫

λp(dxp) ΨGp−1

(
ηN

p−1

)
(Hp(., xp)) FN

p,n(xp)2

≤ ηp

((
FN

p,n

)2)
+
∫

λp(dxp)
∣∣[ΨGp−1

(
ηN

p−1

)−ΨGp−1 (ηp−1)
]
(Hp(., xp))

∣∣ FN
p,n(xp)2.

This yields the rather crude estimate

Φp

(
ηN

p−1

) ((
FN

p,n

)2)
=
∫

λp(dxp) ΨGp−1

(
ηN

p−1

)
(Hp(., xp)) FN

p,n(xp)2

≤ ηp

((
FN

p,n

)2)
+ 4‖Qp,n(1)‖2

∫
λp(dxp)

∣∣[ΨGp−1

(
ηN

p−1

)−ΨGp−1 (ηp−1)
]
(Hp(., xp))

∣∣
from which we conclude that

E

(
V N

p

(
FN

p,n

)2) ≤ ∫ ηp(dxp) E

[(
FN

p,n(xp)
)2]

+ 4‖Qp,n(1)‖2

×
∫

λp(dxp) E
(∣∣[ΨGp−1

(
ηN

p−1

)−ΨGp−1 (ηp−1)
]
(Hp(., xp))

∣∣) .
We can establish that

√
N E

(∣∣[ΨGp−1

(
ηN

p−1

)−ΨGp−1 (ηp−1)
]
(Hp(., xp))

∣∣) ≤ b(n) h+
p (xp).

See for instance Section 7.4.3, Theorem 7.4.4, in [7]. Using Proposition 6.2,

√
N E

(
V N

p

(
FN

p,n

)2) ≤ c(n)
(

1√
N

ηp

((
h+

p

h−
p

)4
)

+ λp(h+
p )
)

for some finite constant c(n) <∞. The end of the proof of the first assertion now follows standard computations.
To prove the second assertion, we use the following decomposition

√
N [QN

n −Qn](Fn) =
1

γN
n (1)

W
Γ,N

n (Fn −Qn(Fn))

with the random fields W
Γ,N

n defined in (5.3). We complete the proof using the fact that γN
n (1) tends to 1,

almost surely, as N →∞. This ends the proof of the theorem. �
We end this section with some comments on the asymptotic variance associated to the Gaussian fields W Q

n .
Using (4.1), we prove that

Qn = ΨDp,n(1)(ηp)Pp,n
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with the pair of integral operators (Dp,n, Pp,n) from B(E[0,n]) into B(Ep)

Dp,n(Fn) :=
Dp,n(Fn)
ηpQp,n(1)

=
Dp,n(1)

ηpQp,n(1)
Pp,n(Fn) and Pp,n(Fn) :=

Dp,n(Fn)
Dp,n(1)

from which we deduce the following formula

Dp,n(Fn −Qn(Fn))(xp) = Dp,n(1)(xp)
∫

[Pp,n(Fn)(xp)− Pp,n(Fn)(yp)] ΨDp,n(1)(ηp)(dyp). (6.2)

Under condition (M)m, for any function Fn of the form (2.5) with osc(fp) ≤ 1, we have the following estimate

‖Dp,n(1)‖ ≤ δmρ =⇒ E
(
W Q

n (Fn)2
) ≤ c(n + 1).

This follows since osc(Pp,n(Fn)) is uniformly (in p and n) bounded by virtue of the contraction property of the
single-time marginals of Pp,n. (See Sect. 8 for more details.)

7. Non asymptotic Lr-mean error estimates

This section is mainly concerned with the proof of Theorem 3.2. We follow the same semigroup techniques as
the ones we used in Section 7.4.3 in [7] to derive uniform estimates w.r.t. the time parameter for the N -particle
measures ηN

n . We use the decomposition

[QN
n −Qn](Fn) =

∑
0≤p≤n

(
ηN

p DN
p,n(Fn)

ηN
p DN

p,n(1)
− ηN

p−1D
N
p−1,n(Fn)

ηN
p−1D

N
p−1,n(1)

)

with the conventions ηN
−1D

N
−1,n = η0Q0,n, for p = 0. Next, we observe that

ηN
p−1D

N
p−1,n(Fn) =

∫
ηN

p−1(dxp−1)MN
p−1(xp−1, d(x0, . . . , xp−2))Qp−1,n(xp−1, d(xp, . . . , xn))Fn(x0, . . . , xn)

=
∫

ηN
p−1(dxp−1)Qp(xp−1, dxp)MN

p−1(xp−1, d(x0, . . . , xp−2))Qp,n(xp, d(xp+1, . . . , xn))Fn(x0, . . . , xn).

On the other hand, we have

ηN
p−1(dxp−1)Qp(xp−1, dxp) = ηN

p−1Qp(dxp) Mp,ηN
p−1

(xp, dxp−1)

from which we conclude that
ηN

p−1D
N
p−1,n(Fn) = (ηN

p−1Qp)(DN
p,n(Fn)).

This yields the decomposition

[QN
n −Qn](Fn) =

∑
0≤p≤n

(
ηN

p DN
p,n(Fn)

ηN
p DN

p,n(1)
− Φp(ηN

p−1)(DN
p,n(Fn))

Φp(ηN
p−1)(DN

p,n(1))

)
(7.1)

with the convention Φ0(ηN
−1) = η0, for p = 0. If we set

F̃N
p,n = Fn −

Φp(ηN
p−1)(D

N
p,n(Fn))

Φp(ηN
p−1)(DN

p,n(1))
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then every term in the r.h.s. of (7.1) takes the following form

ηN
p DN

p,n(F̃N
p,n)

ηN
p DN

p,n(1)
=

ηpQp,n(1)
ηN

p Qp,n(1)
×
[
ηN

p D
N

p,n(F̃N
p,n)− Φp(ηN

p−1)D
N

p,n(F̃N
p,n)
]

with the integral operators D
N

p,n defined in (5.4). Next, we observe that DN
p,n(1) = Qp,n(1), and D

N

p,n(1) =
Dp,n(1). Thus, in terms of the local sampling random fields V N

p , we have proved that

ηN
p DN

p,n(F̃N
p,n)

ηN
p DN

p,n(1)
=

1√
N
× 1

ηN
p Dp,n(1)

× V N
p D

N

p,n(F̃N
p,n) (7.2)

and

D
N

p,n(Fn) = Dp,n(1)× PN
p,n(Fn) with PN

p,n(Fn) :=
DN

p,n(Fn)
DN

p,n(1)
· (7.3)

From these observations, we prove that

Φp(ηN
p−1)(D

N
p,n(Fn))

Φp(ηN
p−1)(DN

p,n(1))
=

Φp(ηN
p−1)(Qp,n(1) PN

p,n(Fn))
Φp(ηN

p−1)(Qp,n(1))
= ΨQp,n(1)

(
Φp(ηN

p−1)
)
PN

p,n(Fn).

Arguing as in (6.2) we obtain the following decomposition

D
N

p,n(F̃N
p,n)(xp) = Dp,n(1)(xp)×

∫ [
PN

p,n(Fn)(xp)− PN
p,n(Fn)(yp)

]
ΨQp,n(1)(Φp(ηN

p−1))(dyp)

and therefore∥∥∥DN

p,n(F̃N
p,n)
∥∥∥ ≤ bp,n osc(PN

p,n(Fn)) ≤ bp,n β(PN
p,n) osc(Fn) with bp,n ≤ sup

xp,yp

Qp,n(1)(xp)
Qp,n(1)(yp)

·

We end the proof of (3.5) using the fact that for any r ≥ 1, p ≥ 0, f ∈ B(Ep) s.t. osc(f) ≤ 1 we have the almost
sure Kintchine type inequality

E

(∣∣V N
p (f)

∣∣r ∣∣ FN
p−1

) 1
r ≤ ar

for some finite (non random) constants ar < ∞ whose values only depend on r. Indeed, using the fact that
each term in the sum of (7.1) takes the form (7.2) we prove that

√
N E

(∣∣[QN
n −Qn](Fn)

∣∣r) 1
r ≤ ar

∑
0≤p≤n

b2
p,n E

(
osc(PN

p,n(Fn))
)
. (7.4)

This ends the proof of the first assertion (3.5) of Theorem 3.2. For linear functionals of the form (2.5), it is
easily checked that

DN
p,n(Fn) = Qp,n(1)

∑
0≤q≤p

[
Mp,ηN

p−1
. . .Mq+1,ηN

q

]
(fq) +

∑
p<q≤n

Qp,q(fq Qq,n(1))

with the convention Mp,ηN
p−1

. . . Mp+1,ηN
p

= Id, the identity operator, for q = p. Recalling that DN
p,n(1) =

Qp,n(1), we conclude that

PN
p,n(Fn) = fp +

∑
0≤q<p

[
Mp,ηN

p−1
. . . Mq+1,ηN

q

]
(fq) +

∑
p<q≤n

Qp,q(Qq,n(1) fq)
Qp,q(Qq,n(1))
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and therefore

PN
p,n(Fn) =

∑
0≤q<p

[
Mp,ηN

p−1
. . .Mq+1,ηN

q

]
(fq) +

∑
p≤q≤n

Qp,q(Qq,n(1) fq)
Qp,q(Qq,n(1))

Qp,q(Qq,n(1) fq)
Qp,q(Qq,n(1))

=
Sp,q(Qq,n(1) fq)

Sp,q(Qq,n(1))
with Sp,q(g) =

Qp,q(g)
Qp,q(1)

with the potential functions Qq,n(1) defined in (5.5). After some elementary computations, we obtain the
following estimates

osc(PN
p,n(Fn)) ≤

∑
0≤q<p

β
(
Mp,ηN

p−1
. . . Mq+1,ηN

q

)
osc(fq) +

∑
p≤q≤n

b2
q,n β(Sp,q) osc(fq).

This ends the proof of the second assertion (3.6) of Theorem 3.2.

8. Comparisons with genealogical tree particle models

In this section, we provide with a brief comparison between these particle models and the genealogical tree
particle interpretations of the measures Qn discussed in (2.4).

8.1. Limiting variance interpretation models

Our first objective is to present a new interpretation of the pair of potential-transitions (Gp,n, Pp,n) defined
in (3.2). We fix the time horizon n and we denote by EQn the expectation operator of a canonical random path
(X0, . . . , Xn) under the measure Qn. For any function F ∈ B(E[p,n]), p ≤ n, using (2.7) we check that

EQn (F (Xp, . . . , Xn)) =
∫

ηn(dxn)
∏

p<q≤n

Mq,ηq−1(xq, dxq−1) F (xp, . . . , xn).

This implies that for any F ∈ B(E[0,p]), we have the Qn-almost sure formula

EQn (F (X0, . . . , Xp) | (Xp, . . . , Xn) ) =
∫
Mp(Xp, d(x0, . . . , xp−1))F ((x0, . . . , xp−1), Xp)

= EQn (F (X0, . . . , Xp) | Xp ) .

Using elementary calculations, it is also easily checked that for any function F ∈ B(E[0,n]) we have the Qn-almost
sure formula

EQn (F (X0, . . . , Xn) | (X0, . . . , Xp) )=
1

Qp,n(1)(Xp)

∫
Qp,n(Xp, d(xp+1, . . . , xn))F ((X0, . . . , Xp), (xp+1, . . . , xn))

and therefore, for any function Fn ∈ B(E[0,n]), we prove that

EQn (Fn(X0, . . . , Xn) | Xp ) = Pp,n(Fn)(Xp).

In much the same way, if we denote by Q
(p)
n the time marginal of the measure Qn with respect to the pth

coordinate, we have

Q(p)
n � ηp with

dQ
(p)
n

dηp
= Gp,n.
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For centered functions Fn s.t. Qn(Fn) = 0, by the functional central limit Theorem 3.1, the limiting variance of
the measures QN

n associated with the genetic model (2.2) with acceptance parameters εn = 0 has the following
interpretation:

E
(
W Q

n (Fn)2
)

=
n∑

p=0

ηp

[
G2

p,n Pp,n(Fn)2
]

=
n∑

p=0

EQn

(
dQ

(p)
n

dηp
(Xp) EQn (Fn(X0, . . . , Xn) |Xp )2

)
.

We end this section with some estimates of these limiting variances. Arguing as in (6.2), for any Fn ∈ B(E[0,n]),
we readily prove the estimate

E
(
W Q

n (Fn)2
) ≤ ∑

0≤p≤n

b2
p,n osc(Pp,n(Fn))2.

For linear functionals of the form (2.5), with functions fn ∈ Osc1(En), using the same lines of arguments as
those we used at the end of Section 7, it is easily checked that

osc(Pp,n(Fn)) ≤
∑

0≤q<p

β
(
Mp,ηp−1 . . . Mq+1,ηq

)
+
∑

p≤q≤n

b2
q,n β(Sp,q).

Under the regularity condition (M)m stated in (3.7), the r.h.s. term in the above display is uniformly bounded
with respect to the time parameters 0 ≤ p ≤ n, from which we conclude that

E
(
W Q

n (Fn)2
) ≤ c (n + 1) (8.1)

for some finite constant c <∞, whose values do not depend on the time parameter.

8.2. Variance comparisons

We recall that the genealogical tree evolution models associated with the genetic type particle systems
discussed in this article can be seen as the mean field particle interpretation of the Feynman-Kac measures ηn

defined as in (2.12), by replacing the pair (Xn, Gn) by the historical process Xn and the potential function Gn

defined below:

Xn := (X0, . . . , Xn) and Gn(Xn) := Gn(Xn).

We also have a nonlinear transport equation defined as in (2.1) by replacing Kn,ηn−1 by some Markov
transition Kn,ηn−1 from E[0,n−1] into E[0,n]. In this notation, the genealogical tree model coincides with the
mean field particle model defined as in (2.2) by replacing Kn,ηN

n−1
by Kn,ηN

n−1
, where ηN

n−1 stands for the
occupation measure of the genealogical tree model at time (n−1). The local sampling errors are described by a
sequence of random field model VN

n ,Vn on B(E[0,n]) defined as in (2.13) and (2.14), by replacing Kn,η by Kn,η.
More details on the path space technique can be found in Chapter 3 of the book [7].

The fluctuations of the genealogical tree occupation measures

ηN
n :=

1
N

N∑
i=1

δ(ξi
0,n,ξi

1,n,...,ξi
n,n) and γN

n :=

⎛⎝ ∏
0≤p<n

ηN
p (Gp)

⎞⎠× ηN
n (8.2)

around their limiting values ηn and γn are described by the pair of empirical random fields defined below

Wγ,N
n :=

√
N
(
γN

n − γn

)
and Wη,N

n :=
√

N [ηN
n − ηn].
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To describe the limiting Gaussian random fields Wγ
n and Wη

n, we need another round of notation. Firstly, we
observe that the pair of measures (γn, ηn) on the path space E[0,n] coincide with the measures (Γn, Qn) we
defined in the introduction of the present article. For these path space models, it is easily checked that

γn = γpDp,n

with the integral operator from B(E[0,n]) into B(E[0,p]) defined below

Dp,n(Fn)(x0, . . . , xp) :=
∫
Qp,n(xp, d(xp+1, . . . , xn)) Fn((x0, . . . , xp), (xp+1, . . . , xn)).

In the above display Qp,n is the integral operator defined in (3.1). Notice that

Dp,n(1)(x0, . . . , xp) = Qp,n(1)(xp) = Dp,n(1)(xp) = Qp,n(1)(xp).

As in (3.2), we consider be the pair of potential functions and Markov transitions (Gp,n,Pp,n) defined below

Gp,n(x0, . . . , xp) = Gp,n(xp) and Pp,n(Fn) = Dp,n(Fn)/Dp,n(1). (8.3)

In terms of conditional expectations, we readily prove that

EQn (Fn(X0, . . . , Xn) | (X0, . . . , Xp) ) = Pp,n(Fn)(X0, . . . , Xp) (8.4)

for any function Fn ∈ B(E[0,n]).
It is more or less well known that the sequence of random fields Wγ,N

n , resp. Wηn,N
n , converge in law, as

N → ∞, to the centered Gaussian fields Wγ
n , resp. Wη

n , defined as WΓ
n , resp. W Q

n , by replacing the quantities
(Vp, Gp,n, Dp,n, Pp,n, Qn) by the path space models (Vp,Gp,n,Dp,n,Pp,n, ηn); that is we have that

Wγ
n(Fn) =

n∑
p=0

γp(1) Vp (Dp,n(Fn))

Wη
n(Fn) =

n∑
p=0

Vp (Gp,n Pp,n(Fn − ηn(Fn))) .

A detailed discussion on these functional fluctuation theorems can be found in Chapter 9 in [7]. Arguing as
before, for centered functions Fn s.t. Qn(Fn) = 0, the limiting variance of the genealogical tree occupation
measures ηN

n associated with the genetic model (2.2) with acceptance parameters εn = 0 has the following
interpretation:

E
(Wη

n(Fn)2
)

=
n∑

p=0

EQn

(
dQ

(p)
n

dηp
(X0, . . . , Xp) EQn (Fn(X0, . . . , Xn) |(X0, . . . , Xp) )2

)

= E
(
W Q

n (Fn)2
)

+
n∑

p=0

EQn

(
dQ

(p)
n

dηp
(Xp) VarQn (Pp,n(Fn) |Xp )

)

with the Qn-conditional variance of the conditional expectations (8.4) with respect to Xp given by

VarQn (Pp,n(Fn) |Xp ) = EQn

(
[EQn (Fn(X0, . . . , Xn) | (X0, . . . , Xp) )− EQn (Fn(X0, . . . , Xn) |Xp )]2 |Xp

)
.
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For sufficiently regular models, and for linear functionals of the form (2.5), with local functions fn ∈ Osc1(En),
we have proved in (8.1) that E

(
W Q

n (Fn)2
) ≤ c (n + 1), for some finite constant c < ∞, whose values do not

depend on the time parameter. In this context, we also have that

VarQn (Pp,n(Fn) |Xp ) = EQn

⎛⎜⎝
⎡⎣ ∑

0≤q<p

(fq(Xq)− EQn (fq(Xq)|Xp))

⎤⎦2

|Xp

⎞⎟⎠ .

These local variance quantities may grow dramatically with the parameter p, so that the resulting variance
E
(Wη

n(Fn)2
)

will be much larger than E
(
W Q

n (Fn)2
)
. For instance, in the toy model discussed in (2.6), we

clearly have Q
(p)
n = ηp = η0 and

EQn (Fn(X0, . . . , Xn) |(X0, . . . , Xp) ) =
∑

0≤q≤p

f(Xq)·

from which we conclude that

E
(
W Q

n (Fn)2
)

= (n + 1) and E
(Wη

n(Fn)2
)

= E
(
W Q

n (Fn)2
)

+
n(n + 1)

2
· (8.5)

9. Example

Consider the following hidden Markov model which is comprised of a Rd-valued Markov chain

Xn = hθ(Xn−1, Vn), (9.1)

where (Vn)n≥1 is a sequence of independent identically distributed random variables and a Rd′
-valued observed

process (Yn)n≥0

P (Yn ∈ dy | Xn = xn) = gθ(xn, yn) λn(dyn). (9.2)
In the above displayed formulae, hθ : Rd × Rnv → Rd, gθ(xn, yn) is the conditional density, with respect to
the reference measure λn, of Yn given Xn = xn. The vector θ ∈ Θ ⊂ Rnθ parameterizes the model. Given
(Xn)n≥0 = (xn)n≥0, (Yn)n≥0 is independent with laws gθ(xn, yn)λn(dyn). We also assume that the law of
(Vn)n≥1 and X0 are independent of θ. By construction, the distribution of the observation path from the origin,
up to a given time T is given by

Pθ ((Y0, . . . , YT ) ∈ d(y0, . . . , yT )) = Eθ

{
T∏

n=0

gθ(Xn, yn)

}
λ0(dy0) . . . λn(dyn)

where the expectation is computed with respect to the law of (Xn)0≤n≤T with parameter θ.
An important problem in statistics is that of estimating the model parameters that most aptly describes an

observed real time series. There are many methods to solve this problem (see [23] for a recent review) and here
we concentrate on the Maximum Likelihood method. Given a finite observation history (yn)0≤n≤T , the model
parameter that best describes the data can be taken to be the maximizer of the density function given below

θ ∈ Θ −→ pθ(y0, . . . , yT ) = Eθ

{
T∏

n=0

gθ(Xn, yn)

}
.

An iterative procedure such as a gradient ascent method can be used to solve for this maximizer or for any one
of them if there are local maxima. To implement gradient ascent, an estimate of the gradient of the likelihood is
needed. Recently, an IPA gradient estimate has been proposed and implemented using the standard genealogical
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tree based particle system [5]. This approach is compared here with our backward particle system which is
demonstrated below to have a much lower variance.

The IPA gradient of the log-likelihood log pθ(y0, . . . , yT ) is given by

∇θ log pθ(y0, . . . , yT ) =
Eθ

{
Rn

T∏
n=0

gθ(Xn, yn)
}

Eθ

{
T∏

n=0
gθ(Xn, yn)

} (9.3)

where

Zn = ∇θhθ(Xn−1, Vn) +∇xhθ(Xn−1, Vn)Zn−1,

Rn = Rn−1 +
ZT

n∇xgθ(Xn, yn) +∇θgθ(Xn, yn)
gθ(Xn, yn)

,

with Xn evolving as in (9.1). (See [5] for the regularity conditions the model must satisfy for this to be true.)
Here ∇x indicates differentiation with respect to the state vector while ∇θ differentiation with respect to the
model vector. The quantity ZT

n ∈ Rnθ × Rd can be interpreted as the gradient of Xn with respect to θ, which
indeed depends on all past state values. Z0 and R0 are initialized to the zero matrix and vector respectively.

The gradient ∇θ log pθ(y0, . . . , yT ) may be estimated using the standard genealogical tree based particle
system for the Markov process (Xn, Zn, Rn)n≥0 with potentials Gn(Xn, Zn, Rn) = gθ(Xn, yn) as was proposed
by [5]. It is also straightforward to implement an on-line version of the backward particle model to estimate
this same expectation. (Note though that this involves a function Fn in (2.4) which is slightly more complicated
than the additive form in (2.5).) Details are omitted.

Results for the following linear Gaussian model are presented in Figure 1:

Xn = φXn−1 + σV Vn, (9.4)
Yn = cXn + σW Wn, (9.5)

where (Vn)n≥1 and (Wn)n≥1 are independent sequences of independent Gaussian random variables with zero
mean and unit variance. The model vector is θ = (φ, σV , c, σW )T ∈ R × (0,∞) × R × (0,∞). Data was
generated from this model with (φ, σV , c, σW ) = (0.8, 0.1, 1, 1). Such a simple model was assumed since the
gradient of the log-likelihood can be computed exactly with the Kalman filter, which serves as a benchmark.
As can be seen from the boxplots, our estimator outperforms the genealogical tree based particle system. Note
though that the computational cost is significantly higher for our method, i.e. O(N2) compared to O(N) for the
genealogical approach. However, from (8.5), we see that the new method with N particles may still outperform
the genealogical tree based particle system with N2 particles (in variance performance) as the variance of the
latter can grow quadratically with time compared to linear growth of the former. (Admittedly, this growth was
established in Section 8 under stringent mixing assumptions.) This has indeed been demonstrated in similar
estimation problems involving models for which mixing has not been established [26].

Appendix

Proof of Lemma 4.3. We prove the lemma by induction on the parameter n(> p). For n = p + 1, we have

Mp+1,p,η(xp+1, dxp) = Mp+1,η(xp+1, dxp) and Qp,p+1(xp, dxp+1) = Qp+1(xp, dxp+1).

By definition of the transitions Mp+1,η, we have

ηQp+1(dxp+1) Mp+1,p,η(xp+1, dxp) = η(dxp) Qp,p+1(xp, dxp+1).
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Figure 1. Comparison of the new backward particle system (left column) and genealogical
tree based particle system (right column) implementation of the IPA derivative. Each column,
from top to bottom, displays the estimate of the gradient of the log-likelihood computed with
respect to (φ, σV , c, σW ) = (0.8, 0.1, 1, 1). The gradient of the log-likehood was computed after
2500, 5000 and 7500 observations had been gathered. The long horizontal line dissecting the
box plots are the true values computed with the Kalman filter.

We suppose that the result has been proved at rank n. In this situation, we notice that

η(dxp) Qp,n+1(xp, d(xp+1, . . . , xn+1)) = η(dxp) Qp,n(xp, d(xp+1, . . . , xn))Qn+1(xn, dxn+1)

= ηQp,n(dxn) Qn+1(xn, dxn+1) Mn,p,η(xn, d(xp, . . . , xn−1))

= ηQp,n(1) Φp,n(η)(dxn) Qn+1(xn, dxn+1) Mn,p,η(xn, d(xp, . . . , xn−1)).

Using the fact that

Φp,n(η)(dxn) Qn+1(xn, dxn+1) = Φp,n(η)Qn+1(dxn+1) Mn+1,Φp,n(η)(xn+1, dxn)

and
ηQp,n(1) Φp,n(η)Qn+1(dxn+1) = ηQp,n+1(dxn+1)

we conclude that

η(dxp) Qp,n+1(xp, d(xp+1, . . . , xn+1)) = ηQp,n+1(dxn+1) Mn+1,Φp,n(η)(xn+1, dxn)Mn,p,η(xn, d(xp, . . . , xn−1))

= ηQp,n+1(dxn+1) Mn+1,p,η (xn+1, d(xp, . . . , xn)) .

This ends the proof of the lemma. �

Proof of Lemma 6.1

Using the recursions (4.6), we prove that

Mn+1,p,ηN
p

(xn+1, d(xp, . . . , xn)) =Mn+1,p+1,Φp+1(ηN
p ) (xn+1, d(xp+1, . . . , xn))×Mp+1,ηN

p
(xp+1, dxp).
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On the other hand, we also have

MN
p+1(xp+1, d(x0, . . . , xp)) = Mp+1,ηN

p
(xp+1, dxp)MN

p (xp, d(x0, . . . , xp−1))

from which we conclude that

Mn+1,p+1,Φp+1(ηN
p ) (xn+1, d(xp+1, . . . , xn))MN

p+1(xp+1, d(x0, . . . , xp)) =Mn+1,p,ηN
p

(xn+1, d(xp, . . . , xn))

×MN
p (xp, d(x0, . . . , xp−1)).

The end of the proof is now a direct consequence of the following decomposition

MN
n (xn, d(x0, . . . , xn−1))−Mn(xn, d(x0, . . . , xn−1)) =

∑
1≤p≤n

[
Mn,p,ηN

p
(xn, d(xp, . . . , xn−1))

×MN
p (xp, d(x0, . . . , xp−1))−Mn,p−1,ηN

p−1
(xn, d(xp−1, . . . , xn−1))MN

p−1(xp−1, d(x0, . . . , xp−2))
]

+Mn,0,ηN
0

(xn, d(x0, . . . , xn−1))−Mn,0,η0 (xn, d(x0, . . . , xn−1))

with the conventions

Mn,0,ηN
0

(xn, d(x0, . . . , xn−1))MN
0 (x0, d(x0, . . . , x1)) =Mn,0,ηN

0
(xn, d(x0, . . . , xn−1))

for p = 0, and for p = n

Mn,n,ηN
n

(xn, d(xn, . . . , xn−1))MN
n (xn, d(x0, . . . , xn−1)) =MN

n (xn, d(x0, . . . , xn−1)).
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St. Flour XXII, P. Bernard Ed. (1992).

[2] P. Billingsley, Probability and Measure. Third edition, Wiley series in probability and mathematical statistics (1995).
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