
 Open access Proceedings Article DOI:10.1109/SCC.2009.25

A Backwards Composition Context Based Service Selection Approach for Service
Composition — Source link

Hong Qing Yu, Stephan Reiff-Marganiec

Institutions: University of Leicester

Published on: 21 Sep 2009 - IEEE International Conference on Services Computing

Topics: Web service, Service-oriented architecture, Context (language use) and Context awareness

Related papers:

 QoS-aware middleware for Web services composition

 Efficient algorithms for Web services selection with end-to-end QoS constraints

 An approach for QoS-aware service composition based on genetic algorithms

 Quality driven web services composition

 Automated Context-Aware Service Selection for Collaborative Systems

Share this paper:

View more about this paper here: https://typeset.io/papers/a-backwards-composition-context-based-service-selection-
3mjle5tnmz

https://typeset.io/
https://www.doi.org/10.1109/SCC.2009.25
https://typeset.io/papers/a-backwards-composition-context-based-service-selection-3mjle5tnmz
https://typeset.io/authors/hong-qing-yu-2u74jh98uf
https://typeset.io/authors/stephan-reiff-marganiec-3uzv3dlga5
https://typeset.io/institutions/university-of-leicester-1tzb04bg
https://typeset.io/conferences/ieee-international-conference-on-services-computing-2nsh1ir8
https://typeset.io/topics/web-service-5jsci0pw
https://typeset.io/topics/service-oriented-architecture-207q4zun
https://typeset.io/topics/context-language-use-18vh7dju
https://typeset.io/topics/context-awareness-1ownqf1r
https://typeset.io/papers/qos-aware-middleware-for-web-services-composition-x57gs4mhme
https://typeset.io/papers/efficient-algorithms-for-web-services-selection-with-end-to-4iebefsxkt
https://typeset.io/papers/an-approach-for-qos-aware-service-composition-based-on-12oj78bft2
https://typeset.io/papers/quality-driven-web-services-composition-1qps2is95d
https://typeset.io/papers/automated-context-aware-service-selection-for-collaborative-2g4i4qyw24
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-backwards-composition-context-based-service-selection-3mjle5tnmz
https://twitter.com/intent/tweet?text=A%20Backwards%20Composition%20Context%20Based%20Service%20Selection%20Approach%20for%20Service%20Composition&url=https://typeset.io/papers/a-backwards-composition-context-based-service-selection-3mjle5tnmz
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-backwards-composition-context-based-service-selection-3mjle5tnmz
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-backwards-composition-context-based-service-selection-3mjle5tnmz
https://typeset.io/papers/a-backwards-composition-context-based-service-selection-3mjle5tnmz

A Backwards Composition Context Based Service

Selection Approach for Service Composition

Hong Qing Yu and Stephan Reiff-Marganiec

Department of Computer Science

University of Leicester

Leicester, United Kingdom

Email: {hqy1,srm13}@le.ac.uk

Abstract—In SOA applications are built from individual ser-
vices offered by different providers. Typically an application com-
prises of several such services usually stemming from different
providers leading to the question of which services to select and
compose. We present the new concept of composition context
together with a novel service selection algorithm. The approach
has been evaluated in our test bed and shows good scalability.

I. INTRODUCTION

In SOA (Service-Oriented Architecture), services are de-

fined as “self-contained, self-describing, modular applications

that can be published, located and invoke across the Web”

[TRPA06]. These characteristics allow services to be selected

and composed easily at software design time. However, one ul-

timate goal of SOA is to go beyond design time to dynamically

compose service at runtime. With the Semantic Web [FLP+06]

and the Business Process Specification Language (e.g. BPEL

[Org07]) developing, achieving this goal is becoming more and

more realistic. Meanwhile, many challenges are still existing

on the road. One of the most important question is what

kind of information should be considered for service selection

and composition at runtime. Currently, researchers suggest

three aspects of information: Service IOPE [CV04], Service

QoS (e.g. [JWJY08], [WU+08]) and Business rules/policies

(e.g. [OYP03], [SGS09]). In this paper, we introduce a new

aspect, composition context information, to drive runtime

service selection and composition. The composition context

includes service non-Functional properties, the collaboration

and communication history between services and business col-

laboration constraints between different organizations. Since

the composition context has its own features, which are

different from other information aspects, it introduces some

unique research issues. The main contributions of this paper

are:

• We introduce a new concept of composition context and

its classifications.

• We develop a backwards composition context based ser-

vice selection approach (BCCbSS) for service composi-

tion.

• We adopt the Type-based Logic Scoring Preference Ex-

tension (TLE) service selection method [YRM08] inside

the service composition approach.

The rest of the paper is organized as follows. We firstly

study two service composition scenarios in detail to discuss

what kind of information affects the service composition

and then present the composition context in section II. Then

the research problem and challenges are clearly defined in

section III. The composition context based service selection

mechanism is illustrated in section IV. The evaluation results

are discussed in section V. Finally, related work, conclusion

and future work are drawn in section VI and section VII.

II. DEFINING COMPOSITION CONTEXT

Let us study the real world service composition scenarios of

organizing a meeting and planning a trip. The main purpose of

studying these scenarios is to understand in more detail about

what information influences the selection of services in con-

junction with each other. Clearly, there is a need to organize

the results: we will call the resulting structure composition

context. We consider two scenarios as the introduce different

aspects relevant to composition. We could of course create

an artificial scenario with all aspects, but we feel it better to

use real examples from our industry partners in the inContext

project.

A. Organizing a meeting

A meeting is required to be held for discussing a plan to

deal with an emergency [TRMY07]. Organizing a meeting

involves a series of tasks. The tasks include searching suitable

participants inside the organization, finding a suitable date,

booking a meeting room and sending invitation notifications

to the participants. The meeting organizer integrates these

tasks as a workflow template (see Figure 1). Each task can

be performed by a service.

1) The participant search task that requests finding suit-

able participants who are in the organization can be

performed by a people-search service. There are two

available people-search services offered by different

providers. Both services have the same function of

taking people requirement attributes, such as skills,

experiences and positions to produce a list of people

as output. However, these two services have different

NFPs. One service can find the people who are in

the organizer’s organization and is more accurate by

having access to more information about people. The

other can search people who are both inside and outside

Fig. 1. Workflow of organizing a meeting

the organization, but it is less accurate. Also, the first

service’s response speed is slower than the second one.

2) The date finding task can be completed by the meeting

scheduling service. Again, there are two scheduling

services available offered by different providers. They

both use people’s calendars’ URL addresses as input and

return the most suitable date for all involved people as

output. One scheduling service only has ability to check

Google and MSN online calendar systems and supports

around 90% optimal dates (e.g. 9 people out of 10

are available on the scheduled date). The other service

has ability to check all kinds of current existing online

calendar systems and supports around 70% optimal date.

3) The room booking task can be executed by room book-

ing services. The booking service takes the date and

facility requirements as input and produces the place

address and room information as output. There are

two booking services available. One service supports

booking rooms with normal meeting facilities. The other

service supports booking rooms with both normal facil-

ities and advanced equipment.

4) The notification task can be performed by the notifi-

cation services. There are many services available. We

already discussed the notification services as the first

case study of the single service selection scenario.

1. Local constraints: The meeting organizer invokes the

workflow template. For task 1, a people search service is

required and two services are discovered. Local constraints

are a set of requirements for the service’s NFPs. “Local”

means the requirements are individual considerations for each

type of the services. These requirements could either be hard

criteria or soft criteria. Each requirement has a weight for

prioritizing. For instance, the organizer has preferences stating

that accuracy of the search is more important than speed, only

participants within the organization are acceptable. Therefore,

the first service (from provider 1) can be found better than

second one (from provider 2).

2. Invocation error context: Supposing a service from

provider 1 has been selected based on the local constraints (e.g.

accuracy and speed). Invoking the selected service produces

an invocation error, and hence, the other service from provider

2 has to be used instead. If this error can be saved as context

information and retrieved for future service compositions, it

can reduce the composition time and increase the composition

reliability. Thus, invocation error history is related to service

composition at runtime.

3. Coordination context: We assume the “people search

service” from provider 2 has been selected for Task 1. For

the current Task 2 of date finding, all target participants use

online Google calendars. The only local preference is the

optimal rate. When only considering the local constraints on

their own, it is easy to see that the service from provider 1

is the better one because its optimal rate is better. However,

it known that the selected people search service has more

coordination failures with the scheduling service of provider 1

than that offered by provider 2, a fact is learned from historical

composition records available in the context. Taking this into

account it is more difficult to decide which service is better.

4. provider distance: We suppose the date finding service from

provider 2 has been selected, thus the previous two tasks are

performed by the same provider. For Task 3, the aim is to

book a room with some equipments. Since both services are

qualified for the local constraints, A service can be selected

at random as there is no other user’s preference. However, the

history of coordination activities shows that services from the

same provider have a more efficient coordination rate, then

service from provider 2 may be better because it has provided

the previous two services.

B. Planning a trip

Let us consider another typical workflow example: planning

a trip. Generally, the planning activity requires three tasks of

booking transports, purchasing travel insurance and booking

hotels as shown in Figure 2. Moreover, purchasing insurance

and booking hotel are two independent tasks but both rely on

the transport date and time.

Because many travel related services are available, the

competition is tight.

1) There are many different transport services available,

the local constraints are faster speed and cheaper price

(price refers to the service fee, not tickets price or other

buying price through out this dissertation).

2) There are many insurance service as well, the local

constraints are cheaper service fee and better service

reputation.

Fig. 2. Workflow of planning a travel

3) There are also many hotel booking services, the local

constraints are the place is covered by the service,

between 3 stars and 4 stars hotel, economic and good

reputation.

5: Allowance policy

We assume that airline service A has been selected for

the booking transport task based on the user local context

constraints of covered locations, faster service response and

cheaper service fee. For the hotel booking task, some busi-

ness corporation policies are also applicable. It is useful to

make selections depending on the previous selected services’

corporation policy. The following two are examples.

• It is not allowed to continue invoking the service more

than 10 times in one workflow.

• Provider A does not allow its services to be used by

services owned by provider B.

6. Cost policy: In the commercial market, cost is an important

factor to be considered from the global point of view. The

aim of using the cost policy context is to find the cheapest

composite service, which does not necessarily mean every

single service is the cheapest one because the coordination

among different providers has different prices. This is the

main difference between local cost constraint and global cost

constraint. For example, one insurance service A takes £10 for

traveling with airline service but the airline gives £8 discount

for working with insurance service A. The other insurance

service takes £5 for traveling with the same airline service A.

Therefore, the first service is likely selected from global point

of view.

7. Composition time: Time is also a crucial factor for the

business. The time can be considered global and local. The

local view focuses on the individual service response time. In

TABLE I
COMPOSITION CONTEXT CLASSIFICATIONS

Context categories Context elements Type

Execution context Execution error rate Numerical
Connection error rate Numerical

Coordination context Provider distance Boolean
Coordination time Numerical
Physical distance Numerical

Composition policy Special cost Numerical
context Allowance Boolean

Times of uses Numerical

contrast, the global view concentrates on the overall composite

service response time. For example, one insurance service

takes more time to complete with airline A. However, the other

one will take less time to complete with the same airline. As

results, it is more reasonable to select the second one, if we

considering the composition time constraint.

C. Composition Context

Based on the presented case studies, we define eight

composition context constraints in three categories: execution

context, coordination context and composition policy context

(see Table I).

Remember that composition context contains only the data

related to explore how services behave with each other

and hence how desirable their composition might be; non-

functional aspects and matching user requirements for each

specific service is conducted in the local evaluation of each

individual service selection.

The composition context focuses on the context information

which will affect service composition. We believe that the

three top-level categories are complete, as information either

is related to events occurring during service execution, is given

by the static relation between two services or can be influenced

by business decisions.

We do not claim the elements defined inside the categories

are complete, but they have shown sufficient for the case

studies encountered in our work. Further elements can be

added if needed and they should not affect the feasibility of

our selection mechanism.

Analyzing the 3 groups of context, we find that composition

context can also be separated in dynamic context and static

context. The dynamic context (e.g. coordination time, execu-

tion context of execution error rate and connecting error rate)

means the context changes very frequently. Thus, dynamic

context needs to be detected, calculated and stored at runtime.

Static context refers to the composition information which

does not change frequently (e.g. provider distance and special

cost).

III. RESEARCH PROBLEM AND CHALLENGES

Definition 1: Given a set of subtasks, defined in a service

composition template, the composition context aware service

selection problem is to dynamically and efficiently find the

most suitable set of executed services for completing each

Fig. 3. Composition complexity analysis

subtask.

What exactly is most suitable depends on three external

factors:

• the composition context constraints which defined in the

Table I,

• the user context constraints for selecting individual ser-

vice for a sub-task, and

• the services’ runtime context information.

More detailed information about user context constraints

can be found in [YRM09]. The composition context aware

service selection problem raises some important issues:

(1) The balance between globally optimal and locally

optimal solutions is an important issue to achieve. Unlike

general global optimization problems, composition context

aware service selection requires to not only consider global

composition context constraints but also user’s local context

constraints. For example, in order to send a suitable message

to a meeting participant (the last sub-task for organizing a

meeting service composition), based on the current context of

a user (the user currently has a mobile phone but is without

Internet connection), an SMS message sending service is

required. If we only consider composition context from global

optimization point of view we may choose an unusable service

to the user right now. Therefore, we need to select the service

which should satisfy both sides of the optimization. Otherwise,

the selection result may not correct.

(2) The balance between complexity/efficiency and cor-

rectness. Composition context information is a dynamic and

multiple value constraint that is a difficult global optimization

problem. Normally, global optimization problems have a fixed

value. For example, if each node has a fixed value in a graph

when computing a cheapest path problem (see Figure 3.a), then

we can use a greedy algorithm to find the cheapest solution.

However, in our case, the service composition context data is

different for each service. For example, the composition price

is £6 between Service1 and Service2, but is free between

Service1 and Service3 (see Figure 3.b). Additionally we have

to consider the multiple constraint dimensions, and hence the

global optimization becomes infeasible. Therefore, existing

global optimization solutions are unsuitable for the dynamic

composition context-aware service selection. Finding a service

Fig. 4. The BCCbSS approach

composition solution with low complexity and efficiency is

required.

(3) Control flow structure affects the global optimal

strategy. The other unusual global optimization issue is that

the composition specification is a workflow with control flow

structures such as sequence, parallel (and) and split (or).

Especially, the split control flow decides the possible choice

of workflow paths, which means that only when a service is

selected and invoked, the next workflow path can be deter-

mined based on an assessment of the output data. However,

the runtime service output cannot be predicted. As result, an

upfront selection (rather than during execution) has a chance

to be completely wrong and would need to be recomputed

after each split (see also Figure 3.c).

IV. OUR SOLUTION: THE BCCBSS APPROACH

A. The approach

We developed a backwards composition context based

service selection approach (BCCbSS). The basic idea is to

always go back one step to check if the currently selected

services are the best composition in the light of current existing

composition knowledge and invoke the selected service as

soon as possible. The whole process is shown in Figure 4).

Step 1: Searching and returning all candidate services

from registry for the current request task in the composition

workflow. This step will ensure that service provide the right

functionality (we have not considered interface mediation in

our work, but existing work in this area can be used). For

simplifying the explanation, we only use Special Cost as

example composition context to demonstrate the selection and

composition process which shows in Figure 5.

Step 2: Invoking the ranking function F (the function will

be discuss in next subsection) to give a fixed evaluation value

Fig. 5. Demonstrated example for composing a cheapest composite service

to each candidate service by considering the user constraints

and current context information, composition context criteria

of selected service for previous task and next task. If there is

no previous selected service and no next selected service, the

ranking function only bases on the current user’s requirements.

As Figure 5.1 shows that 2 candidate services (S11 and S12)

are discovered for T1, where S11 is £2 cost and S22 is £5.

On this step, there is no composition context is available, so

S11 is selected.

Step 3: If the next control workflow is “split”, then invoke

the current selected service from previous step. Otherwise re-

select the previous service if it exist (otherwise it continues to

select next task from Step 1) and has not been invoked, then

invoke the re-selected service. If an error occurs when the

service is invoked, then record this error information into the

composition context store. Restart Step 3 to select the next best

service. Because T1 is the first task, then we go back to Step

1, 2. 2 candidate services (S21 and S22) are discovered for

T2, where S21 requires £5 to be composed with S11 and £1
with S12; S22 requires £8 to be composed with S11 and £2
with S12. Based on the first selected service S11, the S21 is

selected (see Figure 5.2). Now, we find that there is a previous

selected service existing, then we re-select the service for T1

based on its next selected service S21 to make sure the best

possible combination between T1 and T2. As result, S12 is

calculated as the better service than S11 in this process and

S12 is invoked (see Figure 5.3). The same process happens to

T3 as well as shows in Figure 5.4, 5.5 and 5.6.

Step 4: If current task is the last task in the composition

workflow, then invoke the current selected service and finish

the whole thing. Otherwise, it goes back to step 1 with next

required task. (See Figure 5.7)

Step 5: If the invocation finishes successfully, log the

execution details to the context store. Move to next activity

and return to Step 1.

B. BCCbSS optimization using TLE service selection method

In [YRM08], we introduced the Type-based LSP Extension

(TLE) service selection method to solve the multiple criteria

based service evaluation problem. In order to addressing the

composition context based global optimization issue, we define

a global ranking function F by adopting the TLE method and

using following definitions:

E1.1 = Soft local optimization criteria considering user

requirements and derived from user context;

E1.2 = Soft global optimization criteria amended and de-

rived from composition context related to the previous selected

service (if the previous selected service does not exist, then

E1.2 = 0) for the task in the workflow;

E1.3 = Soft global optimization criteria amended and de-

rived from composition context related to the next selected

service (if the next selected service does not exist, then

E1.3 = 0)for the task in the workflow;

E1 = (| W1 | Er
1.1+ | W2 | Er

1.2+ | W3 | Er
1.3)

1/r, (1)

where E1 aggregates all the soft optimization criteria, r=1,

| W1 |=| W2 |=| W3 |= 1/3.

E2 = Hard optimization criteria (including both global and

local context) represent all mandatory requirements which

must be satisfied. Any hard criterion evaluating to 0 will lead

to an aggregation result of 0. The soft criteria handle all other

preferences. Finally,

F = (| W1 | Er
1+ | W2 | Er

2)1/r, (2)

where r=-0.72, | W1 |=| W2 |= 0.5.

E1.2 is used to evaluate the composition context; the result

of the evaluation will then be merged with the local score (the

suitability of the service for the user’s needs) when computing

the overall score.

C. Contributions of BCCbSS

The overall services composition approach can be consid-

ered as a sequence of service selections and the length of that

sequence depends on the number of tasks in the workflow

template. When the composition process starts, there are only

local constraints (user context) available as the composition

context is empty because we do not know which set of services

will be relevant to the current candidate services. After the

first service is selected, the composition constraints will be

considered based on the first selected service’s composition

context. With more and more services being selected, the

composition context will become richer in information. The

data of the composition context are gained through addition of

facts from observation and the history. The BCCbSS approach

has following advanced characteristics:

1) The approach performs the selection and invocation step

by step. Some research work [CPEV05], [ZBN+05],

[YL05] suggests completing a service composition by

selecting all the services for the whole workflow tem-

plate. However, this is not an efficient way, if there

are many tasks involved in the workflow and many

candidate services are available for each of them. Taking

the organizing meeting scenario as an example, if there

are 4 services for each of the 4 tasks, then the selec-

tion method has to compare the totally 256 different

composition solutions for identifying the correct service

composition choice. With more service available, the

state explosion problem will affect the approach effi-

ciency and scalability. The step by step strategy can

essentially avoid such a problem because each step has

only to consider a small number of the services, which

is the number of the available services for the task,

previous selected or invoked service and next selected

service (only in re-selection process). Take the same

example, the step by step strategy only needs to consider

4 + (5 + 5 + 5) + 5 + (5 + 5 + 5) + 5 = 44 different

selection solutions.

2) The approach can guide the selection method to make a

choice based on existing knowledge of the composition

context. In the organizing meeting scenario, when the

people search service from Provider 1 has been selected

for task 1, the rest of the selection tasks should only

consider the composition context related to the selected

service because other people search services’ composi-

tion context is no longer useful.

3) The approach considers not only local constraints (user

context) but also the composition context as inputs for

the selection method. The local constraints specify the

user’s preferences for the individual service, e.g. quality,

execution duration and prices. Since it is difficult for

user to judge the global view of the composition service,

the composition context should be automatically applied.

The composition context or global constraints consider

the interaction and composition properties among the

selected services and available services for the current

task.

4) The approach is a run-time approach. The user’s prefer-

ences may frequently change according to his/her cur-

rent status, as will the service’s NFPs and composition

context. These dynamic features require a run-time com-

position approach rather than a design-time composition

approach. The run-time composition approach can make

sure that the composite solution is the most suitable one

for the current user’s status and composition context.

5) The approach is fault tolerant. When a selected service

can not perform correctly in a certain step, the approach

allows for the next best service to substitute the current

selected one in order to complete the composition task.

Fault tolerance is very important for a run-time approach

and real service composition scenarios. It increases the

likelihood of successful completion of the workflow.

In the example of planning a trip, when the air ticket

has been booked, the composition requires the insurance

purchase to be successful, because the previous step is

costly and irreversible.

V. EVALUATION

We evaluated the process by analyzing a number of test sce-

narios including the following (note that we have added values

to all 8 aspects of the composition composition context):

1) Increasing the number of services available for each step

of a three step workflow.

2) Increasing the length of the workflow template keeping

the number of services available for each step static.

In the first scenario we combine the 8 composition context

criteria and increasing numbers of services from 21 to 28 for

each of the 3 steps. Figure 6 represents that the method is quite

efficient to deal with up to 250 services in this situation. The

results suggest that method is linear with respect to available

services.

The second scenario is designed to test the scalability with

regard to composition steps. There are again 8 composition

context criteria and there are 4 services for each step. The test

results in Figure 7 show that the method works efficiently with

40 steps. Again, we have a linear increase in run-time when

the workflow length increases.

There are three observations that should be made here: (1)

it is unusual that workflows are much longer than 40 steps,

Fig. 6. Evaluation results for composition selection test case 2

Fig. 7. Evaluation results for composition selection test case 3

(2) the execution of the actual services will also be time-

consuming and some might be long-running services where

it is more crucial that the right service is selected than that it

is selected more quickly and (3) the method does interleave

execution and selection, so a user does not have to wait until

the selection mechanism has completed before the execution

of the workflow can start.

From the conducted experimentation, we can conclude that

the method is quite efficient as run-time increases are linear

with respect to the increase in workflow length as well as an

increase in the number of services.

VI. RELATED WORK

Two kinds of service selection approaches are developed

for Web service composition problem, which are local optimal

selection and global optimal selection.

Local optimization based service selection refers to se-

lection methods which only take certain selection constrains

related to the current activity in the workflow without speci-

fying and considering the constraints implied by the workflow

context and the consequences that the choice will have on

later activities. For example, a policy based BPEL workflow

Web service selection method is presented in [KHC+05]. It

extends BPEL for run-time adaptation of service by adding the

policy reference to each node. The policy documents provide

the local optimization rules which are independent from each

other. The service selection process is applied at each node

separately. A similar approach was also presented in the earlier

e-Flow project [CIJ+00]. The biggest advantage of the local

optimization methods is efficiency in selection time - the worst

case can be solved in polynomial time. However, it does not

necessarily select the optimal or even close to optimal service

in the global composition context.

Global optimization based service selection, on the other

hand, takes the global selection constraints to select a group of

services rather than one service for a node in the composition

workflow. The key assumption of this strategy is that all

suitable services for each node have already been discovered

and are inside the global optimization search space. [CPEV05],

[ZBN+05] are two example approaches. By studying these

approaches, we find they surely narrow the disadvantages

pointed out for local optimization. However, they introduce

their own problems.

• Low scalability: In general, multi-QoS constrained ser-

vice selection with optimization is an NP-complete prob-

lem [YL05], which reduces scalability of the methods.

• Lack of fault tolerance: Global optimization methods

return a set of combined services as the final solution

package. However, if one service is not available or

throws an exception at run-time, then the whole solution

package fails.

• Low flexibility: Global optimization methods need to

know all constraints at design time. However, some selec-

tion constraints are only known when certain data is pro-

duced at run-time. For example, considering a conditional

choice in a composition, the complete global constraints

are available only after the condition is evaluated.

• Lack of reflection to local constraints that are important

to reflect user context.

In contrast, the BCCbSS approach does not need to predict

all the global constraints in advance. It makes the selection

decisions activity by activity based on the currently existing

local and global composition context. The composition context

is growing as we proceed through the activities. Based on these

context constraints, we may select the best service according

to real-time knowledge for the next activity. As we continue

to select services, the composition context grows allowing for

more fine-grained selection.

Some people may argue that the knowledge for selecting the

first service probably is empty and hence we will not select the

best one without knowing the forward selection context when

the next control flow is “Split” . While this is true, in practice

it is impossible to predict the execution path as this is going

to be influenced by runtime data. Furthermore, we should not

make a decision relying on predicted knowledge which has

large chance to be wrong. For example, when selecting the best

service for the first task, one does not know all the currently

available services for the later stages. Therefore, we have to

make the service choices only based on certain knowledge that

are the user’s context constraints.

VII. CONCLUSION

Selecting the most suitable services to complete a complex

composite service is an important research topic. Industrial

scenarios requests to consider composition context which

introduces some new challenges for service selection and

composition.

By studying the real world scenarios, we introduced the

concept of the composition context which is divided into 3

classes and 8 specific elements. Based on the composition

context, we presented a novel Backward Composition Context

based Service Selection (BCCbSS) approach to meet the com-

position context aware challenges. The BCCbSS composition

process fully considers composition context factor by adopting

the TLE service selection method.

Comparing the approach to the context-aware service com-

position requirements and other composition approaches, our

approach has several advantages:

The approach is a fault tolerant step by step process. The

method scales well for large workflow as well as large numbers

of services, as the ranking considers only services for the

current task and has access for the wider workflow condition

through the composition context. The selected services are dy-

namic bound to and invoked at run-time rather than statically

bound at design time.

For the future work, we are going to investigate more service

composition scenarios in order to obtain a better understanding

about the completeness of the composition context. Moreover,

we are going to compare the BCCbSS approach to other

planning approaches on complexity and adaptability to see

whether our approach can also be used for other selection or

optimization problems.

ACKNOWLEDGMENT

This work is partially supported by the EU projects inCon-

text IST-2006-034718 and SENSORIA IST-2005-16004.

REFERENCES

[CIJ+00] F. Casati, S. Ilnicki, L. Jin, V. krishnamoorthy, and M. C.
Shan. Adptive and Dynamic Service Compostion in eFlow. HP
Laboratories Technique report, 2000.

[CPEV05] G. Canfora, M. D. PentaRaffaele, R. Esposito, and M. L Villani.
An approach for QoS-aware service composition based on ge-

netic algorithms. Proceedings of the 2005 conference on Genetic
and evolutionary computation, SESSION: Search-based software
engineering table of contents, pp. 1069-1075, 2005.

[CV04] I. Congiu and G. Valetto. Using owl-s iopes to drive services
selection and composition according to user preference. In
Proceeding of Semantic Web Services Workshops at ISWC, 2004.

[FLP+06] D. Fensel, H. Lausen, A. Polleres, J. De Bruijin, M. Stollberg,
D. Roman, and J. Domingue. Enabling Semantic Web Services.
Springer, 2006.

[JWJY08] C. Jin, M. Wu, T. Jiang, and J. Ying. Combine automatic and
manual process on web service selection and composition to
support qos. In 12th International Conference on Computer

Supported Cooperative Work in Design CSCWD, pages 459–464.
IEEE, 2008.

[KHC+05] D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann, and
A. Buchmann. Extending BPEL for Run Time Adaptability.
Proceedings of the 9th IEEE International EDOC Enterprise
Computing Conference, pp. 15-26, 2005.

[Org07] Oasis Organization. Web Services Business Process Exe-

cution Language Version 2.0 - Primer. http://docs.oasis-
open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf, 2007.

[OYP03] B. Orriens, J. Yang, and M.P. Papazoglou. A framework for
business rule driven web service composition. Springer-Verlag
Berlin Heidelberg, 2003.

[SGS09] S Reiff-Marganiec S Gorton, C Montangero and L Semini.
Stpowla: Soa, policies and workflows. In In E. Di Nitto and

M. Ripeanu (eds.): ICSOC’07 Workshops, pages 351–362. LNCS
4907, 2009.

[TRMY07] M. Tilly, S. Reiff-Marganiec, and H.Q. Yu. Design

and Implemetationn of monitoring and aggregation mech-

anisms for context-based services - Version 1. inCon-
text project deviverables, D3.2 V1, 2007, http://www.in-
context.eu/page.asp?PageRef=10, 2007.

[TRPA06] D.T. Tsesmetzis, I.G. Roussaki, I.V. Papaioannou, and M.E.
Anagnostou. Qos awareness support in web-service semantics. In
International Conference on Internet and Web Applications and

Services/Advanced International Conference on Telecommunica-

tions AICT-ICIW ’06, pages 128–128. IEEE Computer Society,
2006.

[WU+08] C. Wan, , C. Ullrich, L. Chen, R. Huang, J. Luo, and Z. Shi.
On solving qos-aware service selection problem with service
composition. In Proceedings of Seventh International Conference

on Grid and Cooperative Computing, 2008. GCC ’08., pages
467–474. IEEE Computer Society, 2008.

[YL05] T. Yu and K. Lin. Service Selection Algorithms for Composing

Complex Services with Multiple QoS Constrains. ICSOC2005,
LNCS, vol: 3826, pp. 130-143, 2005.

[YRM08] H. Q. Yu and S. Reiff-Marganiec. A method for automated web
service selection. In 2008 IEEE International Conference on

Services Computing, volume 0, pages 513–520, Los Alamitos,
CA, USA, 2008. IEEE Computer Society.

[YRM09] H.Q. Yu and S. Reiff-Marganiec. Automated context-aware
service selection for collaborative systems. In Proceedings of The

21st International Conference on Advanced Information Systems,
pages 193–200. Springer Lecture Notes in Computer Science,
2009.

[ZBN+05] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang. QoS-aware middleware for web services compo-

sition. IEEE Transactions on Software Engineering, pp. 311-327,
2005.

