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Abstract. Bacteria have demonstrated an amazing capacity to overcome envi-ronmental 

changes by collective adaptation through genetic exchanges. Using a distributed 

communication system and sharing individual strategies, bacteria propagate mutations as 

innovations that allow them to survive in different envi-ronments. In this paper we present an 

agent-based model which is inspired by bacterial conjugation of DNA plasmids. In our 

approach, agents with bounded rationality interact in a common environment guided by local 

rules, leading to Complex Adaptive Systems that are named 'artificial societies'. We have 

dem-onstrated that in a model based on free interactions among autonomous agents, optimal 

results emerge by incrementing heterogeneity levels and decentralizing communication 

structures, leading to a global adaptation of the system. This or-ganic approach to model peer-

to-peer dynamics in Complex Adaptive Systems is what we have named ‘bacterial-based 

algorithms’ because agents exchange strategic information in the same way that bacteria use 

conjugation and share genome.  
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1 Introduction 

Bacteria have demonstrated an amazing capacity to overcome environmental changes 

by collective adaptation through genetic exchanges. By using a distributed communi-

cation system and sharing individual strategies, bacteria propagate mutations as inno-

vations that allow them to survive in different scenarios [1,2,3,4,5]. Resilience is the 

capacity of a system to absorb changes in an environment, adapting its properties to 

disturbance but retaining its basic structure [6]. In this paper we will introduce our 

agents-based approach to model resilience in artificial societies. Even though similar 

approaches have been previously reported, such as MBFOA [7], MGA [8], OBBC [9] 

or BEA [10], we have developed a proof-of-concept inspired by bacterial conjugation 

that allows us to show how, in artificial societies based on interactions among agents 

with bounded rationality, optimal results emerge by incrementing heterogeneity levels 

and decentralizing communication structures [11]. Bacterial conjugation is a distri-

buted communication system used by bacteria to exchange strategies of survival, 
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implemented on genetic code. It matches the kind of dynamics we want to model 

because of several reasons. First of all, we conceive both natural and artificial socie-

ties as Complex Adaptive Systems (CAS) [12] which evolution depends on interac-

tions among autonomous agents. Secondly, we sustain that collective adaptation is 

related to decentralized communications [13], relying on information exchanges by 

using P2P networks to share codified blocks of information. Third, heterogeneity in 

population and variation (or mutation) of strategies is also a factor of evolution even 

though communication and P2P dynamics play an important role. 

2 Model 

2.1 Definition 

Following an agent-based modeling approach, we want to simulate and analyze the 

impact of both peer-to-peer connections and heterogeneity on strategies optimization, 

that is, on distributed generation of knowledge. In agent-based modeling, agents with 

bounded rationality interact in a common environment guided by local rules, leading 

to Complex Adaptive Systems that are named 'artificial societies' [14,15]. These sim-

plified models of biological societies grow from the bottom up in computational envi-

ronments and can be used as laboratories to test some hypotheses. In our case, we will 

use a special type of agent-based model, a bacterial-based algorithm that is inspired 

by bacterial conjugation and that matches with our purpose of simulating emergence 

of collective intelligence. In this model, we have a set A with N agents (ai). Each 

agent owns a genome that contains a specific strategy (si) to optimize a function. De-

pending on an agent's strategy, its knowledge level will be greater or lower. Then if an 

agent is able to optimize a given function in order to get a result with 70% of accuracy 

by using its own strategy, its knowledge level will be set to 70 and so on. Knowledge 

levels determine an agent’s position in a social structure. So agents with a more suc-

cessful genome will dominate the cultural life of society. 

During simulation agents move randomly through a bi-dimensional grid. When 

two agents have the same coordinates (x,y) they meet to each other and compare their 

knowledge levels. After that, the one with a lower knowledge (aa) tries to get a copy 

of genome from the more successful (ab). If the owner of the best strategy (ab) does 

not share its strategic knowledge we will say that conjugative machinery to send 

plasmids is inhibited. Otherwise ab will offer a plasmid with a copy of his genome to 

agents in the same coordinates and lower knowledge. Even though if the owner (ab) 

allows the other agent (aa) to get a copy of its genome and then improve its strategic 

knowledge, ab can impose two restriction policies to that copy:  

• Inhibit Reproduction: The receiver of a plasmid (aa) is allowed to use the strategy

that is contained in the copy but it does not own the intellectual property of that

strategy. Then plasmid cannot be sent to others once it is received. In this case the

first owner (ab) is the only one with reproduction rights on that strategy.

• Inhibit Mutation: The receiver (aa) can use the strategy but cannot modify it. Genome

only can be used as a unit of privative software or as a behavioral dogma, following

the exact strategy proposed by first owner (ab). Otherwise, if mutation is not inhibited,

strategies may be modified or mixed with other ones by the receiver (aa).
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With this model we want to show that centralized and homogeneous societies, those with 

greater number of agents that follow restrictive behaviors, lead to lower levels of know-

ledge and higher levels of inequality than distributed and heterogeneous ones. We will do 

it by comparing bacterial-based societies with different configurations and observing 

how inhibiting plasmid conjugation, reproduction or mutation modifies the statistical 

results. Only in a “P2P Society”, by sharing individual information among agents without 

communication constraints, optimal strategies and social development are achieved.  

2.2 Agent Genome 

As we have explained above, in our model each agent (ai) of the agents set A has its 

own strategy (si) coded as a part of its genome. Considering a set Sec containing sev-

eral strategies (si), its cardinality |Sec| (number of different strategies) will be equal or 

bigger than unity and equal or smaller than cardinality of A. We will denote it as:  ∀ ai ∈ A ∃ si ∈ Sec : 1 ≤ |Sec| ≤ |A| (1) 

If by default the value of |Sec| was one, simulation would start in a completely ho-

mogeneous society. If this value was near to |A| (number of agents) it would be a 

heterogeneous society. 

Agent genome has a segment denominated “S” which contains a coded strategy (si) 

of the set Sec. Genome also can include another three sequences (P, R and O) which 

are related to the three constraints that we have described: 

1. Inhibit original plasmid conjugation (P)

2. Inhibit copy reproduction (R)

3. Inhibit code mutation (O)

Depending of the presence of each one of these three segments, agents behavior will 

catalyze or constraint the arrival of the optimal scenario, the one in which knowledge 

is generated in distributed societies with low inequality among agents.  

If there is P then the genome will not be released by conjugation, that is, that strategy 

will be private. So only the absence of P enables the first owner of the genome to act as a 

donor; that is, to send a copy of genome as a plasmid to another agent by using conjuga-

tion. If possibility of that P occurs is high then the society will follow a centralized para-

digm, that is, just some nodes will be able to send information. P implies that original 

genome will be never copied and sent to anybody else. Then, strategies of nodes without 

P and a successful strategy coded on S will dominate the culture. 

If there is R this means that receivers of a copy of a genome are not allowed to re-

send the replicated plasmid to another agent. It avoids decentralized propagation of 

strategies, considering that the original owners of a genome are the only ones which 

can distribute copies. High possibility of R implies a constraint to diffusion of re-

ceived strategies, because receiver will be able to use the successful strategy but will 

not be allowed to propagate them and share its knowledge with others. 

Decentralization is inversely related to these two parameters. High P and R rates 

imply centralized societies without P2P communication and without reproduction 

rights. Oppositely, low P and R rates lead to P2P exchanges of information without 
limits of copies. 
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Fig. 1. Social behavior of agents depending on their genome

During a conjugation process, when one agent sends a plasmid to another, the S se-

quence (which contains a copy of the strategy of the donor) could be modified. This 

means that mutation of any strategy is allowed by default. But mutation can be inhibited 

if O is present in the genome. O sequence implies that a plasmid cannot be modified. So 

only low levels of O presence lead to an open society in which variation of bad strategies 

in short time is guarantee. However, high presence of O in the population genome im-

plies that strategies are closed and invariant. So once an agent follows a specific strategy 

it cannot change this until it receives another genome from a more successful agent. 

Differentiation of strategies is another important variable in this model. Cardinality 

of Sec is related to the number of different strategies by default, so if |Sec| is near to 

|A| and there is a low presence of O segments in population genome then it implies 

more heterogeneity.  

2.3 Local Rules and Complex Dynamics 

The main characteristic of complex phenomena is that it emerges from local interac-

tions among simple agents which have not global information about the whole 

system. In complex science, global dynamics are considered a result of local rules. 

Following that approach, our agents behave according to their own internal states by 

following single algorithmic rules.  

Each agent's decision takes into account two values, its own knowledge and neigh-

bors' knowledge. Each iteration agents compare both values by using their internal 
evaluator, which is the function that constitutes their bounded rationality. There is a 

different internal evaluator to every single agent, assuming variability of cognitive 

skills within a population. After positive evaluation, if it is worth to learn a new strat-

egy according to that internal criteria (and if any inhibitor impede it), conjugation 

between two agents occurs. When an agent receives a new genome it replaces the 

previous one. This replacement can be complete or not, depending of mutation inhibi-
tion. In this version of our model, mutation implies a recombination of 50% of both 

genomes. After replacement of genome, the receiver tests the new strategy by using it 

to optimize a fixed selection function. Accuracy of function optimization determines 
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the new knowledge level of the agent. The more knowledge an agent achieves, the 

more social reputation it obtains. Considering our model as a social network we can 

define each agent as a node linked to other nodes through information exchanges. 

Network analysis [16] can help us to evaluate which agent has been dominating the 

culture of our artificial society, so we have decided to build a directed graph with all 
the connections created by conjugation processes (Fig. 2). 

Fig. 2. Growing social structures. Four agents have decided to learn from a fifth one after comparing 

their knowledge levels. These conjugation processes have increased the node out-degree to 4. (B, C, 

D) Emergence of centralized social network with high presence of O, R and P segments in genome. 

3 Experimental Results 

3.1 Simulation Conditions 

In order to analyze the influence of specific variations on initial conditions, we have si-

mulated |Z|
3
 different environments considering the set Z = {0,1}. The focus of this study 

is how probabilistic distribution of Boolean genes (P, R, O) affects social structure, that 

is, the role of cultural constraints. We have fixed |Sec| ~ |A| and recombination to 0.5 

when mutation is allowed. For any of those |Z|
3
 setup configurations, we have ex-

ecuted our model during 10
4
 iterations. Repeating each one of these experiments with 

random populations between 10
3
 and 10

4 
agents we have observed common patterns 

that are related to P, R and O presence in population genome. We have tested the 
emergence of different global configurations, from centralized societies with low 
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levels and unequal distribution of knowledge to "P2P societies" in which heterogenei-

ty and decentralization lead to collective success. We have used NetLogo 5.0.4 to 

implement our model and Java 6 to extend it. 

We have defined a selection function with ten variables. Every iteration agents re-

place each one of those variables with the values of the S segment. If these ten genes 

optimize the function and the result is equal or greater than 70, we consider that the 

owner of that Si segment has a good level of knowledge. Results between 50 and 70 

means a medium level of knowledge and lower than 50 a bad one. 

As we can see (Fig. 3) our artificial societies are Complex Adaptive Systems that 

evolves through agent interactions. The adaptive behavior of the system as a whole 

consists in increasing the distribution of good strategies and the elimination of bad 

ones. But the speed of that propagation is mainly related to P presence, that is, with 

the number of agents that are allowed to share strategies.  

Fig. 3. Propagation of strategies. Low P and R rates (P ~ 0.19, R ~ 0.24) in a population with 

103 agents leading to decentralization and vertical propagation of successful strategies. Red 

agents have knowledge levels lower than 70, otherwise they are colored with green. 

3.2 Emergence of Equality in Distribution of Knowledge 

After reproducing several scenarios with random initial knowledge-level distributions, 

we have observed that worse results are achieved in centralized and homogeneous 

societies; for example, a society with presence of O and R in the whole of population 
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genome. O presence means that we will not see strategy modifications, that is, the maxi-

mum level of knowledge will be static during the 10
4
 iterations. Then the best strategy 

will depend only on initial configuration, when random Si segments are generated; this 

simulation will only take into account the propagation of those initial strategies. R im-

plies that there is not any reproduction of received genome, so only the original owner 

will be able to propagate it.  

Fig. 4. Evolution of knowledge levels. These results show how medium knowledge tends to 

grow slowly in centralized societies with P ~ 0.90 and R ~ 0.83. The number of agents per time 

unit that use strategies that satisfy a given selection function with less than 50 % of accuracy 

are plotted in red, those with more than 70% are in green, and others are in blue. Each picture 

reproduces a 103 agents simulation that has been executed during 104 iterations. Blue 

represents agents with strategic knowledge between 50 and 70, red means knowledge levels 

lower than 50 and green implies a knowledge level higher than 70.  

We have studied how P presence modifies the global behavior of this system. In 

order to compare two variations of that artificial society, one with P probability  ~ 

0.90 (Fig. 4) and other with P probability ~ 0.19, we have repeated the experiment 
several times, testing that centralization leads to low results in knowledge generation 

(Fig. 5). We have also simulated scenarios with high heterogeneity and decentraliza-

tion levels by reducing P, R and O probabilities and we have seen that with a whole 

elimination of O sequences (O probability ~ 0), that is, activating mutation of strate-

gies, generation of knowledge not only is faster but also richer in variety. As picture 6 

shows, different focus of improvement are found in population when diversity occurs. 
In this heterogeneous scenario, good strategies come from different agents with dif-

ferent initial locations. Agents evolve in creative ways because of modification of 

strategies is allowed and innovative knowledge is propagated because of decentraliza-

tion, leading to an egalitarian and optimal artificial society. 
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Fig. 5. In these four simulations P probability ~ 0.19 rather than P probability ~ 0.90 (Fig. 4). 

This change produces an acceleration of knowledge propagation. Bad strategies are removed 

early and competition is between medium and good strategies. The best options reach almost 

the whole population in only 104 iterations. The colors applied are the same as in Fig. 4. 

Fig. 6. Distributed production of knowledge in a “P2P Society”. Low P, O and R rates 

(P ~ 0.03, R ~ 0.14, O ~ 0.27) in a population with 104 agents during 103 iterations. This Com-

plex Adaptive System evolves faster because of heterogeneity and connectivity. Through peer-

to-peer exchanges, reproduction and modification rights, bad strategies (red) are replaced or 

mixed with medium strategies (blue) that are recombined and distributed, leading to this map of 

successful strategies (green). Each picture represents a snapshot of the same simulation in time. 
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4 Conclusions 

We have modeled complex social dynamics with bacterial-based algorithms. Inspired 

by microbial adaptation and conjugation of DNA plasmids, we have designed a com-

putational model to extend agent-based modeling. We have implemented agent-

bounded rationality in strategic genomes that can be shared by owners, reproduced by 

receivers, mutated and mixed. Finally, we have shown how in our artificial society, 

system optimization is limited by centralization and homogeneity. Based on experi-

mental results, we can infer that the best strategies of collective adaptation are related 

to O, R and P absence. That is, we conclude that Complex Adaptive Systems can 

achieve their optimal configuration only by incrementing decentralization and hetero-

geneity.  

Our purpose is to improve this model in order to test different hypotheses in future 

research by simulating several artificial societies and understanding their evolution, 

establishing the algorithmic basis to observe emergent properties such as cooperation 

and competition in societies guided by peer-to-peer dynamics. 
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