
A BALANCED TREE STORAGE AND RETRIEVAL ALGORITHM

Gary D. Knott
Division of Computer Research and Technology

National Institutes of Health
Bethesda, Maryland

ABSTRACT

A storage and retrieval scheme which places
items to be stored at the nodes of a binary tree
is discussed. The tree is always balanced in a
certain sense thus insuring that no excessively
long search paths can exist. In addition to pre-
senting the storage and retrieval algorithms, the
deletion problem is also solved. The programming
approaches involved yield a non-trivial case study
of list-processing techniques. Finally, a cost
analysis is given.

KEY WORDS AND PHRASES

storage and retrieval, searching, data
structures, balanced trees

i. Introduction

Below we describe a storage and retrieval
method using a data structure which we shall call
a balanced tree. This scheme was given by C. C.
Foster in [4], where he attributes it to G. M.
Adel'son-Vel'skij and Y. M. Landis [i]. It has
been used by David E. Ferguson [3] as a means for
the organization of symbol tables in assemblers.
The deletion procedure given later, as well as
the determination of an upper bound for the number
of compares required to search n items organized
in a balanced tree, are due to comments by Donald
E. Knuth. George A. Miller contributed signifi-
cantly to the algorithms given here by uncovering
several bugs.

The method of storing randomly-received items
as nodes in a binary tree such that x is a left son
of y only if x<y, and x is a right son of y only
if y!x is well-known [2,6,8,9]. Given such a tree
and an item key, the search time (number of 3-way
compares) required to find a matching item is
generally a logarithmic function of n, where n is
the number of items or nodes in the given tree.

However, a search time which
is necessarily a logarithmic function of n occurs
only when the given tree is balanced, that is,
when no excessively short and long paths exist.
Such paths tend to increase the number of compares
required on the average.

The scheme described below controls the
structure of the tree which is generated by
dynamically adjusting it, if required, to insure
it will, in fact, always be balanced. These
adjustments increase the update costs, but they

insure that search coBts are always bounded by a
logarithmic function of n. Furthermore, the
increase in update cost is modest and may often be
less than actual update costs in an unbalanced
tree, due to the increased search time which may
be required there.

2. The Underlying Data Structure

We shall take as our basic data structure an
area D composed of four vectors (V, L, R, B).
Thus D may be considered as a matrix of four col-
umns, or alternatively, as a collection of four-
component row vectors. A node is represented by

a particular quadruple (Vi, Li, Ri, Bi) = D i. V i

is the value of the node; in general we think of
V i holding an item, or a pointer to an item con-

tained in the set of items to be stored and re-
trieved. L.I is an index to the left son node, DL~

1

of the current node, or zero if no left son exists.
R° is similarly an index to the right son node,
1

DR. , of the current node, or zero if no right son
i

exists. B i is an integer value such that IBil!l.

B i is called the balance of the tree or sub-tree

whose root is the current node. B. is defined
more precisely below, l

f is defined as an index to D such that Df

is the first empty quadruple in D. We shall
assume that initially f is properly set. Moreover,
Vf is an index to the next free quadruple in D,

and so on. Thus we have a standard free-space
list organized in D with f taken as the head of
the list. If the quadruple D is the last node of

a

the fre~-space list, then V = 0. a

The root node of the entire tree stored in D

is at DRo. That is, R 0 is an index to the quad-

ruple which holds the root-node of our tree,
wherever it may be in D. Thus R, considered as a
vector, is defined as R[0:s], for some value s, and
is thus indexed using O-origin indexing. V, L, and
B, on the other hand, are not accessed at zero,
and hence, may be considered to be declared as
V[l:s], L[I:s], and B[l:s]. We shall assume that
R 0 is initially zero, indicating that no nodes

exist.

175

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1971 ACM

The tree stored in D is always organized
such that for any node indexed by i V L <V. and

' . 1
1

VR >V i whenever L.I and R.1 are not zero, respec-
1

tively.

Now, for our binary tree, consider each node

D i = (Vi, Li, Ri, Bi), and define h(i) as the

height of the sub-tree with root node D.. That
1

is, h(i) is the number of nodes in a longest
path in the sub-tree with root node i. Also
h(0) = O, since we understand the longest path of
the null tree to be of length zero. Then we may
define B. for an arbitrary node D. as follows:

1 1

B i = h(Hi) - h(Li) •

We shall say a tree is balanced if IBiI<2

for every node i in the tree. Clearly we should
not demand more, since a number of nodes which is
not a power of two less one cannot be organized
so that every B. is zero. A balanced tree thus

l

approximates our notion of a tree where no exces-
sively long or short paths exist. Moreover a
stronger notion of balance would require exces-
sive labor to maintain a balanced tree upon the
addition or deletion of items.

Consider the following example:

5

3 ii

1 4 7 13
\ /\ /\

2 6 9 12 15
/ \ /
8 i0 14

5
6
7
8
9

i0
ii
12
13
14
15

f = 16

i0 0
1 0
3 2
5 3
8 0
2 0
6 0

14 0
13 13
7 7
9 5
4 0

12 0
ii i0
15 8
17

4
0 0
6 i

12 -i
14 i
0 0
0 0
0 0
0 0

15 i
ii 1
1 0
0 0
0 0
9 0
0 -i

3. The Search Procedure

The search routine for our defined tree
is simple. It takes the argument x, which is a
key-value to be retrieved in D (we will consis-
tently confuse the key of an item with the item
itself), and the argument D = (V, L, R, B). It
returns the final argument i as the index in D of
the first matching node, or as zero if there is no
matching node. Thus we have:

Here the integers represent the key values of
the various nodes. This is seen to be a balanced
tree by inspection. The above tree may actually
be stored in D as follows:

176

"1

i i.4__ RO

i ~ L i

I I
yes

i=O ?

I
n o

x=V i ?

I
n o

x < V i ?

search(x, D=(V, L, R, B), I)

- - yes ~ Q

I
I

n o

I yes

i "~'- Ri I

I
4. The Storage Procedure

The add procedure for inserting a new node is
more complex. It works in the following manner:

Given a new item x to be added, a search is

done to discover what new leaf node position the
new item is to occupy. This search defines a

particular path from the root to that leaf node.
Unlike the simple search given above, the path so
defined must be remembered. A local push-down

stack is a suitable device to save the successive
nodes of such a path together with an indication
of the direction from which they were exited.

When x has been placed in D, the search path
is retraced from bottom to top. At each pre-
viously-passed node, the balance at that node is
recalculated, depending upon the direction of
exit during the original traverse. Whenever a
balance value indicates we have created an un-

balanced sub-tree (i.e. whenever IBil=2), we shall

immediately adjust the linkages in that sub-tree,
including changing the root by changing a link
which is "exterior" to the given sub-tree, so as
to obtain a balanced tree with height equal to the
previous height -- before the addition occurred.

Note this can always be done because there is
always some space or slack in an unbalanced tree.
If every space were filled, we would have a

perfect binary tree, but such a tree cannot be
unbalanced.

Having balanced the first sub-tree which
threatens the balance of the main tree, no further

including tree will become unbalanced, nor will
the various B-values be changed. Hence we are
done. If during retracing we update all the B-

values without needing to balance a sub-tree, then
again we are finished. In particular, if we change

a B-value to zero, then we may be assured we shall
not need to balance any sub-tree, for no further

B-values will change, once a zero is obtained.
This is because if +i (or -i) becomes a zero, then

we have in fact only more perfectly balanced our
tree.

4.1 The Balancing Algorithm

Now it remains only to describe the balancing
algorithm. Whenever a B-value is +2 or -2, a

right or left son respectively of that node exists

and has a B-value of +i or -i. Thus we have four
cases. They will require two essentially different
transformations. The basic idea is to "rotate"

the tree to be balanced in the "direction" of its
"small side." The simplest of the basic trans-
formations is shown by example as:

t t

÷ b ~0

1

The integers shown are the various balances.

Here we have rotated the tree to the left. In
terms of the actual representation we have:

V L R B V L R B

t V t a R t B t t V t b R t B t

a V L b 2 a V L c 0 a a -- a a --

b V b c ~ i b V b a ~ 0

c V L R B c V L R B
C C C C C C C C

where we have assumed the sub-tree shown was
reached from the left link of node D .

t

The second transformation arises when a
simple rotation again produces an unbalanced
tree. In such a case a deeper rotation will set
things right. This case is shown in the following
example.

177

t
t

1
a . ! . --)- C (" ~ 0

C C r ~ " ~ e

Or, in terms of the actual representation, we have:

V L R B V L R B

t V t a R t B t t V t _c R t B t

a V L b 2 a V L d -i a a -- a a - -

b v b % -1 + b V b e % 0

c V d e 1 c V a b 0
C C

d V d L d R d B d d V d L d R d B d

e V L R B e V L R B
e e e e e e e e

Here again, we have assumed that the left link of

the "master node," Dr, pointed to node D a.

Note that the transformations just given
remain valid when the node D in the first case,

c

and D d and/or D e in the second, do not exist.

Now some contemplation will show that only
these two basic situations together with their

reflected images can ever occur. Actually the
case where we have a node with a balance value of
±2 and a son or sons with a balance value of 0

will arise later and is covered below. The only

further complication is the recomputation of B-
values in all cases. The entire situation is
shown below. Here the bracketed expressions show

the required B-value recomputations in each case.

It can easily be seen that they are, in fact,
correct. The links shown with arrow heads are

"new." "Old" links which are changed are "cut"
with a slash. Unlabeled nodes need not exist in

which case the referent links are zero. The link
coming from the master node (shown as Q), which
is the parent node of the unbalanced sub-tree,

may be in R 0 or may be a left or right link of

some actual node. Its logical position remains

unchanged.

Case 1: ,B i = 2, B i ~ O .

J Case 2: B i = - 2 , Bj~__O.

' ,]
Case 3: Bi, =,2, Bj = - 1.

k

Case 4: B i = - 2 , Bj = 1.

- °]

178

The transformations given above must be used
to maintain the balance of our tree when updating,
i.e. adding or deleting an item. Thus we give be-
low a routine called 5alance to be used as a sub-
routine for invoking the various balance trans-
formations. Its arguments are the area D =
(V, L, R, B); a set of indices to nodes in D,
namely h, i, j, and k; and a switch, d, which is
to be +i or -i. h is the index of the master node
which has the node indexed by i as a son. The
i-node is the left son of the h-node if d is -i,
and is a right son of the h-node if d = +i. The
balance, Bi, at the i-node is assumed to be +2

or -2. j is the index of the right son of the
i-node if B. = +2 and is the index of the left son

l
of the i-node if B.l = -2. Finally if BiB j < 0

then k is the index of the left-son of the j-node
if B. = +2, and is the index of the right son of

i
the j-node if B. = -2. If B.B. > 0, then k is not

1 i j -

used and may be an arbitrary value.

It will be seen that the routine given below
merely encodes the transformations given in the
diagrams above.

4.2 Various Item Addition Algorithms

Now we shall consider several versions of the
add algorithm used to add an element to our tree.
The required arguments are x, the element to be
added; the area D; and the free-space pointer
f.

In the first program a local stack, S, is
used to save the search trail. In the second
version a compactification of code is achieved
by a suitable "renaming" imposed on D. In the
third version, the search trail is kept in D
itself and the appropriate pointers are restored
as the backscan occurs.

Recall that R 0 is assumed to be zero

initially, and that f is suitably initialized.

The first add program we consider is called

basic-add. The balance program, balance, is
invoked as a subroutine.

The basic-add program can be expressed more
tersely.

The formulation of the following algorithm,
called new-basic-add, indicates some of the
economies due to symmetry which one would consider
in actually coding a set of programs for use in
balanced tree storage and retrieval.

The balance routine must be modified to
accept another parameter which determines which
reflection of the appropriate balancing trans-
formation is to be used. We call this modified
balance routine new-balance, and it is given
below following its calling program, new-basic-
add. Also the stack S is used here to hold a
"packed" entry or vector in each position. The
underlying detailed logic should be clear.

Finally, the add routine can also be given
without the use of an auxiliary stack. Rather
we may reverse pointers on the way "down" and
re-reverse them on the,way back "up" when the
balance values, Bi, are being updated. The sign

of a link will indicate its status and the
position (L i or R i) of a negative link indicates

whether the son of interest was a left son or
right son. The "back-chain" thus defined ter-
minates when a self-referent link is found. This
program is given below as the routine called add.
The balance program given originally is used as

a subroutine.

We now give the balance routine and the
various addition routines.

179

L i .,t.--Rj
R . - - i I

Bi-~.--Bj-- 1

!

balance(h, i, j, k, d, D = (V, L, R, B))

Rh.~-- j]~F--no - -~

I I
yes no

i1 , -.,
Lj -~--- i

Bi -~- 1 -B j

Bi'~-- Bi I

I
yes

d < O ? I
I

yes

L h -,,.- j

BiB j >_ O? I
I

no

d. o.~ J--no----[
I

yes

L h .~-..k ~-~I
yes

L i .,~--R k j ~ I
Rj ~--L k

L k -~---j

Rk-,*--i

B i ~ 1(1 - Bk)/2J

Bi-q----[(1 + Bk)12J

R h-4-k I

B i • O? I
I I

no

~I Bk 4"0
)

R i -~--Lk

Lj - ~ R k

Rk-~-- j

Lk'4--i

I Bi-~---- [(1 + Bk)/2J

Sj ~ [(1 -- Bk)/21

180

basic-add (x,f,D = (V,L,R,B))

t
I j = O? no Sp.~._ 0

Vi.,~. x

L i ~ - O

R i " - O
Bi-*-- O

I
no

I '-"°]

I !

Ro-..,-.- j

i~ - 'R i 1
i ~'--Li I

h<O? | -

1 I
T ~

I I

yes no

p~--p + 1 R i =O? n o . ~ , ~ . ~ ' ~ ' - i

v~ yes

Li ..~-- j Ri<-- j I lj l I]

i .'o

n o

p '~ " -p - 1

181

?
j ~ - f

I ' j = O ?

I
yes

new-basic-add(x, f, D = (V, P, B))

f -.4"- Vf

Sp ~ (1,0)

i "~" Pa,i

p - (- p + 1

Sp "~" (a,i)

Vj - , -x - - ~

Lj-~- 0

Rj -.~- 0

Bj -'~- 0

new-balance (h, i, j, k, d, a, D)

yes

t
la--,r

| !
PI,0 = O? p y e s - - ~

f /
I

no

i ~.- P1,0

x < Vi?

no

a -.~- 1

Pa,i = O?

(d, h) -(- Sp ~ - ~ no

1

I L
Bi '~"Bi+a i ~

y~s
+

PI,0 ~ J

- - yes B i = O?

IlO
,t

i k ~ - j j "(" i

]
(a,i) ~ Sp

p -..~- p -1

p= 1?

182

new-balance(h, i, j, k, d, a, D = (V,

~ [BiB j .~. O?

I

yes

Pd,h "~- j

Pa,i ~ - P-a, j

P-a, i -',~- i

B i : a -- Bj

Bj " ~ - - B i

C exit) ~

P = (L, R), B))

|

n o

_t
Pd,h ~- k

]

Pa,i ~ P-a,k

P-a, j ~ Pa,k

Pa,k "~-j

P-a,k -~-i

i
B k = O?

y~s
t

B i -~ -0

Bj -'~" 0

l-no ,, I
I I

yes no

t
B i ~ - - a

Bj -.q- 0

Bi -~- 0

Bj -'~- a

183

Bk"~- 0

i ~ - f

j = O?

I
yes

add (x, f, D = (V , L , R , B L))

-no l

k - 4 - L i

L i - 4 - - h

h-,,=-- i

i -,~- k

V j -.,o- x

Lj " ~ - 0

R i " '-- 0

Bj"'- 0

 no_ t
.I

I
yes

L i = O?

y~s

L i 4 - j

B i . , , - - B i - - 1

R o = O?

I
no

i ~ - R o

h - t - - i

x < V i ?

I
no

I $

I R i = O?]

yes - ~ Ro'~t"- j

y•s
t

$
I

go to backscan

B i " ' - B i "I" 1

, no

I--Q

k -.,,- R i

Ri -.~-- - h

i -.,,..- k

18L,

yes I
I' ,°h~ I-

.'o
+

k-,,'- j I j"~--'i
i""-'h

,1
I .,,o: I

!

yes n~o

h-,*-- L i h-,*-- N i
Bi"t-'Bi - 1 Bi""--B i + 1
Li'~--j Ri<-'j

n;

ID

!

no
~ j

L h < O? I i
yes

d"*-- 1 I
q"~---- L h

I d"~--I ~ no

q..i-._ Rh

C0ack°n 9

no

I
i ~,=o7 t__,e. _l q--h w[h"'--i

d-4.--1
h.~--O
q"-- 0

|
no

k-~-'-h J h"*'-q

1
! !

yes no

Lh<--- k Rh"~" k

I.

185

The deletion algorithm for our balanced tree
storage scheme is somewhat difficult when con-
sidered in detail although it is very similar in
spirit to the add procedures discussed above.

The deletion process proceeds by searching
for the node which is to be deleted, given its
key value. The path taken during this search must
be saved for possible later retracing. If no
matching node is found, we are done. Otherwise,
the node to be deleted is removed from our tree
by suitably relinking various surrounding nodes,
and the space in D used for the deleted node is
returned to the free-space list.

The required relinking may result in un-
balancing our tree at a node of the disturbed
region. Thus this situation must be tested for
and, if present, may be corrected by an appli-
cation of the balance routine given earlier.
Unlike the add procedure, the deletion procedure
may perform several balance operations; since,
after relinking, we must retrace our steps back
to the root, adjusting the balance values of each
node of the back-trail as we go. Whenever the
sub-tree defined by the current node of the back-
trail is unbalanced, we must pause and apply the
balancing algorithm before continuing. It is
possible that a balancing operation will be re-
quired for every node in the back-trail, although
this is not normally the case, for when a balance
value becomes +i or -i, no further changes will
occur.

5.1 Deletion Relinking

Case 2: L i=O.
We may now discuss in more detail the re-

linking process required to remove a node from our
tree, whereupon we may further consider the "re-
winding and rebalancing" logic.

It will suffice to give several general

diagrams showing the transformations required.
It can be seen that the situations shown below are
exhaustive. As before, in each of the diagrams
below, <" represents the master node (in this case
the node which is the father of the node to be
deleted). If the root node is being deleted, the

master node consists only of the R 0 "entry" link.

Thus, in each case, the node labeled j is to be

removed. Also, we understand that in each diagram
an unlabeled node need not exist, in which case
the referent link shown is zero. The transfor-
mations given remain valid under this interpre-
tation. Moreover, as before, old links are shown
by simple lines while new links have arrow heads
shown. Finally, we note that it is easy to
justify the balance value recomputations shown.
The balance values of nodes above node i may not
be correct, but this is taken care of in the
course of the deletion process.

In general, the transformations given merely
"replace" the deleted node with a more-or-less
close neighbor such that the "little-to-the-left,
big-to-the-right" structure of our tree is pre-
served. Thus, we have the following situations.
Note that case 3 is just a special case of case
4, wherein tmi.

Case 1: Rj=O.
IIII

i

5. The Deletion Procedure

I~i ~'Bi + 1 if j is the left [
"1

on of i, otherwise,] i~-Bi - 1.

h

Bi"q"B j - 1]

186

J h

Case 3: L i =k .

IBi "~- B i +
k ~" Bj 1]

Case 4: L t + L i = k.

B i ~-B i + 1]
k "~" Bj

187

5.2 Various Deletion Algorithms

After the node to be deleted has been removed
by means of the appropriate relinking transfor-
mation, we then consider the back-trail from the
node labled i back to the root of our tree.

It will be seen that after relinking, the
balance at node i is correct (and possibly + 2)
and the balance at each node which is a parent of
node i may be incorrect by +i or -1. Thus we
first check the balance at node i and balance the
subtree with root node i (which we now call the
current sub-tree) if required. This may leave
the current sub-tree with a height which is one
less than the corresponding sub-tree in the same
position (this is, with root node i) before we
began the deletion process. This is the case if
the current sub-tree before any required re-
balancing is done, has Bo=O,m or B.=2z and BR.=+I ,_

i

or B.=-21 and BL =~i. In these circumstances,
i

after any necessary rebalancing, we see that we
have "shortened the long side" of the current
sub-tree and hence decreased its total height.

.=+i ", or B.=2 and BR.=0 , or Otherwise, we have B I _ z
m

Bi=-2 and BLo=0 , and after any necessary re-
i

balancing the resulting current sub-tree will not
have decreased in height. These two situations
can be distinguished by the fact that after any
necessary rebalancing is done, we have the
balance value of the current sub-tree equal to
zero if the height has decreased and +i otherwise.
Thus in case we obtain a balance value of zero,
the resulting sub-tree is shorter by one than
originally and hence, if the balance at its parent
node is dependent upon the current sub-tree's
previous height, we may find it necessary to re-
balance the sub-tree whose root is the just-higher
node in our back-trail. In particular, this
additional rebalancing will be required only when
our sub-tree (with root node i, unless balanced)
has grown shorter in height by one and also,
either its parent node has a balance value of +i
and our current sub-tree is to the left of the
parent node, or its parent node has a balance
value of -i and our current sub-tree is to the
right of the parent node.

We may now see how we must proceed up the
back-trail. If we enter a node from its left son,
we increase the balance at the node by one, while
if we enter a node from its right son, we decrease
the balance at the node by one. If we thereby
obtain a new balance value of +i or -i, we are
done and no further balance adjustments are re-
quired. This is because the height of our current
sub-tree has not decreased. If, on the other
hand, rebalancing is required, it is invoked.
Then if the resulting sub-tree has a balance value
of +i or -i, we are done, since again the height
of the current sub-tree has not changed. Other-
wise, we must continue to the next node in the
back-trail.

The process described above is given pre-
cisely in the routine below called basic-delete.
The arguments are x, the key of the item to be
deleted; f, the free-space pointer; and D, our
basic tree area. The local stack, S, is used to
save the back-trail as in the basic-add routine
given earlier. Finally, the balance routine given
earlier is used below.

We also give below the deletion
algorithm which corresponds to the add procedure
given earlier. This routine, called ~elete, takes
the same arguments as basic-delete,but no local
stack, S, is needed. Rather, the back-trail is
kept by temporarily reversing pointers during the
initial search.

In this routine the logic of the relinking
transformations given earlier is changed to
correctly remove a node from our tree with the
back-trail being maintained. The essential
changes are shown in the following set of diagrams,
where a link labeled (-) is understood to be part
of our back-trail; otherwise, all our conventions
are as before. Again case 3 is just a special
case of case 4.

Case 1.
(--) h ~ j

IBi-~-B i + 1, if j is the left son of h | - I

i~-Bi -- 1, otherwise. J

Case 2.

(-) ~) h

Case 3.

(-) ~ h

J

[Bi"~'- Bi + 1]
Bk"~- Bj

Case 4.

-Bi~-Bi + 11
Bk~-B j

We now give the various deletion routines.
basic-delete is followed by delete which uses the
transformations given just above.

188

basic-delete (x,f, D:(V,L,R,B))

H ' " -o

I I
p~-p+ 1 ~ i
Sp <----i I t
f

n o ,

I

i Lk= O? H k ~-
y~s

- k !

r

f t i ° l I ' ' ' j
0--~+,l I x- v,I ,--~:,l

LBO~ i ?| =o? F n o J
yes yes

~ T
,;-, nt°

p.,t- p -1
(s~ o:I I,,- ,,i
y~s no ~

! Bi Bj-1 i < O?
L ' S q "~ - Sq ~- k

L i - - R k 1 r~o ~es
• t t L k - Lj t

~- --Ij Rk ~- Rj go to f R i -4- Lj i "~- -i
I Bk -t- Bj test balance Bi ~ Bi_ 1 L i ~- Lj

B i .4- Bi + 1 Bi "~- Bi+l

189

~ " t e s t b a l a n c e : ' ~ h-~-- Sp

~ °-°-11

J h< O?
I yes no

, t
h'~" - h [

d - ~ - - 1

d -~-- 1

B i = 2?

n'o

B i = -2

i-~-h
B i ~ Bi-d

i

i I yes

I no H h = O?

I yes

n'o

t
B i = O?

I
n o

~ yes--~.

~ yes ..~

L

j .~.- R i
k-~-- Lj

j -~--L i
k-~- Rj

balance(h,i,j,k,d,D)

, J i-~-- Rh]-~yes

l i-,~" Lh J~-~

d = l ?

no

I

190

I
R o = O? !

I
I

yes

(-=-)

delete (x, f, D = (V, L, R, B))

1 • no ~ h ' * - - j

k ~-" Lj ~---no .
Lj ~ - h
h ~ - - j
j ~ ' - k

I
I yes

I
yes

!

x = V j?

x < Vi?

~y.s

no

L .,=o~ Fno--
I

yes

I Vj <__ f
• f ~ _ j

I go to repair
the hole

q-~-h

h-*-j

~ rewind: ~ h = q?
i

t ' o t

I*1 k-~- -h

h ' * - q

q -~-- - Lq

k ~ - - R j
Rj ~-- - I1
h-~-- j
j ~ - - k

I -- yes ~

, n ° - - - l ~ I q ~ - - Rq
Rh~--- k I

191

-repair the h o l e :)

R o"'~'-'- Lj ~ . . - . - yes

h .4-- _ L h

Bi " * - Bi + 1

Li ~ - - Lj ~ y e s

balance test I -
i

f

-I
Rj = O? I

I ym +
I

j = h? J
I

+
i < ' - - h J

i
< O? I Lh

I
I

no

h ,,,~,- - R h

B i ~ B i - - 1

R i -'*-- Lj

i < - - Rj

L i = O?
I

yes

L i ~ Lj

Bi-~'--B j - 1

j = h?
!

n o

I.

', n o

j = h?]<
i i

yes no
'

I h--k]
Ro < - k

h "~" i 1 R o " ' - !

4

q<.- - L k
Lk "e - -- i

i - q - - k
k -*-" q

;-] Lk = O?

I
yes

I

no
I

i L k ~ Lj LR j -4-- - -k

q " 4 - - - L i
Li 4 - Rk

- I Rk < ' - - -h B i "*-" B i + 1
B k ~ Bj
h . ~ - - q

192

balance test:)

d -~ - - -1

q ~---L h
Lh-~-- i

no

I L h < O? I

yes no
t
d "~'- 1]

q~---Rh I

Rh~--i 1

IBil= 27 ~yes
] no

B i = O?

now ;yes

go to rewind

h= O?

no T

i~ -h

h~-q
B i ~ - B i - d

exit

d~--I

q~--O
h~--O

1

J Bi <
-I
yes

j -~-- L i
k ~-Rj

i

°; I ~no

balance(h, i, j, k, d, D)

i ~ - -R h

i ~ - - L h I1~

j ~ - R i
k -~-- Lj

i

H
I
no

I

193

6 • A Cost Analysis

Here we obtain an upper bound for C, the
number of 3-way comparisons required to search
for an item and retrieve it ~f present) from a
balanced tree of n nodes. Given a balanced tree
of items and a key, each comparison either matches
the key being searched for or allows us to make
the next comparison at the next higher level in
our tree. Thus, thedesired upper bound is given
as the maximum number of levels which can be
found in some balanced tree of n nodes.

We begin by determining the minimum number
of nodes, Tk, which may occur in a balanced tree

with k levels.

Clearly, we have T O = 0 and T 1 = i. Now we

may see that Tk+ 1 = T k + Tk-i + 1 for k>_l, since

we schematically have

Tk+ 1 =

~k ~k-i

(1)

where here we understand that T k represents a

balanced tree of k levels with T k nodes, that is,

a minimal balanced tree of k levels. Then dis-

regarding the reflections which cause Tk to fail

to be unique, we see that (i) graphically con-
structs a minimal balanced tree of k+l levels from
given minimal balanced trees of k and k-i levels
plus one additional node and thus the relation in

integers, Tk+ 1 = T k + Tk_ I + i, results by

counting.

Thus we have:

Number of Number of Nodes in Minimal
Levels, k Balanced Tree, T k

0 0
1 i
2 2

3 4
4 7
5 12
6 20
7 33
8 54
9 88

i0 143

Now it is easy to show by induction that

T k = Fk+ 2 - 1 where F. is the i th Fibonacci
1

number, that is, F 0 = O, F 1 = i, and F i = Fi_ 1 +

Fi_ 2 for i~2.

Another proof of this fact may be given as
follows.

Let G(z) be the generating function for the T k
values. That is,

G(z) = T O + TlZ + T2z2 + T3z3 + ...

Then, since Tk+ 1 = T k ~- Tk_ 1 + 1 for k>_l and also,

1 = 1 + z + z 2 + ... , we have
l-z

2
G(Z) - zG(z) - z2G(z) z z (2)

I--Z

Then, by partial fraction decomposition we have

G(z)
-i -i

Z --Z +

l-z-z 2 l-z

But now we know (see [7], P. 82) that z is
l-z_z 2

the generating function for the Fibonacci numbers;
that is,

Z
F 0 + FlZ + F2 z2 + F3z3 +

l_z_z 2 "'"

Thus, since F 0 = 0, F 1 = i, we use the expansion

-i
--Z

of ~ to obtain

G(z) = (F 2 - i) + (F 3 - l)z + ...

But then, equating coefficients, we obtain

T k = Fk+ 2 - 1 for k)_O.

Now we may proceed.

Given n, a number of nodes organized in a balanced
tree, Q, then if k is such that

Fk+ 2 - 1 ! n < Fk+ 3 -i (3)

then Q has at most k levels and hence, at most k
compares are needed to search Q.

Now let us solve (3) for k in terms of n.

Let m = k + 2 for brevity.

Then we have

Fm --< n + 1 < Fro+ 1 . (4)

194

But now we know (see [7], p. 82) that

I (6m _ ~m) for m>O, F m = /_~ (5)

where

i
~ '6 = ~ + - - i - - = i . 6 1 8 o 3 . . .

and

5~- i
= - .61803 ...

2 2

Then from (4) and (5) with some manipulation we
have

era_< (n + i) 5~-- ~ < cm+l (6)

Hence,

m ~ in6 ((n + i)/~ - $) < m + 1

or,

m = LIn ((n + i)/~- ~)J

Thus, since m = k + 2,

k = fn ((n + i)~-$)J - 2 .

Now as stated above, the number of compares,
C, required to search any balanced tree of n or
fewer nodes is such that

C _< Lln~((n + i)/5-$)J - 2

We may approximate our derived upper bound for
C as

2.08 in(2.2n + 3)J - 2

We may also note that the shortest search
path in a balanced tree of k levels has at least

Lk-2-~ nodes. This can be taken as a lower bound

on the number of compares required to terminate
an unsuccessful search.

7. Concluding Remarks

Several interesting problems concerning
balanced tree storage and retrieval remain to be
solved. One problem is the computation of the
exact mean and variance of C, the number of 3-way
comparisons required to search for an item.
Another problem is to compute the expected number
of balance operations required per insertion and
per deletion taken over the construction and

equilibrium existence of a balanced tree which
stores items chosen from a random set of items.

The balanced tree storage and retrieval scheme
has several useful features. One feature is that
it is easy to retrieve the least or greatest item
currently stored without needing to know the
appropriate key-value. It is also easy to pass
over the stored items in order by their key-
values if desired.

Moreover, although hash table storage and
retrieval algorithms are superior to the balanced
tree scheme for symbol tables and the like, it
is difficult to develop a general storage and
retrieval system based on hashing methods. It is
easier to program the balanced tree algorithms to
deal with user-specified item formats and key-
values, thus a general filing system may be
developed based on the balanced tree storage and
retrieval algorithms.

The nearest competitor to the balanced tree
scheme as a general filing system is a sequentially
organized filing scheme with auxiliary tables of
indices, of which the ISAM (indexed sequential
access method) facilities in the S/360 operating
system [5] is an example. Given a reasonable
amount of insertion-deletion activity, the number
of items accessed during a search may be rea-
sonably similar in the two methods, and the bal-
anced tree scheme uses space more efficiently.
However, the fact that ISAM accesses items mostly
in the same cylinder while the balanced tree
scheme may not is a serious deficiency. It is
possible of course that a way of building the
balanced tree can be found which takes into account
the difficulties involved with using movable head
discs. In any event for truly random access
storage mediums the problems associated with
varying access time disappear and the balanced
tree scheme is useful in such circumstances.

REFERENCES

(i) ADEL'SON-VEL'SKIJ, G.M.; LANDIS, Y.M. An
algorithm for the organization of information.
Doklady Akademii Nauk USSR, vol. 16, no. 2,
p. 263:266, Moscow, USSR; also available in
translation as U.S. Dept. of Commerce OTS,
JPRS 17,137; and as NASA Document N63-i1777.

(2) BOOTH, A.D.; COLIN, H.J.T. On the efficiency
of a new method of dictionary construction.
Information and Control, vol. 3, p. 334:341,
December 1960.

(3)

(4)

FERGUSON, DAVID E. Balanced tree searching.
internal document, Programmatics Inc.,
January 1968.

FOSTER, C.C. Information storage and retrieval
using AVL trees. Proceedings of the 20th
National ACM Conference at Cleveland, 1965,
p. 192:205.

195

(5) GHOSH, S.P.; SENKO, M.E. File organization:
on the selection of random access index points
for sequential files. JACM, vol. 16, no. 4,
p. 569:579, October 1969.

(6) HIBBARD, THOMAS. Some combinatorial
properties of certain trees. JACM, vol. 9,
no. i, p. 13:28, January 1962.

(7) KNUTH, DONALD E. The Art of Computer Pro-
gramming, vol. i: Fundamental Algorithms.
Addison-Wesley, Reading, Mass., 1968.

(8) KNUTH, DONALD E. Optimum binary search trees.
Stanford Computer Science Dept. Technical
Report CS 149, Stanford University, January
1970.

(9) WINDLEY, P.R. Trees, forests, and rearranging.
Computer Journal, vol. 3, no. 2, p. 84:88,
July 1960.

196

