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ABSTRACT 

A storage and retrieval scheme which places 
items to be stored at the nodes of a binary tree 
is discussed. The tree is always balanced in a 
certain sense thus insuring that no excessively 
long search paths can exist. In addition to pre- 
senting the storage and retrieval algorithms, the 
deletion problem is also solved. The programming 
approaches involved yield a non-trivial case study 
of list-processing techniques. Finally, a cost 
analysis is given. 
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i. Introduction 

Below we describe a storage and retrieval 
method using a data structure which we shall call 
a balanced tree. This scheme was given by C. C. 
Foster in [4], where he attributes it to G. M. 
Adel'son-Vel'skij and Y. M. Landis [i]. It has 
been used by David E. Ferguson [3] as a means for 
the organization of symbol tables in assemblers. 
The deletion procedure given later, as well as 
the determination of an upper bound for the number 
of compares required to search n items organized 
in a balanced tree, are due to comments by Donald 
E. Knuth. George A. Miller contributed signifi- 
cantly to the algorithms given here by uncovering 
several bugs. 

The method of storing randomly-received items 
as nodes in a binary tree such that x is a left son 
of y only if x<y, and x is a right son of y only 
if y!x is well-known [2,6,8,9]. Given such a tree 
and an item key, the search time (number of 3-way 
compares) required to find a matching item is 
generally a logarithmic function of n, where n is 
the number of items or nodes in the given tree. 

However, a search time which 
is necessarily a logarithmic function of n occurs 
only when the given tree is balanced, that is, 
when no excessively short and long paths exist. 
Such paths tend to increase the number of compares 
required on the average. 

The scheme described below controls the 
structure of the tree which is generated by 
dynamically adjusting it, if required, to insure 
it will, in fact, always be balanced. These 
adjustments increase the update costs, but they 

insure that search coBts are always bounded by a 
logarithmic function of n. Furthermore, the 
increase in update cost is modest and may often be 
less than actual update costs in an unbalanced 
tree, due to the increased search time which may 
be required there. 

2. The Underlying Data Structure 

We shall take as our basic data structure an 
area D composed of four vectors (V, L, R, B). 
Thus D may be considered as a matrix of four col- 
umns, or alternatively, as a collection of four- 
component row vectors. A node is represented by 

a particular quadruple (Vi, Li, Ri, Bi) = D i. V i 

is the value of the node; in general we think of 
V i holding an item, or a pointer to an item con- 

tained in the set of items to be stored and re- 
trieved. L.I is an index to the left son node, DL~ 

1 

of the current node, or zero if no left son exists. 
R° is similarly an index to the right son node, 
1 

DR. , of the current node, or zero if no right son 
i 

exists. B i is an integer value such that IBil!l. 

B i is called the balance of the tree or sub-tree 

whose root is the current node. B. is defined 
more precisely below, l 

f is defined as an index to D such that Df 

is the first empty quadruple in D. We shall 
assume that initially f is properly set. Moreover, 
Vf is an index to the next free quadruple in D, 

and so on. Thus we have a standard free-space 
list organized in D with f taken as the head of 
the list. If the quadruple D is the last node of 

a 

the fre~-space list, then V = 0. a 

The root node of the entire tree stored in D 

is at DRo. That is, R 0 is an index to the quad- 

ruple which holds the root-node of our tree, 
wherever it may be in D. Thus R, considered as a 
vector, is defined as R[0:s], for some value s, and 
is thus indexed using O-origin indexing. V, L, and 
B, on the other hand, are not accessed at zero, 
and hence, may be considered to be declared as 
V[l:s], L[I:s], and B[l:s]. We shall assume that 
R 0 is initially zero, indicating that no nodes 

exist. 
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The tree stored in D is always organized 
such that for any node indexed by i V L <V. and 

' . 1 
1 

VR >V i whenever L.I and R.1 are not zero, respec- 
1 

tively. 

Now, for our binary tree, consider each node 

D i = (Vi, Li, Ri, Bi), and define h(i) as the 

height of the sub-tree with root node D.. That 
1 

is, h(i) is the number of nodes in a longest 
path in the sub-tree with root node i. Also 
h(0) = O, since we understand the longest path of 
the null tree to be of length zero. Then we may 
define B. for an arbitrary node D. as follows: 

1 1 

B i = h(Hi) - h(Li) • 

We shall say a tree is balanced if IBiI<2 

for every node i in the tree. Clearly we should 
not demand more, since a number of nodes which is 
not a power of two less one cannot be organized 
so that every B. is zero. A balanced tree thus 

l 

approximates our notion of a tree where no exces- 
sively long or short paths exist. Moreover a 
stronger notion of balance would require exces- 
sive labor to maintain a balanced tree upon the 
addition or deletion of items. 

Consider the following example: 

5 

3 ii 

1 4 7 13 
\ /\ /\ 

2 6 9 12 15 
/ \  / 
8 i0 14 

5 
6 
7 
8 
9 

i0 
ii 
12 
13 
14 
15 

f = 16 

i0 0 
1 0 
3 2 
5 3 
8 0 
2 0 
6 0 

14 0 
13 13 
7 7 
9 5 
4 0 

12 0 
ii i0 
15 8 
17 

4 
0 0 
6 i 

12 -i 
14 i 
0 0 
0 0 
0 0 
0 0 

15 i 
ii 1 
1 0 
0 0 
0 0 
9 0 
0 -i 

3. The Search Procedure 

The search routine for our defined tree 
is simple. It takes the argument x, which is a 
key-value to be retrieved in D (we will consis- 
tently confuse the key of an item with the item 
itself ), and the argument D = (V, L, R, B). It 
returns the final argument i as the index in D of 
the first matching node, or as zero if there is no 
matching node. Thus we have: 

Here the integers represent the key values of 
the various nodes. This is seen to be a balanced 
tree by inspection. The above tree may actually 
be stored in D as follows: 
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"1 

i i.4__ RO 

i ~ L i 

I I 
yes 

i=O ? 

I 
n o  

x=V i ? 

I 
n o  

x < V  i ? 

search(x, D=(V, L, R, B), I) 

- -  yes ~ Q 

I 
I 

n o  

I yes 

i "~'- Ri I 

I 
4. The Storage Procedure 

The add procedure for inserting a new node is 
more complex. It works in the following manner: 

Given a new item x to be added, a search is 

done to discover what new leaf node position the 
new item is to occupy. This search defines a 

particular path from the root to that leaf node. 
Unlike the simple search given above, the path so 
defined must be remembered. A local push-down 

stack is a suitable device to save the successive 
nodes of such a path together with an indication 
of the direction from which they were exited. 

When x has been placed in D, the search path 
is retraced from bottom to top. At each pre- 
viously-passed node, the balance at that node is 
recalculated, depending upon the direction of 
exit during the original traverse. Whenever a 
balance value indicates we have created an un- 

balanced sub-tree (i.e. whenever IBil=2), we shall 

immediately adjust the linkages in that sub-tree, 
including changing the root by changing a link 
which is "exterior" to the given sub-tree, so as 
to obtain a balanced tree with height equal to the 
previous height -- before the addition occurred. 

Note this can always be done because there is 
always some space or slack in an unbalanced tree. 
If every space were filled, we would have a 

perfect binary tree, but such a tree cannot be 
unbalanced. 

Having balanced the first sub-tree which 
threatens the balance of the main tree, no further 

including tree will become unbalanced, nor will 
the various B-values be changed. Hence we are 
done. If during retracing we update all the B- 

values without needing to balance a sub-tree, then 
again we are finished. In particular, if we change 

a B-value to zero, then we may be assured we shall 
not need to balance any sub-tree, for no further 

B-values will change, once a zero is obtained. 
This is because if +i (or -i) becomes a zero, then 

we have in fact only more perfectly balanced our 
tree. 

4.1 The Balancing Algorithm 

Now it remains only to describe the balancing 
algorithm. Whenever a B-value is +2 or -2, a 

right or left son respectively of that node exists 

and has a B-value of +i or -i. Thus we have four 
cases. They will require two essentially different 
transformations. The basic idea is to "rotate" 

the tree to be balanced in the "direction" of its 
"small side." The simplest of the basic trans- 
formations is shown by example as: 

t t 

÷ b ~0 

1 

The integers shown are the various balances. 

Here we have rotated the tree to the left. In 
terms of the actual representation we have: 

V L R B V L R B 

t V t a R t B t t V t b R t B t 

a V L b 2 a V L c 0 a a -- a a -- 

b V b c ~ i b V b a ~ 0 

c V L R B c V L R B 
C C C C C C C C 

where we have assumed the sub-tree shown was 
reached from the left link of node D . 

t 

The second transformation arises when a 
simple rotation again produces an unbalanced 
tree. In such a case a deeper rotation will set 
things right. This case is shown in the following 
example. 
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t 
t 

1 
a . !  . --)- C (" ~ 0 

C C r ~ " ~ e 

Or, in terms of the actual representation, we have: 

V L R B V L R B 

t V t a R t B t t V t _c R t B t 

a V L b 2 a V L d -i a a -- a a - -  

b v b % -1 + b V b e % 0 

c V d e 1 c V a b 0 
C C 

d V d L d R d B d d V d L d R d B d 

e V L R B e V L R B 
e e e e e e e e 

Here again, we have assumed that the left link of 

the "master node," Dr, pointed to node D a. 

Note that the transformations just given 
remain valid when the node D in the first case, 

c 

and D d and/or D e in the second, do not exist. 

Now some contemplation will show that only 
these two basic situations together with their 

reflected images can ever occur. Actually the 
case where we have a node with a balance value of 
±2 and a son or sons with a balance value of 0 

will arise later and is covered below. The only 

further complication is the recomputation of B- 
values in all cases. The entire situation is 
shown below. Here the bracketed expressions show 

the required B-value recomputations in each case. 

It can easily be seen that they are, in fact, 
correct. The links shown with arrow heads are 

"new." "Old" links which are changed are "cut" 
with a slash. Unlabeled nodes need not exist in 

which case the referent links are zero. The link 
coming from the master node (shown as Q), which 
is the parent node of the unbalanced sub-tree, 

may be in R 0 or may be a left or right link of 

some actual node. Its logical position remains 

unchanged. 

Case 1: ,B i = 2, B i ~ O .  

J Case 2: B i = - 2 ,  Bj~__O. 

' ,] 
Case 3: Bi, =,2, Bj = - 1. 

k 

Case 4: B i = - 2 ,  Bj = 1. 

- °  ] 
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The transformations given above must be used 
to maintain the balance of our tree when updating, 
i.e. adding or deleting an item. Thus we give be- 
low a routine called 5alance to be used as a sub- 
routine for invoking the various balance trans- 
formations. Its arguments are the area D = 
(V, L, R, B); a set of indices to nodes in D, 
namely h, i, j, and k; and a switch, d, which is 
to be +i or -i. h is the index of the master node 
which has the node indexed by i as a son. The 
i-node is the left son of the h-node if d is -i, 
and is a right son of the h-node if d = +i. The 
balance, Bi, at the i-node is assumed to be +2 

or -2. j is the index of the right son of the 
i-node if B. = +2 and is the index of the left son 

l 
of the i-node if B.l = -2. Finally if BiB j < 0 

then k is the index of the left-son of the j-node 
if B. = +2, and is the index of the right son of 

i 
the j-node if B. = -2. If B.B. > 0, then k is not 

1 i j - 

used and may be an arbitrary value. 

It will be seen that the routine given below 
merely encodes the transformations given in the 
diagrams above. 

4.2 Various Item Addition Algorithms 

Now we shall consider several versions of the 
add algorithm used to add an element to our tree. 
The required arguments are x, the element to be 
added; the area D; and the free-space pointer 
f. 

In the first program a local stack, S, is 
used to save the search trail. In the second 
version a compactification of code is achieved 
by a suitable "renaming" imposed on D. In the 
third version, the search trail is kept in D 
itself and the appropriate pointers are restored 
as the backscan occurs. 

Recall that R 0 is assumed to be zero 

initially, and that f is suitably initialized. 

The first add program we consider is called 

basic-add. The balance program, balance, is 
invoked as a subroutine. 

The basic-add program can be expressed more 
tersely. 

The formulation of the following algorithm, 
called new-basic-add, indicates some of the 
economies due to symmetry which one would consider 
in actually coding a set of programs for use in 
balanced tree storage and retrieval. 

The balance routine must be modified to 
accept another parameter which determines which 
reflection of the appropriate balancing trans- 
formation is to be used. We call this modified 
balance routine new-balance, and it is given 
below following its calling program, new-basic- 
add. Also the stack S is used here to hold a 
"packed" entry or vector in each position. The 
underlying detailed logic should be clear. 

Finally, the add routine can also be given 
without the use of an auxiliary stack. Rather 
we may reverse pointers on the way "down" and 
re-reverse them on the,way back "up" when the 
balance values, Bi, are being updated. The sign 

of a link will indicate its status and the 
position (L i or R i) of a negative link indicates 

whether the son of interest was a left son or 
right son. The "back-chain" thus defined ter- 
minates when a self-referent link is found. This 
program is given below as the routine called add. 
The balance program given originally is used as 

a subroutine. 

We now give the balance routine and the 
various addition routines. 
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L i .,t.--Rj 
R . - - i  I 

Bi-~.--Bj-- 1 

! 

balance(h, i, j, k, d, D = (V, L, R, B)) 

Rh.~-- j ]~F--no - -~ 

I I 
yes no 

i1 , -., 
Lj -~--- i 

Bi -~- 1 -B j  

Bi'~-- Bi I 

I 
yes 

d < O ?  I 
I 

yes 

L h -,,.- j 

BiB j >_ O? I 
I 

no 

d. o.~ J--no----[ 
I 

yes 

L h .~-..k ~-~I 
yes 

L i .,~--R k j ~ I 
Rj ~--L k 

L k -~---j 

Rk-,*--i 

B i ~ 1(1 - Bk)/2J 

Bi-q----[(1 + Bk)12J 

R h-4-k I 

B i • O? I 
I I 

no 

~I Bk 4"0 
) 

R i -~--Lk 

Lj - ~ R  k 

Rk-~-- j 

Lk'4--i 

I Bi-~---- [(1 + Bk)/2J 

Sj ~ [(1 -- Bk)/21 
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basic-add (x,f,D = (V,L,R,B)) 

t 
I j = O? no Sp.~._ 0 

Vi.,~. x 

L i ~ - O  

R i " -  O 
Bi-*-- O 

I 
no 

I '-"°] 

I ! 

Ro-..,-.- j 

i~ - 'R i  1 
i ~'--Li I 

h<O? | -  

1 I 
T ~ 

I I 

yes no 

p~--p + 1 R i =O? n o . ~ , ~ .  ~ ' ~ ' -  i 

v~ yes 

Li ..~-- j Ri<-- j I lj l I ] 

i .'o 

n o  

p '~ " -p -  1 
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? 
j ~ - f  

I ' j = O ?  

I 
yes 

new-basic-add(x, f, D = (V, P, B)) 

f -.4"- Vf 

Sp ~ (1,0)  

i "~" Pa,i 

p - ( - p +  1 

Sp "~" (a,i) 

Vj - , -x  - - ~  

Lj-~- 0 

Rj -.~- 0 

Bj -'~- 0 

new-balance (h, i, j, k, d, a, D) 

yes 

t 
la--,r 

| ! 
PI,0 = O? p y e s - - ~  

f / 
I 

no 

i ~.- P1,0 

x < Vi? 

no 

a -.~- 1 

Pa,i = O? 

(d, h) -(- Sp ~ - ~  no 

1 

I L 
Bi '~"Bi+a  i ~  

y~s 
+ 

PI,0 ~ J 

- -  yes B i = O? 

IlO 
,t 

i k ~ - j  j "(" i 

] 
(a,i) ~ Sp 

p -..~- p -1  

p=  1? 
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new-balance(h, i, j, k, d, a, D = (V, 

~ [  BiB j .~. O? 

I 

yes 

Pd,h "~- j 

Pa,i ~ -  P-a, j  

P-a, i  -',~- i 

B i : a -- Bj 

Bj " ~ - -  B i 

C exit ) ~  

P = (L, R), B)) 

| 

n o  

_t 
Pd,h ~-  k 

] 

Pa,i ~ P-a,k 

P-a, j  ~ Pa,k 

Pa,k "~-j 

P-a,k -~-i 

i 
B k = O? 

y~s 
t 

B i -~ -0  

Bj -'~" 0 

l-no ,, I 
I I 

yes no 

t 
B i ~ - - a  

Bj -.q- 0 

Bi -~- 0 

Bj -'~- a 

183 

Bk"~- 0 



i ~ - f  

j = O? 

I 
yes 

add (x,  f, D = ( V , L , R , B L ) )  

-no l 

k - 4 - L  i 

L i - 4 - - h  

h-,,=-- i 

i -,~- k 

V j  -.,o- x 

Lj  " ~ - 0  

R i " '-- 0 

Bj"'- 0 

 no_ t 
.I 

I 
yes 

L i = O? 

y~s 

L i 4 -  j 

B i . , , - - B i - - 1  

R o = O? 

I 
no  

i ~ - R  o 

h - t - -  i 

x < V i ?  

I 
no 

I $ 

I R i = O? ] 

yes - ~  Ro'~t"- j 

y•s 
t 

$ 
I 

go to  backscan 

B i " ' - B  i "I" 1 

, no 

I--Q 

k -.,,- R i 

Ri -.~-- - h  

i -.,,..- k 
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yes I 
I' ,°h~ I- 

.'o 
+ 

k-,,'- j I j"~--'i 
i""-'h 

,1 
I .,,o: I 

! 

yes n~o 

h-,*-- L i h-,*-- N i 
Bi"t-'Bi - 1 Bi""--B i + 1 
Li'~--j Ri<-'j 

n; 

ID 

! 

no 
~ j 

L h < O? I i 
yes 

d"*-- 1 I 
q"~---- L h 

I d"~--I ~ no 

q..i-._ Rh 

C0ack°n 9 

no 

I 
i ~,=o7 t__,e. _l q--h w[ h"'--i 

d-4.--1 
h.~--O 
q"--  0 

| 
no 

k-~-'-h J h"*'-q 

1 
! ! 

yes no 

Lh<--- k Rh"~" k 

I. 
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The deletion algorithm for our balanced tree 
storage scheme is somewhat difficult when con- 
sidered in detail although it is very similar in 
spirit to the add procedures discussed above. 

The deletion process proceeds by searching 
for the node which is to be deleted, given its 
key value. The path taken during this search must 
be saved for possible later retracing. If no 
matching node is found, we are done. Otherwise, 
the node to be deleted is removed from our tree 
by suitably relinking various surrounding nodes, 
and the space in D used for the deleted node is 
returned to the free-space list. 

The required relinking may result in un- 
balancing our tree at a node of the disturbed 
region. Thus this situation must be tested for 
and, if present, may be corrected by an appli- 
cation of the balance routine given earlier. 
Unlike the add procedure, the deletion procedure 
may perform several balance operations; since, 
after relinking, we must retrace our steps back 
to the root, adjusting the balance values of each 
node of the back-trail as we go. Whenever the 
sub-tree defined by the current node of the back- 
trail is unbalanced, we must pause and apply the 
balancing algorithm before continuing. It is 
possible that a balancing operation will be re- 
quired for every node in the back-trail, although 
this is not normally the case, for when a balance 
value becomes +i or -i, no further changes will 
occur. 

5.1 Deletion Relinking 

Case 2: L i=O.  
We may now discuss in more detail the re- 

linking process required to remove a node from our 
tree, whereupon we may further consider the "re- 
winding and rebalancing" logic. 

It will suffice to give several general 

diagrams showing the transformations required. 
It can be seen that the situations shown below are 
exhaustive. As before, in each of the diagrams 
below, <" represents the master node (in this case 
the node which is the father of the node to be 
deleted). If the root node is being deleted, the 

master node consists only of the R 0 "entry" link. 

Thus, in each case, the node labeled j is to be 

removed. Also, we understand that in each diagram 
an unlabeled node need not exist, in which case 
the referent link shown is zero. The transfor- 
mations given remain valid under this interpre- 
tation. Moreover, as before, old links are shown 
by simple lines while new links have arrow heads 
shown. Finally, we note that it is easy to 
justify the balance value recomputations shown. 
The balance values of nodes above node i may not 
be correct, but this is taken care of in the 
course of the deletion process. 

In general, the transformations given merely 
"replace" the deleted node with a more-or-less 
close neighbor such that the "little-to-the-left, 
big-to-the-right" structure of our tree is pre- 
served. Thus, we have the following situations. 
Note that case 3 is just a special case of case 
4, wherein tmi. 

Case 1: Rj=O. 
IIII 

i 

5. The Deletion Procedure 

I~i ~'Bi + 1 if j is the left [ 
"1 

on of i, otherwise, ] i~-Bi - 1. 

h 

Bi"q"B j -  1] 
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J h 

Case 3: L i =k .  

IBi "~- B i + 
k ~" Bj 1] 

Case 4: L t + L i = k. 

B i ~-B i + 1] 
k "~" Bj 
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5.2 Various Deletion Algorithms 

After the node to be deleted has been removed 
by means of the appropriate relinking transfor- 
mation, we then consider the back-trail from the 
node labled i back to the root of our tree. 

It will be seen that after relinking, the 
balance at node i is correct (and possibly + 2) 
and the balance at each node which is a parent of 
node i may be incorrect by +i or -1. Thus we 
first check the balance at node i and balance the 
subtree with root node i (which we now call the 
current sub-tree) if required. This may leave 
the current sub-tree with a height which is one 
less than the corresponding sub-tree in the same 
position (this is, with root node i) before we 
began the deletion process. This is the case if 
the current sub-tree before any required re- 
balancing is done, has Bo=O,m or B.=2z and BR.=+I ,_ 

i 

or B.=-21 and BL =~i. In these circumstances, 
i 

after any necessary rebalancing, we see that we 
have "shortened the long side" of the current 
sub-tree and hence decreased its total height. 

.=+i ", or B.=2 and BR.=0 , or Otherwise, we have B I _ z 
m 

Bi=-2 and BLo=0 , and after any necessary re- 
i 

balancing the resulting current sub-tree will not 
have decreased in height. These two situations 
can be distinguished by the fact that after any 
necessary rebalancing is done, we have the 
balance value of the current sub-tree equal to 
zero if the height has decreased and +i otherwise. 
Thus in case we obtain a balance value of zero, 
the resulting sub-tree is shorter by one than 
originally and hence, if the balance at its parent 
node is dependent upon the current sub-tree's 
previous height, we may find it necessary to re- 
balance the sub-tree whose root is the just-higher 
node in our back-trail. In particular, this 
additional rebalancing will be required only when 
our sub-tree (with root node i, unless balanced) 
has grown shorter in height by one and also, 
either its parent node has a balance value of +i 
and our current sub-tree is to the left of the 
parent node, or its parent node has a balance 
value of -i and our current sub-tree is to the 
right of the parent node. 

We may now see how we must proceed up the 
back-trail. If we enter a node from its left son, 
we increase the balance at the node by one, while 
if we enter a node from its right son, we decrease 
the balance at the node by one. If we thereby 
obtain a new balance value of +i or -i, we are 
done and no further balance adjustments are re- 
quired. This is because the height of our current 
sub-tree has not decreased. If, on the other 
hand, rebalancing is required, it is invoked. 
Then if the resulting sub-tree has a balance value 
of +i or -i, we are done, since again the height 
of the current sub-tree has not changed. Other- 
wise, we must continue to the next node in the 
back-trail. 



The process described above is given pre- 
cisely in the routine below called basic-delete. 
The arguments are x, the key of the item to be 
deleted; f, the free-space pointer; and D, our 
basic tree area. The local stack, S, is used to 
save the back-trail as in the basic-add routine 
given earlier. Finally, the balance routine given 
earlier is used below. 

We also give below the deletion 
algorithm which corresponds to the add procedure 
given earlier. This routine, called ~elete, takes 
the same arguments as basic-delete,but no local 
stack, S, is needed. Rather, the back-trail is 
kept by temporarily reversing pointers during the 
initial search. 

In this routine the logic of the relinking 
transformations given earlier is changed to 
correctly remove a node from our tree with the 
back-trail being maintained. The essential 
changes are shown in the following set of diagrams, 
where a link labeled (-) is understood to be part 
of our back-trail; otherwise, all our conventions 
are as before. Again case 3 is just a special 
case of case 4. 

Case 1. 
(--) h ~ j  

IBi-~-B i + 1, if j is the left son of h | - I  

i~-Bi -- 1, otherwise. J 

Case 2. 

(-) ~ ) h  

Case 3. 

( - ) ~ h  

J 

[ Bi"~'- Bi + 1 ] 
Bk"~- Bj 

Case 4. 

-Bi~-Bi + 11 
Bk~-B j 

We now give the various deletion routines. 
basic-delete is followed by delete which uses the 
transformations given just above. 
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basic-delete (x,f, D:(V,L,R,B)) 

H ' "  -o 

I I 
p~-p+ 1 ~ i 
Sp <----i I t 
f 

n o  , 

I 

i Lk= O? H k  ~- 
y~s 

- k  ! 

r 

f t i ° l  I ' ' ' j  
0--~+,l I x- v,I ,--~:,l 

LBO~ i ?| =o? F n o J  
yes yes 

~ T 
,;-, nt° 

p.,t- p -1 
( s~ o:I I,,- ,,i 
y~s no ~ 

! Bi Bj-1 i < O? 
L ' S q  "~ -  Sq ~- k 

L i - - R k  1 r~o ~es 
• t t L k -  Lj t 

~- --Ij Rk ~- Rj go to f R i -4- Lj i "~- -i 
I Bk -t- Bj test balance Bi ~ Bi_ 1 L i ~- Lj 

B i .4- Bi + 1 Bi "~- Bi+l 

189 



~ "  t e s t b a l a n c e : ' ~  h-~-- Sp 

~ °-°-11 .... 

J h< O? 
I yes no 

, t 
h'~" - h  [ 

d - ~ -  - 1  

d -~-- 1 

B i = 2? 

n'o 

B i = -2  

i-~-h 
B i ~ Bi-d 

i 

i I yes 

I no H h = O? 

I yes 

n'o 

t 
B i = O? 

I 
n o  

~ yes--~. 

~ yes ..~ 

L 

j .~.- R i 
k-~-- Lj 

j -~--L i 
k-~- Rj 

balance(h,i,j,k,d,D) 

, J i-~-- Rh ]-~yes 

l i-,~" Lh J~-~ 

d = l ?  

no 

I 
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I 
R o = O? ! 

I 
I 

yes 

(-=-) 

delete (x, f, D = (V, L, R, B)) 

1 • no ~ h ' * - - j  

k ~-" Lj ~---no . 
Lj ~ - h  
h ~ - - j  
j ~ ' - k  

I 
I yes 

I 
yes 

! 

x = V j? 

x < Vi? 

~y.s 

no 

L .,=o~ Fno-- 
I 

yes 

I Vj <__ f 
• f ~ _ j  

I go to repair 
the hole 

q-~-h 

h-*-j  

~ rewind: ~ h = q? 
i 

t ' o t  

I*1 k-~- -h  

h ' * - q  

q -~-- - Lq 

k ~ - - R j  
Rj ~-- - I1 
h-~-- j 
j ~ - - k  

I -- yes ~ 

, n ° - - - l ~  I q ~ - -  Rq 
Rh~--- k I 
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-repair the h o l e : )  

R o"'~'-'- Lj ~ . . - . -  yes 

h .4-- _ L h  

Bi " * -  Bi + 1 

Li ~ - -  Lj ~ y e s  

balance test I -  
i 

f 

-I 
Rj = O? I 

I ym + 
I 

j = h? J 
I 

+ 
i < ' - - h  J 

i 
< O? I Lh 

I 
I 

no 

h ,,,~,- - R  h 

B i ~ B i - -  1 

R i -'*-- Lj 

i < - -  Rj 

L i = O? 
I 

yes 

L i ~ Lj 

Bi-~'--B j - 1 

j = h? 
! 

n o  

I. 

', n o  

j = h? ]< 
i i 

yes no 
' 

I h--k] 
Ro < -  k 

h "~"  i 1 R o  " ' -  ! 

4 

q<.- -  L k 
Lk "e -  -- i  

i - q - - k  
k -*-" q 

;- ] Lk = O? 

I 
yes 

I 

no 
I 

i L k ~ Lj LR j -4-- - -k  

q " 4 - - - L  i 
Li 4 -  Rk 

- I  Rk < ' -  - -h B i "*-" B i + 1 
B k ~ Bj 
h . ~ - - q  
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balance test: ) 

d -~ - - -1  

q ~---L h 
Lh-~-- i 

no 

I L h < O? I 

yes no 
t 
d "~'- 1 ] 

q~---Rh I 

Rh~--i 1 

IBil= 27 ~yes 
] no 

B i = O? 

now ;yes 

go to rewind 

h= O? 

no T 

i~ -h  

h~-q  
B i ~ -  B i - d  

exit 

d~--I 

q~--O 
h~--O 

1 

J Bi < 
-I 
yes 

j -~-- L i 
k ~-Rj 

i 

°; I ~no 

balance(h, i, j, k, d, D) 

i ~ - -R  h 

i ~ - - L  h I1~ 

j ~ - R  i 
k -~-- Lj 

i 

H 
I 
no 

I 
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6 • A Cost Analysis 

Here we obtain an upper bound for C, the 
number of 3-way comparisons required to search 
for an item and retrieve it ~f present) from a 
balanced tree of n nodes. Given a balanced tree 
of items and a key, each comparison either matches 
the key being searched for or allows us to make 
the next comparison at the next higher level in 
our tree. Thus, thedesired upper bound is given 
as the maximum number of levels which can be 
found in some balanced tree of n nodes. 

We begin by determining the minimum number 
of nodes, Tk, which may occur in a balanced tree 

with k levels. 

Clearly, we have T O = 0 and T 1 = i. Now we 

may see that Tk+ 1 = T k + Tk-i + 1 for k>_l, since 

we schematically have 

Tk+ 1 = 

~k ~k-i 

(1) 

where here we understand that T k represents a 

balanced tree of k levels with T k nodes, that is, 

a minimal balanced tree of k levels. Then dis- 

regarding the reflections which cause Tk to fail 

to be unique, we see that (i) graphically con- 
structs a minimal balanced tree of k+l levels from 
given minimal balanced trees of k and k-i levels 
plus one additional node and thus the relation in 

integers, Tk+ 1 = T k + Tk_ I + i, results by 

counting. 

Thus we have: 

Number of Number of Nodes in Minimal 
Levels, k Balanced Tree, T k 

0 0 
1 i 
2 2 

3 4 
4 7 
5 12 
6 20 
7 33 
8 54 
9 88 

i0 143 

Now it is easy to show by induction that 

T k = Fk+ 2 - 1 where F. is the i th Fibonacci 
1 

number, that is, F 0 = O, F 1 = i, and F i = Fi_ 1 + 

Fi_ 2 for  i~2. 

Another proof of this fact may be given as 
follows. 

Let G(z) be the generating function for the T k 
values. That is, 

G(z) = T O + TlZ + T2z2 + T3z3 + ... 

Then, since Tk+ 1 = T k ~- Tk_ 1 + 1 for k>_l and also, 

1 = 1 + z + z 2 + ... , we have 
l-z 

2 
G(Z) - zG(z) - z2G(z) z z (2) 

I--Z 

Then, by partial fraction decomposition we have 

G(z) 
-i -i 

Z --Z + 

l-z-z 2 l-z 

But now we know (see [7], P. 82) that z is 
l-z_z 2 

the generating function for the Fibonacci numbers; 
that is, 

Z 
F 0 + FlZ + F2 z2 + F3z3 + 

l_z_z 2 "'" 

Thus, since F 0 = 0, F 1 = i, we use the expansion 

-i 
--Z 

of ~ to obtain 

G(z) = (F 2 - i) + (F 3 - l)z + ... 

But then, equating coefficients, we obtain 

T k = Fk+ 2 - 1 for k)_O. 

Now we may proceed. 

Given n, a number of nodes organized in a balanced 
tree, Q, then if k is such that 

Fk+ 2 - 1 ! n < Fk+ 3 -i (3) 

then Q has at most k levels and hence, at most k 
compares are needed to search Q. 

Now let us solve (3) for k in terms of n. 

Let m = k + 2 for brevity. 

Then we have 

Fm --< n + 1 < Fro+ 1 . (4) 
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But now we know (see [7], p. 82) that 

I (6m _ ~m) for m>O, F m = /_~ (5) 

where 

i 
~ '6 = ~ + - - i - -  = i . 6 1 8 o 3  . . .  

and 

5~- i 
= - .61803 ... 

2 2 

Then from (4) and (5) with some manipulation we 
have 

era_< (n + i) 5~-- ~ < cm+l (6) 

Hence, 

m ~ in6 ((n + i)/~ - $) < m + 1 

or, 

m = LIn ((n + i)/~- ~)J 

Thus, since m = k + 2, 

k = fn ((n + i)~-$)J - 2 . 

Now as stated above, the number of compares, 
C, required to search any balanced tree of n or 
fewer nodes is such that 

C _< Lln~((n + i)/5-$)J - 2 

We may approximate our derived upper bound for 
C as 

2.08 in(2.2n + 3)J - 2 

We may also note that the shortest search 
path in a balanced tree of k levels has at least 

Lk-2-~ nodes. This can be taken as a lower bound 

on the number of compares required to terminate 
an unsuccessful search. 

7. Concluding Remarks 

Several interesting problems concerning 
balanced tree storage and retrieval remain to be 
solved. One problem is the computation of the 
exact mean and variance of C, the number of 3-way 
comparisons required to search for an item. 
Another problem is to compute the expected number 
of balance operations required per insertion and 
per deletion taken over the construction and 

equilibrium existence of a balanced tree which 
stores items chosen from a random set of items. 

The balanced tree storage and retrieval scheme 
has several useful features. One feature is that 
it is easy to retrieve the least or greatest item 
currently stored without needing to know the 
appropriate key-value. It is also easy to pass 
over the stored items in order by their key- 
values if desired. 

Moreover, although hash table storage and 
retrieval algorithms are superior to the balanced 
tree scheme for symbol tables and the like, it 
is difficult to develop a general storage and 
retrieval system based on hashing methods. It is 
easier to program the balanced tree algorithms to 
deal with user-specified item formats and key- 
values, thus a general filing system may be 
developed based on the balanced tree storage and 
retrieval algorithms. 

The nearest competitor to the balanced tree 
scheme as a general filing system is a sequentially 
organized filing scheme with auxiliary tables of 
indices, of which the ISAM (indexed sequential 
access method) facilities in the S/360 operating 
system [5] is an example. Given a reasonable 
amount of insertion-deletion activity, the number 
of items accessed during a search may be rea- 
sonably similar in the two methods, and the bal- 
anced tree scheme uses space more efficiently. 
However, the fact that ISAM accesses items mostly 
in the same cylinder while the balanced tree 
scheme may not is a serious deficiency. It is 
possible of course that a way of building the 
balanced tree can be found which takes into account 
the difficulties involved with using movable head 
discs. In any event for truly random access 
storage mediums the problems associated with 
varying access time disappear and the balanced 
tree scheme is useful in such circumstances. 
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