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Almost all models of simple and choice response time (RT) employ a stochastic (i.e., 

variable within trial) accumulation decision process. In order to account for the 

relationship between correct and error choice RT, it has been found necessary to also 

include between trial variability in the starting point and/or the rate of accumulation, both 

in linear (Ratcliff & Rouder, 1998) and nonlinear (Usher & McClelland, 2001) stochastic 

models. We show that a ballistic (i.e., deterministic within trial) model using a simplified 

version of Usher and McClelland�s nonlinear accumulation process, and assuming only 

between trial variability in the rate and starting point of accumulation, is not only capable 

of accounting for the relationship between error and correct RT, but can also model other 

benchmark behavioural phenomena, such as RT distribution and speed-accuracy trade 

off. We successfully fit our ballistic model to Ratcliff and Rouder�s data, which exhibit 

many of the benchmark phenomena.  
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Even for fast and easy decisions, ��a simple summation of sensory and motor 

transduction delays and conduction times in the nervous system cannot account for the 

duration and variability of reaction times.� (Hanes & Schall, 1996, p.427).  The slowness 

and variability of response time (RT) has been almost universally explained by decision 

processes involving stochastic accumulation of information. Stochastic models assume 

that the accumulated information varies randomly from moment to moment during the 

decision process. RT is relatively slow because a criterion amount of information must be 

accumulated before a response is made, and RT is variable because stochastic 

accumulation causes variability in the amount of time required to reach the criterion.  The 

existence of within-decision variability in information accumulation is not just a 

theoretical convenience, it has been imbued with psychological importance as 

instantiating a process of sequential sampling. 

We propose a ballistic accumulation (BA) model in which the accumulation 

process during a trial is deterministic rather than stochastic. We demonstrate that the BA 

model can provide a general account of choice RT in both time-controlled and 

information-controlled paradigms.  Time controlled choice tasks require subjects to make 

decisions at a range of deadlines after the onset of the stimulus.  Interest focuses on the 

growth of accuracy with time, the speed-accuracy tradeoff (SAT) function (see, e.g., 

Luce, 1986, pp.237-245). Information controlled tasks require subjects to make a 

decision when they feel a criterion amount of information has accumulated, with the 

criterion set according to task demands, such as an emphasis on accuracy or speed. 

Interest focuses on RT for both correct and error responses, as well as accuracy.  
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In order to account for SAT, stochastic models, such as Ratcliff and Rouder�s 

(1998) diffusion model and Usher and McClelland�s (2001) leaky competitive 

accumulator model, have also had to incorporate two sources of between trial variability, 

in input strength and in the starting point of evidence accumulation
1
.  The BA model 

incorporates only these between-trial sources; it is a simplified deterministic version of 

the Usher and McClelland model. Dropping the stochastic component reduces model 

complexity, both analytically and computationally.  More importantly, it represents a 

fundamental change in the psychological interpretation of the model; it can no longer be 

interpreted as a sequential-sampling process. The fits of the BA model reported below 

also revealed a fundamental change in model dynamics relative to the fitted version of 

Usher and McClelland�s stochastic model. The fitted BA model displayed �winner-takes-

all� behaviour due to much stronger competition. In the next section we describe the BA 

model and show how it can account for SAT in time-controlled paradigms. We then fit 

the model to Ratcliff and Rouder�s data from an information-controlled paradigm.  Those 

data total around 10,000 observations from each of three participants (subjects KR, JF 

and NH) in a two-alternative forced-choice perceptual categorisation task.  

The Ballistic Leaky Competitive Accumulator Model 

The BA model associates each possible choice response with a unit, having 

activation, xi, which follows the deterministic dynamics specified by Equation 1 (t is 

time). We restrict our attention to the two-choice case (i=1,2), although the model 

naturally extends to any number of choices, and the analytic results are equally simple for 

any number of choices.   

( ) ( )∑
≠

−+−=
ij

jiiiiiii xfxfxkIdtdx βα   (1) 
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A response is triggered as soon as the activation of either unit reaches or exceeds a 

response criterion (C), which we assume to be the same for both units.  The response 

made is determined by whichever unit reaches that criterion first, and the latency of the 

response is the sum of the time taken to reach the criterion and a constant time used to 

represent the duration of non-decision processes (t0). In principle non-decision time might 

have a random component (cf. Ratcliff & Tuerlinckx, 2002), but the extra complexity 

entailed was not necessary to achieve the fits reported here.   Illustrative examples of the 

accumulation trajectories for the BA model are shown in the right hand panel of Figure 1: 

they are smooth, deterministic functions, as opposed to the noisy stochastic trajectories of 

Usher and McClelland�s (2001) model, shown in the left panel of Figure 1. 

Following most other models of choice RT, we made the simplifying assumption 

that the input to each unit followed a step function, increasing from zero to a positive 

value, Ii, simultaneously for each unit (see also Smith, Ratcliff & Wolfgang, 2003). Ii 

varies randomly and independently from unit-to-unit and trial-to-trial due to additive 

Gaussian noise: N(0,σI). The expected value of the total input, Is=I1+I2, is a constant, with 

decision difficulty manipulated by varying the input difference, Id=I1-I2. The starting 

point of the accumulation process is also assumed to vary randomly and independently 

from unit-to-unit and trial-to-trial according to a uniform distribution on [x0-∆x0, x0+∆x0]. 

Our assumptions about input and starting point variability are identical to Ratcliff and 

Rouder (1998; see also Ratcliff & Tuerlinckx, 2002, Usher & McClelland, 2001). Note 

that when activation is small Equation 1 is approximately linear, with solution 

( ) ( ) tIxtx iii += 0 , corresponding to the deterministic dynamics of the diffusion model.  
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The parameters αi, βi and ki in Equation 1 are non-negative rates of self-

excitation, competition (i.e., inhibition of other units) and passive leakage respectively.  

Their subscripts allow for possibly different values on different response units, but we 

make the simplifying assumption that these parameters are equal across units. The 

transfer function, f, has been used to enforce neurologically plausible constraints on the 

system.  For example, employing a linear threshold transfer function f(x)=max{0,x}, 

ensures that only units with positive activation transmit inhibition and self-excitation 

(c.f., Usher & McClelland, 2001). Although the linear threshold transfer function is 

neurally plausible, it complicates the dynamics of the model, introducing three different 

modes depending on whether activations for both units are negative, positive or have 

different signs (see Heathcote, 2003). A reviewer commented that this extra complexity 

may make our model overly flexible, hence we report results only for the simpler model 

with f(x)=x.  This version is both analytically simple, and allows us to drop the self-

excitation parameter (α), as its effects are indistinguishable from leakage (k).  Although 

not reported here, we have extensively examined the behaviour of the model with 

f(x)=max{0,x} and found it to be very similar to the simplified model
2
. 

When f(x)≡x, Equation 1 can be solved by elementary matrix algebra, for any 

number of units (i.e., response alternatives).  For two units the solution is (with xs=x1+x2, 

xd= x1-x2, Is=I1+I2 and Id= I1-I2): 
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The solutions for x2 are identical, except Id is replaced by -Id, x1 by x2, and xd by -xd. 
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The terms S=k+β and D=k-β are the total leakage for the sum and difference of 

activations; these terms govern the BA model�s dynamics.  We assume that S is positive, 

so the sum of the units� activations converges to a fixed value (IS/S). When D is positive 

the difference between the units� activations also converges to a constant value. When D 

is negative the difference diverges infinitely, so that a response occurs even for very 

weak input differences. Like the stochastic component in Usher and McClelland�s (2001) 

model, divergent difference dynamics ensure that a response is made even when the input 

difference is very small.  When D is zero, the activation difference diverges linearly, as is 

the case for the deterministic dynamics of the diffusion model.  In general, Equation 2 

cannot be solved explicitly for t, but can be solved implicitly for the decision time (i.e., 

xi(t)=C) using standard root-finding techniques.  We used these methods, coupled with 

numerical integration, to calculate model predictions for the fits reported below.  We 

validated our solutions using Runge-Kutta direct numerical integration on Equation 1 

(see Gard, 1988, p.206). 

Speed-Accuracy Tradeoff 

Stochastic models account for the SAT because increased accumulation time allows 

the effects of within-trial variability in information accumulation to be integrated out. 

Linear accumulation models, such as the diffusion model, with only within-trial 

variability in evidence accumulation, predict perfect asymptotic accuracy for all 

decisions.  However, less than perfect accuracy is usually observed in practice, even with 

unlimited decision time.  

At least two suggestions have been made to allow stochastic models to account for 

less than perfect asymptotic accuracy. Usher and McClelland (2001) proposed that 
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accumulation is �leaky� so that information is lost during accumulation, and hence 

accuracy is imperfect (although asymptotic accuracy in information-controlled paradigms 

can still be infinite � see Busemeyer & Townsend, 1992). Ratcliff (1978) added between-

trial variability in the input to the diffusion model, thus predicting imperfect asymptotic 

accuracy, as errors due to input variations are unaffected by accumulation time.  

The BA model produces a SAT because extra integration time allows the input to 

overcome noise in the starting points. To illustrate, consider the example BA model 

accumulation trajectories in the right hand panel of Figure 1.  The unit with a smaller 

input (dashed line) started with larger activation, but with extra integration time, it was 

overtaken by the unit with a larger input.  If the response criterion (horizontal line) were 

set very low, around 0.6, the model would make the wrong response, because the 

accumulator corresponding to the wrong response begins with a slight advantage and 

would reach a low response criterion first.  Raising the response criterion (to the value 

shown) allows sufficient integration time for the accumulator corresponding to the 

correct response to overcome its initial disadvantage.  A consequence of Equation 2 is 

that extending integration time indefinitely allows all effects of start point variability to 

be removed.  However, even then, asymptotic accuracy in the BA model is still imperfect 

because of variability in input strength.  

Typically, the SAT function, with accuracy measured by d’, is well approximated 

by a shifted exponential function of decision time in time-controlled tasks. McElree and 

Dosher (1989) found that, in recognition memory, the shifted exponential function 

consistently gave a better fit to empirical SAT functions than the SAT function predicted 

by the diffusion model. Usher and McClelland (2001) also found that their model gave a 
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better fit to perceptual choice SAT functions than the diffusion model. However, Ratcliff 

(1988) showed that the diffusion model provides a better fit when some responses in the 

time-controlled paradigm are based on information-controlled decisions. In any case, the 

shifted exponential provides a good approximation to empirical SAT functions.  

The SAT function for the BA model can be derived by first considering start-point 

variability alone. Let U[x, ∆ ] represent the cumulative density function for the uniform 

distribution on [x-∆,x+∆], that is: 
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Given input noise is independent across units, ID is distributed N(0, 2 σI).   We 

can then find the SAT function by integrating over the distribution of ID and transforming 

from probability to d�, using the standard normal density function (φ) and cumulative 

function (Φ): 
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The symbols in Figure 2 illustrate representative SAT functions for the BA model. 

As required, d� increases gradually with time and approaches a finite asymptote.  The 

solid lines in Figure 2 represent best fitting shifted exponential functions, d’=A(1-e
Bt

), 
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estimated using least-squares nonlinear regression.  Note that the BA model�s SAT 

functions are very closely approximated by shifted exponential functions (R
2
 values were 

.986, .990 and .996 for subjects KR, JF and NH respectively).  The parameters used to 

generate BA model predictions in Figure 2 were taken from the fits to Ratcliff and 

Rouder�s (1998) data from an information-controlled paradigm, reported below, 

demonstrating that the BA model can fit both time- and information-controlled data 

simultaneously. We also found that approximately shifted exponential SAT functions 

hold for a wide range of parameter values when D≤0, and Brown (2002) reports similar 

findings when D>0. 

Fast and Slow Errors 

The addition of variability in input strengths fixes another problem for the diffusion 

model with only Gaussian accumulation noise: it predicts equal correct and error RT 

distributions. Equal correct and error RTs are occasionally observed but typically, when 

response accuracy is emphasized and the decision to be made is relatively difficult, error 

RTs are longer than correct RTs, a phenomenon we will call “slow errors”. The addition 

of between trial variability in input strengths allows the diffusion model to produce slow 

errors (Ratcliff, 1978). In contrast, Usher and McClelland’s (2001) model with only 

within-trial variability in information accumulation can produce equal correct and error 

RTs or slow errors, depending on the levels of lateral inhibition and leakage. 

When simple decisions are required, and response speed is emphasized, error RTs 

are typically faster than correct RTs; “fast errors” (e.g., Ratcliff, Van Zandt & McKoon, 

1999; see Luce, 1986, p.233 for a review). Fast errors require a third source of variability 

to be incorporated into the diffusion model, between-trial variability in either the criterion 
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or start point (these changes are isomorphic when integration is linear, as in the 

diffusion). Start point variability was originally suggested by Laming (1968; see also 

Rouder, 1996) as being caused by pre-stimulus accumulation. Usher and McClelland 

(2001) also incorporated between-trial start point variability into their model in order to 

account for fast errors, although they did not fit this version of their model to data from 

an information controlled task, as only slow errors were observed in their data. 

A pattern that has proven particularly diagnostic for selecting models of choice RT 

(e.g., Van Zandt et al., 2000; Ratcliff & Smith, submitted) is a crossover effect, in which 

faster and slower error RTs are observed in easy and hard stimulus discrimination 

conditions respectively, even when these conditions are randomly intermixed within 

experimental blocks. Hence, general choice RT models must be able to accommodate 

crossovers by changing only stimulus-related parameters. 

Figure 3 illustrates the crossover pattern in Ratcliff and Rouder’s (1998) data using 

quantile-probability (QP) functions.  The ‘crossover’ pattern is most evident in the speed-

emphasis data, from subjects KR and JF.  QP functions generalise latency probability 

functions (Audley & Pike, 1965) by plotting quantiles of RT distributions as a function of 

the probability of a response (see Ratcliff, 2002, for more details). Points on the left of 

the graph represent the lower probability (error) responses and complementary points on 

the right of the graph represent the higher probability (correct) responses from the same 

experimental conditions.  The five connected lines in each plot represent equally spaced 

quantiles below which 1/6, 1/3, 1/2 (the median), 2/3 and 5/6 of the RT distribution lies.  

The reader may notice some differences between the observed data in Figure 3 and the 

analogous plots in Ratcliff and Rouder (their Figure 5).  These differences are due to 
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small methodological changes: Ratcliff and Rouder plot the mean for each condition, we 

plot five quantiles; we do not plot statistics for conditions with fewer than six 

observations (one per quantile bin); and we grouped the 33 conditions a little more finely 

than Ratcliff and Rouder.  These differences are small, and affect only display (not model 

estimation).  Interestingly, these methodological differences do appear to lessen the 

extent of the fast errors evident in the extremely low-N conditions of Ratcliff and 

Rouder’s graphs. 

In order to fit data of the type illustrated in Figure 3, the diffusion model requires 

between-trial variability in both start points and input strengths, in addition to the within-

trial variability in information accumulation. Ratcliff and Rouder (1998) showed that 

with these extensions the diffusion model could fit the crossover pattern in their data by 

changing only the mean input, as required. In the next section we show that the BA 

model can also fit these data patterns without requiring within-trial variability. Brown 

(2002) reports an extensive set of simulations showing that the BA model can 

qualitatively accommodate all of the observed relationships between error and correct 

RT.  

Fits to Information-Controlled Data 

We fit the BA model to Ratcliff and Rouder�s (1998) Experiment 1 data. These data 

were chosen as they contain data patterns that have proven challenging for choice RT 

models. A speed versus accuracy emphasis manipulation provided a further test of SAT 

in the BA model, with the tradeoff determined by task demand rather response deadlines. 

Three subjects (KR, JF and NH) each provided 7890 usable RTs over ten sessions of a 

brightness discrimination task. The task stimulus was a patch of grey in the centre of a 
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grey display. The centre patch had one of 33 levels of brightness, from all black pixels to 

all white pixels, resulting in conditions of widely different difficulty. The subjects� task 

was to judge the patch as bright or dark, and feedback was given based on whether the 

observed brightness level was the result of a sample from (unobserved) overlapping 

�bright� and �dark� distributions over the 33 levels. Different difficulty conditions 

(brightness levels) were randomly intermixed within blocks. On different blocks, subjects 

were instructed to emphasize either speed or accuracy in their responses. We used no 

censoring other than that specified in the raw output from Ratcliff and Rouder's 

experimental software, and we aggregated the 33 stimulus conditions into 13 groups for 

the purpose of display only.  Further details of the experimental methods and preliminary 

data censoring can be found in Ratcliff and Rouder (pp.349-350).  

Fits were obtained using quantile maximum probability estimation (QMPE; 

Heathcote & Brown, in press; Heathcote, Brown & Mewhort, 2002) with the quantiles 

illustrated in Figure 3. Many experimental conditions were empty of data (e.g., KR never 

responded �white� to a completely black stimulus in an accuracy-emphasis block). These 

conditions were handled naturally by QMPE and so were not removed or grouped with 

other conditions.  Numerical integration over input and start point variability used the 

adaptive Rhomberg technique.  Final model evaluations were cross checked using Monte-

Carlo integration over both sources of variability, with 1,000,000 replicates for each of 

the 66 within-subject conditions. 

The estimated values of the BA model parameters are shown in Table 1. The 

estimate of input noise is relatively small, in keeping with the physically identical stimuli 

in each condition. Task difficulty conditions were modelled by varying only the input 
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difference, Id, as was the case for Ratcliff and Rouder�s (1998) fits of the diffusion model, 

with the expected input sum kept constant at IS=0.0035 for all subjects and all conditions.  

Ratcliff and Rouder found that input estimates for their diffusion fits were an 

approximately linear function of the probability that any given stimulus was drawn from 

the �bright� distribution (see their Figure 6). We found that estimates of the input to the 

BA model behaved similarly, as illustrated in Figure 4
3
. Hence, in agreement with the 

diffusion model, the BA model indicates that the subjects based their decisions on 

approximate probability matching. 

We kept the value of the leakage parameter constant at k=.0014 across all subjects 

and all conditions.  Apart from input strength values (which serve to parameterise the QQ 

lines), the fits reported here allowed a total of eight parameters to vary for each 

participant: four �structural� parameters (lateral inhibition strength, nondecision 

component time, and variability in start points and in input strengths) and two �location� 

parameters (accumulation start point and response criterion) each for speed and accuracy 

emphasis blocks.  Eight parameters is slightly more than in the fits of the diffusion model 

(six freely estimated parameters) but smaller than that for Usher and McClelland�s (2001) 

accumulator model (which requires a parameter for stochastic variability).  

Figure 5 shows that the BA model provides an excellent fit to response probability 

data using the same set of inputs for both speed and accuracy conditions. Figure 3 shows 

the fits of the BA model to the RT data. RT distribution expands and the leading edge 

increases slightly as response probability decreases in the accuracy condition. In the 

speed condition RT distribution spreads most for middle probability values and the 

leading edge is relatively invariant. The BA model captures these trends in all cases (cf. 
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Ratcliff, Thapar & McKoon, 2003, Figures 4 and 5 for similar findings).  A reviewer 

requested that we use a χ2
 statistic to globally quantify model fit, yielding: KR 

χ2
(df=513)=1180; JF χ2

(df=546)=1778 and NH χ2
(df=491)=980.  Although these values 

ranged from 1.8 to 2.9 times the .05 significance level, it is important to note that the χ2
 

test is biased to reject a model when bins are not equi-probable (Rayner, 1985) or 

expected frequencies are small (Kijewski, Swensson & Judy, 1989). We aggregated 

neighbouring bin based on quantiles in order to maintain a minimum expected frequency 

of just one observation (cf. Ratcliff & Murdock, 1976), but bin frequencies still varied by 

almost two orders of magnitude, and more than 20% of bins had an expected frequency 

of less than five. Aggregation and the use of quantile boundaries also violate the χ2
 test�s 

assumption of data independent boundaries, but given the widely varying ranges of RT 

data in speed and accuracy conditions fixed boundaries were not viable. Although 

Ratcliff and Rouder (1998) do not report χ2
 values for their fits, Ratcliff (2002) reports χ2

 

values (Table 1) for fits of the diffusion model to data from three subjects in a very 

similar paradigm, but using only six brightness levels. Diffusion model χ2
 values ranged 

from 1.8 to 6.0 times the .05 significance level. Hence, the fits of the BA model are 

comparable to or better than the fits of the diffusion model.   

Figure 3 allows the reader to estimate the gross shape of the observed and expected 

RT distributions by inferring from quantile values.  A more accessible illustration of the 

BA model�s account of RT distribution is shown in Figure 6, which plots twelve data 

histograms and the corresponding model predictions.  These histograms represent three 

subjects (rows) always using data from brightness level 13 in the speed emphasis blocks 

(two left columns) and brightness level 16 in the accuracy condition (two right columns).  
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The histograms also show both correct responses and model fits (1
st
 and 3

rd
 columns) and 

error responses and model fits (2
nd

 and 4
th

 columns).  It is clear that the BA model 

successfully models these distributions, even in the absence of within-trial variability.  

For comparison, analogous histograms for the diffusion model are shown in Ratcliff and 

Rouder (1998, Figure 3), although they do not show any histograms for fits to error data. 

Only two parameters were allowed to vary between speed and accuracy conditions, 

the response criterion (C) and the mean starting point (x0).  This shows that the BA model 

passes a test of selective influence.  That is, an experimental manipulation designed to 

influence only subjects' response caution was successfully modelled by changes only in 

parameters that could feasibly represent subjects' caution.  Note that changing both 

response criterion and starting point in the BA model is analogous to Ratcliff and Rouder 

(1998), who allowed the response criterion to change, and assumed that the start point 

changed as a function of the response criterion. We found that independent adjustment of 

both start points and response criteria were necessary to fit Ratcliff and Rouder�s data. 

Hence, the reduced complexity in the BA model inherent in assuming ballistic rather than 

stochastic accumulation comes at the cost of increased complexity in BA model�s 

account of information-controlled speed accuracy tradeoff.  

The BA model parameter estimates from data in the speed condition reveal that 

subjects adopted a simple and consistent strategy: the mean starting point was lowered 

below the baseline value (zero), and the response criterion was lowered to just above the 

upper boundary of the starting point distribution.  The lower mean starting point and 

criterion produce faster accumulation, as the leakage works to return negative units� 

activations back to baseline (zero), and a node with negative activation excites other 
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nodes via inhibitory connections
4
.  By placing the criterion near the upper boundary of 

starting activation speed is maximised, but sufficient time is still allowed for the input to 

overcome start-point differences on most trials. In the accuracy emphasis condition the 

mean starting point was much higher, and the criterion was set well above the upper 

bound of the start-point variability. The placement of the criterion allows substantial time 

for start-point noise to be overcome by the input, despite the stronger competition 

engendered by higher activation values. 

Discussion 

We have shown that a ballistic accumulation model is able to account for accuracy 

in time-controlled tasks and accuracy and RT distribution for both correct and error 

responses in information-controlled tasks. Few ballistic choice RT models have been 

proposed previously, and none with the same ability to account for data as the BA model. 

For example, in Luce�s (1986) landmark book on RT research, only two ballistic models 

are discussed (Grice, 1968, 1972, and McClelland, 1979). Both models employ 

accumulation to a criterion and assume that RT variability is due to trial-to-trial 

fluctuations, in the criterion for Grice�s model and in the input strength for McClelland�s. 

The success of the BA model is due to the inclusion of between-trial variability in input 

strength and in the starting point of accumulation, as well as the use of a nonlinear 

accumulation process. As far as we are aware this is the first demonstration that a ballistic 

accumulation process can provide a general account of choice RT behaviour at the same 

level as the leading stochastic accumulation models (e.g., Busemeyer & Townsend, 1992, 

1993; Ratcliff & Rouder, 1998; Usher & McClelland, 2001).  

Our ballistic model incorporates Usher and McClelland�s (2001) neurally plausible 

dynamics, activation dependent passive leakage, self-excitation and competition. 
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However, without stochastic accumulation the dynamics differed substantially from 

Usher and McClelland�s, requiring higher levels of competition to fit data. Lateral 

inhibition means that the BA model displays �winner-takes-all� behaviour, with one unit 

eventually suppressing the other. Winner-takes-all dynamics have been used extensively 

in deterministic neural network models of a range of cognitive phenomena (e.g., 

Grossberg, 1980, 1987; McClelland & Rumelhart, 1981; Rumelhart & McClelland, 

1982). Our results indicate that such models may be able to be modified to account for 

choice RT data without needing to incorporate stochastic accumulation, with its attendant 

computational cost and reduction in analytic tractability.  

Massaro (1989) criticised a more recent deterministic competitive neural network 

model, the TRACE model of speech perception (McClellend & Elman, 1986), because it 

could not account for the quantitative form of the effect of context on perceptual choice. 

Typically context information has an additive effect on the linear relationship between 

input difference and the inverse cumulative normal transform of choice probability 

(Φ-1
(p)). McClelland (1991, 1993) showed that either between-trial variability in inputs 

or within-trial variability in evidence accumulation allowed leaky competitive networks 

to produce the correct pattern of context effects when context provided a biasing input to 

the network. Figure 7 shows a plot of Φ-1
(p) versus input strength (i.e., brightness 

condition) for three different �biases� in the BA model with parameters corresponding 

the fit for Ratcliff and Rouder�s (1998) subject KR in the accuracy condition.  Context 

was manipulated through �biases� operationalised by associating the input values 

previously estimated for brightness level i (1..33) with brightness level i-b, where b is a 

bias value. As required, the BA model produces an approximately linear effect of context. 
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When competition is high, the BA model is also not subject to Ashby�s (1982) 

criticism of McClelland�s (1979) ballistic choice model, that the decision criterion is not 

exceeded, and so no response is made, for an appreciable proportion of trials. With 

reasonable parameter choices, this is not a problem for the fits of the BA model reported 

below.  For two of the three subjects, the parameter governing the growth of the 

difference in activation between the units (D) is negative, so that even minute input 

differences are nonlinearly and infinitely amplified, ensuring a decision is made in finite 

time
5
.  For the third subject (NH), the estimate of D is very close to zero (0.0001) so that 

the nonlinear amplification of input differences is, for all practical purposes, unbounded.  

For example, for the worst-case scenario � equal input strengths � the mean asymptotic 

activation for subject NH is 5.9, far above the maximum decision criterion of 0.8. 

Models such as Usher and McClelland�s (2001) and our BA model are possibly 

interpretable as models for neural firing rates.  For the BA model, a monotonic 

transformation would be required to map negative activation levels to below-baseline 

firing rates (e.g., firing rate could be an exponential function of �activation�).  The 

stochastic behaviour of spike trains in single neurones is often raised as an objection to 

the neural plausibility of deterministic accumulation models. Luce (1986) puts the case 

directly: ��given what is known physiologically, it is�unrealistic to suppose that 

sensory information is deterministic.� (p.149). This view rests on equating sensory 

information with the behaviour of single neurones, whereas Shadlen and Newsome 

(1998) suggest that it is represented as rate codes in ensembles, or groups of ensembles, 

of 50-100 neurones. Smooth deterministic dynamics may provide an accurate 

approximation to such ensemble measures, or averages across ensembles
6
. It seems at 
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least plausible that the brain, with an apparent abundance of neurones, might make use of 

redundancy in order minimize the effects of accumulation noise, and so maximise fast 

and accurate decisions (see Anderson, 1991, for similar arguments in favour of dynamic 

deterministic RT models).  

Ballistic models of averaged neural firing rates with only trial-to-trial variability 

have been proposed (Hanes & Schall, 1996; Reddi & Carpenter, 2000). However, Ratcliff 

(2001) points out that these models have no, or inadequate, mechanisms for producing 

errors, and so are incomplete. Recently, Ratcliff, Cherian and Segraves (2003) showed 

that in rhesus monkeys the diffusion model can simultaneously fit two-choice 

behavioural data and the difference between the averaged firing rates for neurones 

corresponding to each choice, including a delay in the onset of the difference for slow 

relative to fast responses. The latter phenomena requires a stochastic component as 

otherwise the linear dynamics of the diffusion model predict that the accumulation of 

evidence begins at the same time for slow and fast responses.  

Unlike the ballistic models criticised by Ratcliff (2001), the BA model can account 

for errors, and nonlinear accumulation implies that it can in principle account for the 

delay. Delays in the emergence of a difference occur in the BA model when 

( )021 dDxII ≈−  and competition is substantial, as was the case for the fits of the BA 

model reported here. Clearly, however, simultaneous fits to behavioural and neural data 

are required to determine whether it can fulfil this promise. As acknowledged by Ratcliff 

et al. (2003) the diffusion model�s account of the neural data is also incomplete, as it 

models only the difference in firing rates, not the firing rates of neurones representing 

each choice. Competitive dynamics such as in the BA model, or Usher and McClelland�s 
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(2001) model, provide one way of modelling the average firing rates of neurones 

representing each choice (see Wang, 2002, for more on the neural plausibility, or 

otherwise, of the diffusion model).   

Throughout this article we have presented a strong position favouring purely 

ballistic accumulation. Our aim was to demonstrate that, contrary to modelling which has 

almost exclusively assumed stochastic accumulation, ballistic accumulation with 

between-trial variability can provide a viable approximation to choice behaviour as long 

as the accumulation process is sufficiently nonlinear. Our fits demonstrate that many of 

the roles the fulfilled by stochastic variability can be also be fulfilled by strong 

competition.  Although a combination of competition and stochastic variability may be 

required for a full account of the behavioural and neural data, our results indicate that 

stochastic variability is not required by the existing behavioural data alone.  
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Footnotes
                                                 

1Brown (2002) examined leaky competitive accumulator models with all possible single, pairwise and 

triple combinations of four different sources of variability: within-trial accumulation noise, and between 

trial variability in start points, response criteria or input strengths.  He concluded that the combination we 

employ in the BA model led to the simplest feasible model. 

2 Brown (2002) and Heathcote and Brown (2000, 2002) consider a similar model in which the self-

excitation parameter is kept separate from leakage, and used to explain the effects of practice on RT 

(Heathcote, Brown & Mewhort, 2000). 

3Note Ratcliff and Rouder�s (1998) Figure 6 has six lines as in their initial set of fits they allowed different 

input values for speed and accuracy conditions. They then constrained the input values to be equal for both 

speed and accuracy in order to demonstrate selective influence. Our Figure 4 only has three lines as we 

used the same input values for both speed and accuracy conditions in all fits, in line with the selective 

influence constraint.  

4  See Roe, Busemeyer and Townsend (2001) for a similar use of �negative inhibition�, used to explain the 

attraction effect in consumer preference.  Note also that we have obtained very good fits (not reported here) 

using the linear-threshold version of our model, in which units with negative activation do not transmit any 

effects to other units.  

5An exception occurs when the input difference is exactly balanced by an opposite start-point difference, 

which occurs when ( )021 dDxII =− , were ( ) ( ) ( )txtxtxd 21 −= . In this case, the activation 

difference remains constant, and activations approach ( ) 202 dS xSI +  and ( ) 202 ds xSI − for 

units one and two respectively. As long as long as the criterion is less than the larger of the two values, 

activation will eventually exceed the decision criterion. If the input difference exactly equals zero and the 

starting points for both units are equal a choice will not be made as both units cross the criterion at the same 

time. However, in the continuous case this event has a probability measure of zero.  Even in our finite 

precision fits the probability of this event was smaller than 10-18 (we used 64 bit real values everywhere). 
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6Recent work suggests that weak correlations between the firing rates of adjacent neurones may limit the 

smoothing effects of averaging, particularly when the signal fluctuates at a high frequency (Mazurek & 

Shadlen, 2002).  
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Table 

Table 1. Parameter estimates for the BA model fits to Ratcliff and Rouder�s (1998, 

Experiment 1) data. Parameters are non-decision time (t0), and competition (β), the trial-

to-trial standard deviation in inputs (σI), the half width of rectangular start point noise 

(∆x0), the response criterion (C) and mean activation starting point (x0).  We used a 

constant expected input sum (IS=.0035) and rate of passive leakage (k=.0014). 

 

Subject  

KR JF NH 
t0 220 240 231 

β .0018 .004 .0013 

σI
.0008 .0015 .00074 

 
 
 

Constant Across All Conditions ∆x0 .25 .35 .24 

C .17 .07 .25 Speed Emphasis 

x0 -.1 -.3 -.09 
C 0.98 1.13 .80 Accuracy Emphasis 

x0 .65 .5 .37 
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Figure Captions 

Figure 1. Sample paths from Usher and McClelland�s (2001) model (left panel) and from 

the BA model (right panel). The abscissa represents accumulation time, and the ordinate 

represents activation.  

Figure 2.  Symbols represent 21 values of the BA model SAT functions (d� vs. 

accumulation time), using parameters estimated from Ratcliff and Rouder�s (1998) three 

subjects (JF, KR and NH) in their Experiment 1.  Lines show best-fitting shifted 

exponential functions. 

Figure 3. QP plots from Ratcliff and Rouder�s (1998) Experiment 1. Dotted lines show 

observed RT distribution quantiles in milliseconds with numbers 1..5 representing the 

quantiles 1/6, 1/3, 1/2, 2/3 and 5/6 plotted against response probability.  BA model fits 

are shown as solid lines.  Points on the right of the plots represent both very common 

�dark� responses (e.g., to black stimuli) and very common �bright� responses (e.g., to 

white stimuli).  Both data and theoretical predictions are grouped over neighbouring p-

values, as in Ratcliff and Rouder.  Thus, the expected RT quantiles are not smooth as 

they include different numbers of �bright� and �dark� responses, which are not exactly 

equivalent. Quantile estimates for data conditions with fewer than six observations were 

omitted. 

Figure 4. Thick line represents the probability (p) that a stimulus from a given brightness 

(x-axis) condition was drawn from the �high� distribution.  Data points represent the best 

linear fit of the estimated BA model input values (I) from each subject to those 

probabilities (estimated linear transformations were: JF p=0.069+212I; KR 

p=0.015+252I; and NH p=-0.025+276I). 
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Figure 5. Ratcliff and Rouder�s (1998) Experiment 1 observed probabilities for �dark� 

responses plotted against response probabilities predicted by the BA model.  Solid y=x 

line shows a perfect fit, error bars are based on binomial approximations. Graphs on the 

left are for speed-emphasis blocks; those on the right are for accuracy emphasis blocks. 

Figure 6. Observed histograms and expected densities for brightness level 13 from speed 

emphasis blocks and brightness level 16 for accuracy blocks. Each row represents a 

different subject�s data (top to bottom: KR, NH, JF). The left-hand two columns represent 

speed-emphasis data (correct responses on left, errors on right). The right-hand two 

columns represent accuracy-emphasis data (correct on left, error data on right). 

Figure 7. Context effects in the BA model. The inverse cumulative normal transform of 

choice probability, Φ-1
(p), is plotted against input strength (i.e., brightness condition) for 

three different bias values in the BA model. The parameters used were those estimated 

from the data of Ratcliff and Rouder�s (1998) subject KR in the accuracy condition. 

Expected probabilities are shown over a wide range - from a probability of responding 

"bright" of only 0.025% up to 99.975% - and are evidently linear and the effect of context 

additive across most of this range. 
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Figure 1 
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Figure 2 
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Figure 3, panel A 
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Figure 3, Panel B 
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Figure 3, Panel C 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

 




