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Abstract

A number of stylized facts have been documented about the extensive margin of trade—

whether to export or not, and, if so, how many products to how many destinations. We note

that some of the reported facts would be expected to arise if exports shipments were randomly

allocated across categories (e.g., product codes, destination countries). �ey are, thus, not in-

formative of the underlying economic decisions. We formalize the random assignment of ship-

ments to categories as balls falling into bins, reproducing the structure inherent to disaggregate

trade data.�e balls-and-bins model quantitatively reproduces the prevalence of zero product-

level trade �ows across export destinations. �e model also accounts for �rm-level facts: as

in the data, most �rms export a single product to a single country but these �rms represent a

tiny fraction of total exports. In contrast, the balls-and-bins cannot match the small fraction of

exporters among U.S. �rms and overpredicts their size premium relative to non-exporters. We

argue that the balls-and-bins model is a useful statistical tool to discern the interesting facts in

disaggregated trade data from patterns arising mechanically through chance.

1 Introduction
International trade has long been concerned with aggregate patterns—what and how much coun-

tries trade—and their welfare implications. Finely disaggregated trade data have recently become

available and have had an enormous impact on the �eld. It has spurred a fast-growing research that

documents the extensive margin in trade—which �rms export, and how many products they send

to how many destinations.�is, in turn, has lead to new theories.

A number of stylized facts have been uncovered about the extensive margin of trade. �e fol-

lowing facts have proven to be very robust. (1) Most product-level trade �ows across countries are

zero; (2) the incidence of non-zero trade �ows follows a gravity equation; (3) only a small fraction
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of �rms export; (4) exporters are larger than non-exporters; (5) most �rms export a single product

to a single country; (6) most exports are done by multi-product, multi-destination exporters.1

Wenote that someof these data patternswould be expected to arise if export shipmentswere ran-

domly allocated across categories. Consider for example the incidence of multi-product exporters.

If each shipment is randomly assigned one product classi�cation, then the more shipments an ex-

porter has the more likely they are classi�ed in multiple categories. Hence large exporters will tend

to be multi-product.

We formalize the random assignment of shipments to categories as balls falling into bins. In-

dividual shipments represent a discrete unit (the ball), which, in turn, is randomly allocated into

mutually exclusive categories (the bins). �is structure is inherent to disaggregate trade data: we

observe a given number of shipments; each of them is classi�ed into a unique category. In our

model, a ball falling in a particular bin is an independent and identically-distributed random event

whose probability distribution is determined solely by the relative size of the bins.

What do we learn when the balls-and-bins model matches a particular fact? Surely we are not

suggesting that �rms actually ship their goods at random! Our view, instead, is that we cannot

conclude anything: if a fact cannot falsify the balls-and-bins model, it will also fail to identify the

relevant economic theory and thus should not be the basis to favor any model (structural or else).

Any theory will be able to account for such a fact once the model is properly augmented with the

idiosyncratic heterogeneity and indivisibility inherent in the data.

�e balls-and-bins model is thus a useful statistical tool that can discern the interesting facts

from the patterns arising mechanically through chance. It can be applied to any categorical dataset,

such as the division of total exports by products, �rms, or destination countries. �ese datasets

contain a lot of information: it is crucial that we focus on the facts that will help us di�erentiate

among competing trade theories as well as inform the development of new ones.

In spite of its simplicity, the balls-and-bins model has a rich set of predictions. A�er a number

of balls, some bins may end up empty and some will not. Among the latter some will contain a

large number of balls, some few. �ese are taken to be the model’s predictions for the extensive

and intensive margin, respectively. Given a number of balls and a bin size distribution, we can

analytically derive the prevalence of zeros and the fraction of balls sitting in one-ball bins. We

can also show how zeros vary with the number of balls and the e�ect of an asymmetric bin size

distribution.�ese are indeed all the model’s systematic relationships between export �ows and the

extensive margin: the assignment of balls to bins is random.

We are interested, though, in a quantitative evaluation. For thiswemap the balls-and-binsmodel

into the patterns of interest as follows. First we divide an observed trade �ow (that is, total trade

between two countries, or total exports of a �rm) into balls of $36,000 — the value of the average

export transaction in the U.S. in 2000 . For example, total exports between the U.S. and Argentina

were $3.8 billion, and thus there are 105,000 balls. For the dimension of choice (product codes or

destination countries) we construct a bin size distribution using �ows. Keeping upwith the example,

we can construct about 9,000 bins for the 10-digit Harmonized System product codes, each bin of

1�e following is a necessarily incomplete list of references. Helpman, Melitz and Rubinstein (2007) and Baldwin

and Harrigan (2007) for facts 1 and 2; Hummels and Klenow (2001, 2005) for fact 1; Bernard and Jensen (1999) and

Bernard, Eaton, Jensen and Kortum (2003) for facts 3 and 4; Bernard, Jensen and Schott (2007) for facts 3 to 6; Bernard,

Jensen, Redding and Schott (2007) for facts 2 to 6; and Eaton, Kortum and Kramarz (2004, 2007) for facts 5 and 6.
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the size of the corresponding share in total U.S. exports. We then use the balls-and-bins model to

predict the expected number of zero product-level trade �ows between U.S. and Argentina.

�e results are striking: the balls-and-binsmodel quantitatively reproducesmany of the data pat-

terns listed above. Let us �rst return to the previous example: the balls-and-bins not only accurately

predicts how common are zeros in the U.S. product level bilateral trade �ows, but it also reproduces

the pattern of zeros across destination countries. To understand how such a simple random model

can replicate the data we �rst note that the actual number of export shipments (24 million) is low

relative to the number of potential product-country pairs (about 2 million). Second, there is a very

large variation in the size of the trade �ows and categories. Trade with most of the 200 countries is

very small and most of the 9,000 traded HS codes are tiny. It is exactly for these that the trade �ows

are missing in the data.�ey go missing in the model as well: few balls and tiny bins make for many

empty bins.

�e success of the balls-and-bins model extends to �rm-level facts. We �nd that single-product

and single-destination exporters are as numerous in the balls-and-bins model as they are in the

data. Exporters that sell one product to one country account for 40 percent of total exporters in the

data — the corresponding number is 43 percent in the balls-and-bins model.�ese �rms, however,

account for a minuscule 0.2 percent of total exports in the data — and balls-and-bins predicts their

export share to be 0.3 percent.

Once again the large dispersion in �ows and categories is essential to understand the success

of the balls-and-bins model. Most exporters are tiny and are hence assigned only one ball in the

model.2 Because balls are indivisible, these tiny exporters are predicted to be single-product, single-

country exporters.�is �nding suggests that it is important to understand the sources of skewness

in the distribution of exports across �rms. Once that skewness is accounted for, the incidence and

relative size of single- vsmulti-product exporters follow.

�e balls-and-bins model, though, also tells us a lot when it misses key data patterns. For exam-

ple, we attempt to predict the share of exporters among manufacturing �rms. In the balls-and-bins

model 74 percent of �rms will export — in contrast with 18 percent in the data. Hence exporters are

fewer than we would expect. Surprisingly, the model also overpredicts the export size premium: in

the data exporters are much smaller than we would expect just from randomness.�e model’s miss

indicates that there is a fundamental di�erence between small and large �rms beyond their di�erent

scale.

We hope the successes and failures of the balls-and-bins model leads us to a reappraisal of the

stylized facts in the extensive margin in trade. We should emphasize that we do not imply that there

are no interesting facts in the data.�e balls-and-binsmodel is a tool to recognize the key deviations

from randomness in the data, and these are the facts we believe one should focus on when building

models.

�ere are, of course, many possible random models. And with enough ad-hoc meddling one

would be able to come up with a randommodel that �ts a particular set of moments. We have thus

to argue for our choice of the balls-and-bins model. �ere are two key distinct elements in our

2�e average exports of the bottom three quarters of all exporters are just $75,000. By contrast, the top one quarter

of exporters export $20 million on average.
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model: �rst, an indivisibility at the transaction level; second, independence across balls, i.e., where

a ball falls is independent of the distribution of other balls.

�e indivisibility follows from the discreteness of the underlying trade data. �e 2000 Linked-

Longitudinal Firm Trade Transaction Database of the U.S., for example, is built from 24 million

individual export transactions.3 �e average exporting �rm has only about 140 export transactions

in the data. Given the enormous skewness in �rm sizes, the median �rm may have much fewer

transactions. We can no longer ignore the discrete nature of the data. Alternatively, the indivisibil-

ity can also be interpreted as a constraint of the environment. Goods must be traded in boxes of

$36,000, either because they are physically indivisible or because it is not economically pro�table

to divide them. We believe that the $36,000 number represents a small degree of indivisibility that

can easily be justi�ed either way.

�e independence across balls is a natural assumption. We could, for example, have assumed

that balls have a higher chance to fall into bins that are already full — and thus impose a force for

specialization across �rms. But this is exactly what we would like to avoid in order to provide a

neutral null hypothesis and let the data speak otherwise.

A paper close to us in spirit is Ellison and Glaeser (1997).�ey ask whether the observed levels

of geographic concentration of industries are greater than would be expected to arise randomly.

To this end they introduce a “dartboard” model of �rm location. In contrast with our results, the

“dartboard” model rea�rms the previous results on geographic concentration. Ellison and Glaeser

(1997) are also able to provide a new index for geographic concentration which takes a value of

zero under the dartboard model and thus controls for the mechanic degree of concentration arising

from randomness. Such an index is more di�cult for trade facts, which do not focus on a particular

dimension.

Our paper is also related to a large literature that tests the robustness of empirical �ndings

throughMonte Carlo techniques or sensitivity analysis. To our knowledge these tests have not been

commonplace in international trade. An early exception is the analysis on trade-related interna-

tional R&D spillovers in Keller (1998). �ere has also been some work on the robustness of gravity

equation models. Ghosh and Yamarik (2004) use Leamer extreme bounds analysis to construct a

rigorous test of speci�cation uncertainty and �nd that the trade creation e�ect associated with re-

gional trading arrangements is fragile. Anderson, Ferrantino, and Schaefer (2004) use Monte Carlo

experiments to explore alternative speci�cations of the gravity model and �nd coe�cient bias to be

pervasive.

�e next section describes the setup of the balls-and-bins model and characterizes some of its

properties. Section 3 presents the empirical facts onmissing product-level trade �ows and discusses

how the the balls-and-binsmodelmatches these facts. Section 4 conducts the same exercise for �rm-

level trade �ows. Section 5 looks at whether the balls-and-bins model can predict the number and

size of exporters. Section 6 discusses the extensive margin of products and destination countries at

the �rm level. Section 7 o�ers some extensions. Finally, Section 8 concludes.

3Bernard, Jensen and Schott (2007), Table 20.
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2 A model of balls and bins
We characterize a trade �ow (such as total exports from the U.S. to Argentina, or total exports of

a given �rm) with a number of indivisible units, or “balls,” denoted by n. �e trade �ow is then

partitioned into K disjoint categories (such as the 15,000 10-digit Harmonized System product clas-

si�cations). We call these categories “bins” and index them by subscript i ∈ {1, 2,⋯,K}.
We then formalize the random assignment of export shipments to categories as balls falling into

bins.�e probability that a given ball lands in bin i is given by the bin size si , such that 0 < si ≤ 1 and

∑K
i=1 si = 1.�us where a ball lands is an independent and identically-distributed random variable.

We are primarily interested in the “extensive margin,” that is, how many of the bins remain

empty a�er throwing the n balls. �e “intensive margin” will be given by the number of balls per

non-empty bin. �e model has a known probability distribution for both margins. �e number

of balls in each bin follows a multinomial distribution with parameters n, s1, s2, ..., sK . �e joint

probability distribution of a ball distribution {n1, n2, ..., nK} with∑K
i=1 ni = n is

Pr(n1, n2, ..., nK) =
n!

n1!⋯nK !
sn11 ⋯snKK .

Obviously, ni and n j are not independent given a total number of balls n, as a ball falling in bin i
reduces the expected number of balls in bin j.

In the remainder of the section we derive analytically some of the key properties of the model.

2.1 �e extensive margin
Let di be an indicator variable that takes the value of 1 if bin i is empty, and 0 otherwise. A�er

dropping n balls the expected value of di is the probability that bin i receives none of those:

E(di ∣n) = Pr(xi = 0∣n) = (1 − si)n .

Each ball has a (1 − si) probability of landing elsewhere. Since where a ball lands is an independent

event, the probability that none of n balls fall in a given bin i is (1− si)n. We denote the total number

of empty bins (or zeros) by k,

k =
K

∑
i=1

di .

Clearly, for n ≥ 1 k ∈ {K − n,K − n + 1, ...,K − 1}, as at least one bin has to be non-empty but no

more than n can be �lled.

We thus obtain the expected number of empty bins

E(k∣n) =
K

∑
i=1

(1 − si)n . (1)

As (1 − si) ≤ 1 for all i and (1 − si) < 1 for at least one i, we clearly have that the expected number of

empty bins decreases in n. Quite trivially it also increases with K.
�e expected number of empty bins also depends on the distribution of bin sizes. Two bins of

equal size �ll up very fast: toss a coin ten times and with almost absolute certainty the coin will have

5



turned heads some times and tails some others. But if a bin is, say, 10 times the size of the other,

then a lot of balls will be needed to hit the small bin.

Formally, the expected number of empty bins (1) is convex in si for all n ≥ 2. �is implies that

as we even out a bin-size distribution the expected number of empty bins decreases.

Proposition 1. Let {si} be a bin size distribution and let

{s̃i} = α{si} + (1 − α)1/K (2)

for α ∈ [0, 1]. �en the expected number of empty bins under {s̃i} is at most as large as than under
{si} for all n ≥ 2.

�e symmetric distribution {1/K} is more even than any asymmetric distribution. At the other

extreme, if s1 = 1 − ε/K and si = ε/K, we have

E(k∣n) = (ε/K)n + (K − 1)(1 − ε/K)n ,

which tends to (K − 1), the maximum number of empty bins, as ε tends to zero.
�e extensive margin is just the number of non-empty bins,

K − E(k∣n) =
K

∑
i=1

[1 − (1 − si)n].

�is is clearly increasing in the number of balls, n.�e following �gure plots the expected number

of non-empty bins against the number of balls for 5 symmetric bins.
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Figure 1: Balls and bins

6



�e �rst few balls fall into separate bins almost surely. Because of that, as long as balls are few,

the number of �lled bins is close to the number of balls. �e relationship is close to linear. Most

adjustment is on the “extensive margin.”�en balls are getting more and more likely to fall in non-

empty bins, and the number of �lled bins will fall behind the number of balls.4 Eventually, all bins

get �lled, and the relationship �attens out. �e remainder of balls can only increase the “intensive

margin.”

2.2 Ones
Next we look at the probability that a single bin contains all the balls.�is is the analogue of a �rm

that sells only one product or to only one country.

What is the probability that a particular bin i contains all the n balls? Each ball had si probability
of falling into bin i, so this probability is sni . For any particular bin, the probability that it is the single
non-empty bin is falling in n. What is the probability that exactly one bin is non-empty? �is can

be any of the K bins, giving a probability of

Pr(k = 1∣n) =
K

∑
i=1

sni . (3)

Obviously the probability of a single non-empty bin decreases with the number of balls, n. More

interestingly, the probability of a single non-empty bin increases with the dispersion of bin sizes.

Proposition 2. Let {si} be a bin size distribution and let

{s̃i} = α{si} + (1 − α)1/K (4)

for α ∈ [0, 1]. �en the probability of a single non-empty bin under {s̃i} is at most as large as than
under {si} for all n ≥ 2.

�is follows from the convexity of (3) in si . Again, at the extreme, if s1 = 1 − ε/K and si = ε/K,
we have

Pr(k = 1∣n) = (1 − ε/K)n + (K − 1)(ε/K)n ,
which tends to 1 as ε tends to zero.

2.3 Aggregation
So far we have only looked at a single trade �ow. O�en, however, we are interested in some aggregate

statistic, such as the total number of empty product categories across all countries, or the fraction

of exporters among all �rms.

Suppose there is a total of M trade �ows (countries, �rms) in aggregate data, each indexed by

m. Trade �ow m is comprised of nm balls, and we can characterize that trade �ow conditional on

nm using the tools above.

4�e �rst ball falling to a non-empty bins comes very early, roughly in proportion to the square root of the number of

bins,
√
K.�is is sometimes known as the “birthday paradox” that it takes only 23 balls before any one of 365 equal-sized

bins will contain more than one ball with probability 1/2.
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Let πn denote the fraction of �ows with exactly n balls. �is de�nes a probability distribution

over {1, 2, ...,N}, where N is the size of the largest �ow.

�e average number of empty bins across all trade �ows is given by

E(k) =
N

∑
n=1

πn

K

∑
i=1

(1 − si)n =
K

∑
i=1

N

∑
n=1

πn(1 − si)n . (5)

Let G(z) denote the probability generating function (PGF) corresponding to the distribution {πn}:

G(z) =
N

∑
n=1

πnzn .

�en the number of empty bins can be written as

E(k) =
K

∑
i=1

G(1 − si).

Since G(z) is strictly convex, uneven bin-size distributions will have a larger expected number of

empty bins.�at is, aggregation preserves the aforementioned properties.

What about the proportion of single-bin trade �ows? For each trade �ow of size n, the proba-
bility is∑K

i=1 sni .�e unconditional probability is

Pr(k = 1) = E[Pr(k = 1∣n)] =
N

∑
n=1

πn

K

∑
i=1

sni =
K

∑
i=1

N

∑
n=1

πnsni .

We can also express it in terms of the PGF as

Pr(k = 1) =
K

∑
i=1

G(si).

It then becomes clear that the convexity of G(z) also preserves the properties of each �ow with

respect to the fraction of single bins. In particular, we can now assert that more even bin-size dis-

tributions induce a lower fraction of single-bin �ows.

Finally we can also calculate the fraction of balls that have fallen into a single bin. �is corre-

sponds to, for example, the fraction of sales attributed to single-product �rms.

N

∑
n=1

πnn
K

∑
i=1

sni =
K

∑
i=1

N

∑
n=1

πnnsni

With the use of the PGF notation,
N

∑
n=1

πnnsni = G′(si)si

And we can easily have the average size of trade �ows that all fall in bin i is

∑N
n=1 πnnsni
∑N

n=1 πnsni
= G′(si)si

G(si)
.

It is important to note that, unless the number of trade �ows is in�nite, the actual fractions will

be a random variable. Since all distributions are known it is actually possible to derive the actual

distribution for each moment. It is, however, extremely unpractical to do so and we will instead use

Monte Carlo methods to derive the distribution as needed.
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3 Zeros in product-level trade �ows
�e �rst data pattern we explore is the prevalence of product-level zeros (i.e., missing trade �ows) in

country-level exports. In other words, we look at the extensive margin of products when the units

of observation are countries. We later discuss �rm-level evidence.

We also take the chance to carefully describe how we map the data to the balls-and-bins model

and back.�e methodology is essentially the same for every exercise in the paper.

3.1 �e facts
Baldwin and Harrigan (2007) recently reported that most potential destination country product

combinations are missing in U.S. exports. Helpman, Melitz and Rubinstein (2007) look at the

country-level zeros in the gravity equation. Of all potential country pairs, only about 50% have

positive trade in either direction.5 In 2005, the U.S. exported 8,877 di�erent 10-digit Harmonized

System categories to 230 di�erent countries.6 Of these 2,041,710 potential trade �ows, 1,677,213 (or

82%) were missing. In other words, the average country only bought 18% of the 8,877 products the

U.S. exports.

Empirical regularity 1. Most of the potential product-country export �ows are zero — 82% of them
in the U.S.

Other levels of aggregation lead to similar patterns, the incidence of zeros only decreases signif-

icantly at the very broad, 2-digit level.

Classi�cation Number of bins Incidence of zeros

10-digit 8,877 82%

6-digit 5,182 79%

4-digit 1,244 66%

2-digit 97 36%

Table 1:�e incidence of zeros under di�erent classi�cations

Baldwin and Harrigan (2007) then report how the incidence of zeros relate to the size of the

importer and its distance to the U.S. Larger countries that are closer buy more products. Here we

replicate a regression close to their speci�cation. For the top 99 trading partners of the U.S., we

regress the incidence of a positive export �ow on real GDP of the importer, real GDP per capita,

and the distance of the importer from the U.S. Distance is divided in the same categories as in

Baldwin and Harrigan (2007). We use a linear probability model, so coe�cients can be understood

as marginal e�ects.

5Hummels and Klenow (2005) also look at the product-margin of aggregate exports.�ey have a di�erent measure

of the extensive margin, something we plan to analyze later.
6Some of these entities are not really countries but are small territories. Results do not change substantially if one

restricts the analysis to the 191 actual countries.
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Non-zero

trade �ow

Real GDP
0.073***

(0.007)

Real GDP per capita
0.022**

(0.009)

Distance = 0
0.300***

(0.055)

0 < distance < 4000km
0.236***

(0.025)

4000 < distance < 7800 omitted

7800 < distance < 14000
0.006

(0.030)

Distance > 14000
0.049

(0.033)

Observations 965,151

Clusters 99

R2 0.34

Table 2: Non-zero �ows and gravity –�e data (Baldwin and Harrigan, 2007)

Table 2 reports the results.7 Larger countries are more likely to import any given product. �e

same is true for richer countries.�e incidence of non-zero decreaseswith distance: closer countries

havemore non-zero �ows than farther countries (the omitted category is the intermediate distance).

Empirical regularity 2. �e incidence of nonzero exports decreases with destination-country size and
increases with distance.

3.2 From the data to the model
In order to map the balls-and-bins model to the data, we proceed as follows. �e trade �ow of

interest is the total U.S. exports to a given country, that is, we will have as many trade �ows as

destination-countries (230). We assign each ball a constant dollar value of $36,000, which is the

average size of export shipments in 2000.8 We then convert the total value of the trade �ow into the

number of balls by dividing by $36,000 and rounding up to the next integer. For example, exports to

Canada (the biggest importer) were $168 billion (in 2000 dollars), which corresponds to 4.7 million

balls. Exports to Argentina (a median importer) were $3.8 billion, corresponding to 105,000 balls.

To keep the empirical applications comparable, we report all values in 2000 dollars.

7Standard errors are clustered at the country level.�ese results are comparable to Table 4 of Baldwin and Harrigan

(2007).�e coe�cients are similar, but not identical, potentially due to somewhat di�erent real GDP measures.
8We take this number from Bernard, Jensen and Schott (2007). Table 20 reports the total number of export ship-

ments (above $2,500) as 23.9 million.�e total value of these shipments was $855 billion.�e average shipment is hence

$36,000 in 2000 dollars.
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�e bins correspond to the 8,877 10-digit HS categories in which the U.S. exports at all.�e size

of each bin (si) is the share of each HS code in total U.S. exports in 2005. �at is, we divide total

exports of a given HS code with aggregate merchandise exports.

We then calculate the expected number of empty bins for each country using the previous for-

mula (1)

kc =
8877

∑
i=1

(1 − si)nc ,

where nc is the number of balls for country c and kc is the expected number of empty HS categories

in exports to country c.�e overall number of empty bins is then

k =
230

∑
c=1

kc .

3.3 �e model’s predictions
We �nd that indeed most of potential product-level bilateral �ows are zero in the model. �e ex-

pected share of zeros is 73%, surprisingly close to the data (82%). Using HS6 codes results on 69%

of the potential product-level bilateral �ows being zero for 79% in the data.

Moreover the model matches quantitatively the pattern of zeros across �ows in the data. To

show this, we plot the fraction of product-level zeros for each country against total U.S. exports

to that country in Figure 2. �e dots represent the actual fraction of zeros in the data, the line is

the predicted number of empty bins for each country. We already know that the balls-and-bins

model somewhat underpredicts zeros, but the shape of the relationship to total exports is strikingly

similar.9

Zeros are more likely to occur in small export �ows (those with few balls).�is already suggests

that non-zero �ows may follow a gravity equation, as total export �ows are well known to adhere to

gravity. We can then try to replicate the gravity speci�cation in Baldwin and Harrigan (2007). We

take the predicted probability of a non-zero �ow (1−(1− si)nc ) and regress it on the gravity variables
such as country size and distance.10 We emphasize that the balls-and-bins model has nothing to

say about gravity, but given that the total number of balls (nc) is highly correlated with the gravity

variables, we may �nd some signi�cant correlations.

�e second column of Table 3 reports the results. For convenience, the �rst column repeats

the regression on non-zero �ows in the data. Bigger and closer countries are more likely to have

a non-zero �ow under the balls-and-bins model, just as in the data. Moreover, the magnitudes of

the coe�cients are surprisingly similar.�e only exception are the two countries bordering the U.S.

(“distance= 0”), Canada and Mexico. �ese seem to import more HS codes in the data than under

the balls-and-bins model.

�e success of the balls-and-bins model may be perplexing to the reader. However it is just

indicating that the heterogeneity underlying in the data is so large that, in the aggregate, it is as if

every export shipment were randomly classi�ed into one product category.

9In fact, in section 7, we show that a small change in the size of the ball achieves a perfect �t.
10We take the distance categories from Table 3 of Baldwin and Harrigan (2007). Real GDP is taken from the World

Development Indicators.
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Figure 2:�e incidence of zeros and total exports

Non-zero

trade �ow
B+B model

Real GDP
0.073***

(0.007)

0.098***

(0.006)

Real GDP per capita
0.022**

(0.009)

0.018**

(0.009)

Distance = 0
0.300***

(0.055)

0.154***

(0.021)

0 < distance < 4000km
0.236***

(0.025)

0.205***

(0.027)

4000 < distance < 7800 omitted omitted

7800 < distance < 14000
0.006

(0.030)

-0.024

(0.028)

Distance > 14000
0.049

(0.033)

0.012

(0.043)

Observations 965,151 965,151

Clusters 99 99

R2 0.34 0.34

Table 3: Non-zero �ows and gravity – Balls and bins

Quantitatively, the dispersion in �ow and bin sizes plays a key role. In both cases the distribu-

tion is skewed, that is, some product categories and U.S. trade partners are very large, but the vast

majority of product categories and trade partners are very small. It is precisely for the combination
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of latter (small country export for a small product category) than we have the missing trade �ows in

the data. And it is precisely for smaller bins and fewer balls than the model predicts the most zeros.

Let us start with the distribution of bin sizes. �e size of the average bin is 1/8877 = 1.13 × 10−4.

However, the size distribution across bins is rather skewed.�e size of the median bin is 1.7 × 10−5,

about seven times smaller than the average. �e following tables list the �ve biggest and the �ve

smallest bins.

HS code Description Share

8802.40.00.40 Airplanes exceeding 15,000 kg for passenger transport 0.023

8542.21.80.05 Monolithic integrated circuits, for other then HDTV, silicon 0.021

8473.30.00.00 Parts and accessories of computers 0.015

8803.30.00.10 Other parts of airplanes or helicopters 0.013

8708.99.80.75 Parts and accessories of tractors 0.012

Table 4:�e �ve largest HS codes

�e biggest HS category is airplanes (a lumpy category indeed). �is re�ects the comparative

advantage of the U.S. to produce complex machinery such as airplanes. Other large categories in-

clude “catch-all” categories of parts and accessories. �eir being large probably only re�ects that

these categories are broad aggregates (even at the 10-digit level).

�e skewness of trade �ows is also important. Canada alone accounts for more than one ��h of

total U.S. exports; the top �ve U.S. trade partners account for more than a half of the total.

HS code Description Share

0706.10.40.00 Turnips 3.11 × 10−9

5208.21.20.90 Woven fabric of cotton... 3.26 × 10−9

5210.51.60.20 Woven fabric of cotton, mixed with �bers 3.32 × 10−9

0910.20.00.00 Sa�ron 3.68 × 10−9

3825.41.00.00 Waste organic solvents (halogenated) 3.86 × 10−9

Table 5:�e �ve smallest HS codes

It is important to emphasize that it is the dispersion in bin sizes, and not some particular bins

being large and other small, that leads the balls-and-bins to predict so many zeros. To check for this

we re-run the model with the relative shares of HS codes calibrated in di�erent ways. First, we take

the HS shares of U.S. exports to Canada and Mexico only. �ese two trade �ows contain very few

zeros and so the size distribution of bins would not be a�ected by the large incidence of zeros in

the data. �e predicted fraction of zeros under these bin sizes is 76%. Second, we look at an even

distribution of all the 8,877 HS codes.�is would lead to 53% zeros.

4 Zeros in �rm-level trade �ows
We can also ask about zeros in �rm-level trade �ows: we �nd a remarkably similar pattern. Bernard,

Jensen and Schott (2007) report that the average exporting �rm in 2000 exported to only 3.5 coun-
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tries from a total of about 230.11 In other words, 98 percent of potential �rm-country pair trade �ows

are zero.

Again, the zero trade �ows follow a well-de�ned spatial pattern. Firm-level export zeros are

more frequent for small, distant countries. In other words, the number of �rms exporting to a

particular destination increases with country size and decreases with distance.

Table 6 reproduces column 2 of Table 6 from Bernard, Jensen, Redding and Schott (2007). �e

log number of exporting �rms are regressed on log GDP of the destination country and its log

distance from the U.S.

Log number of

exporting �rms

Log GDP
0.71***

(0.04)

Log distance
−1.14***
(0.16)

Observations 175

R2 0.74

Table 6: Exporting �rms and gravity –�e data (Bernard, Jensen, Redding and Schott, 2007)

Wecan calibrate the balls-and-binsmodel similarly to the previous exercise.�e key di�erence is

that now we need to create bins for �rms as opposed to product categories. We take the number and

sizes of exporting �rms as given. In other words, we only try to explain the allocation of exporting

�rms across destinationmarkets, we do not analyze the question of which �rms export.�at is done

in the next section.

�e number of balls per destination country are again taken by dividing the total exports to

that country by $36,000. �e total number of bins equals the number of exporting �rms, 167,217.12

Because there aremanymore �rm bins (167,217) thanwe had product bins (8,877), we already expect

that many more bins remain empty.

�e size distribution of �rm bins is calibrated as follows. We take the size distribution of �rm-

level export �ows from Bernard, Jensen and Schott (2007).�eir Table 3 contains a Lorenz curve of

exports: What fraction of exports is accounted for by the top 1, 5, 10, 25, and 50% of exporters?�e

following table reports the fraction of �rms and the average exports in each of these percentile bins.

�ere is a striking skewness in the distribution of exports across �rms. While the average �rm

exports $5.11 million, the bottom half of exporters export only $20,500.13 �e top 1% of exporters

account for 80.9% of total exports.

We approximate the distribution of exports with a lognormal distribution with µ = 10.99 and

σ = 2.99. �is matches the mean exports of $5.11 million and has a median exports of $59,300. �e

lognormal distribution does a good job in matching the Lorenz curve reported in Bernard, Jensen

11Bernard, Jensen and Schott (2007), page 11.
12Bernard, Jensen and Schott (2007), Table 2.
13Note that this is conditional on having positive exports. A large fraction of �rms have zero exports and are omitted

from this analysis.
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Export percentile Fraction of �rms Average exports

99 − 100 0.01 $413 million

95 − 99 0.04 $15.5 million

90 − 95 0.05 $3.37 million

75 − 90 0.15 $886,000

50 − 75 0.25 $184,000

0 − 50 0.50 $20,500

Total 1.00 $5.11 million

Table 7:�e distribution of �rm-level exports – Bernard, Jensen and Schott (2007)

and Schott (2007).14 �e size distribution of bins will then inherit this lognormal distribution with

the additional normalization the bin sizes add up to one.

�e balls-and-bins model predicts that 96 percent of the potential �rm×country trade �ows is
going to be zero.�is is very close to the 98 percent we see in the data. What about the distribution

of �rm zeros across destinations? For each country, we can calculate the expected number of non-

empty �rm bins. We can then regress (the log of) this number on GDP and distance.15

Table 8 presents the results. For convenience, we reproduced the regression estimate by Bernard,

Jensen, Redding and Schott (2007) in the �rst column.16 �e coe�cient estimates in the simulated

regression are strikingly similar to the ones in the actual data. Just as in the data, bigger, closer

countries are served by more exporters: the more balls are thrown, the less bins will be le� empty.

Log number of

exporting �rms

Log number of

non-empty bins

Log GDP
0.71***

(0.04)

0.67***

(0.04)

Log distance
−1.14***
(0.16)

−0.89***
(0.17)

Observations 175 181

R2 0.74 0.68

Table 8: Exporting �rms and gravity – Balls and bins

Again, this does not imply that the assignment of �rms to destinationmarkets is indeed random.

�e only conclusion we can draw is that the variation in market size is so huge that any model that

accounts for that canmatch the gravity equation of �rms - even if the assignment of �rms is random.

A direct consequence of both the product and the �rm counts following so strong a gravity

equation is that the “intensive margin,” that is, the average amount exported per product per �rm
14A Pareto distribution does similarly well and leads to similar results.
15We take GDP (in current-price USD) from theWorld Development Indicators. We take distance from the bilateral

distance dataset of CEPII.
16Because we may have used somewhat di�erent data sources, especially for distance, we have 181 destination coun-

tries in contrast to the 175 countries of Bernard, Jensen, Redding and Schott (2007).�e di�erences in coverage, however,

are likely very small.
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will follow an inverse gravity equation, as reported in Table 6 of Bernard, Jensen, Redding and Schott

(2007). Larger, closer countries will buy less per product per �rm. �is can be easily understood

within the balls-and-bins model. A country that only has a single export transaction necessarily

buys only one product from one �rm. �e intensive margin is 1 ball per product per �rm. If a

country has two transactions, those two transactions are very likely to come from two distinct �rms

and correspond to two distinct product categories (it may be a computer from Dell and a case of

wine fromKendall-Jackson).�e intensivemargin is then 2 balls per 2 �rms per 2 products, 1/2, less
than for the single-ball country. Larger countries buy less per product per �rm. In fact, the gravity

equation for our simulated intensive margin is very close to the one reported by Bernard, Jensen,

Redding and Schott (2007): −0.20 ×GDP + 0.37 × distance.

5 Exporting �rms
Wenowmove on to the di�erences between exporting andnon-exporting �rms. It is awell-established

fact that exporters are few and they are signi�cantly larger than non-exporting �rms.

According to the survey by Bernard, Jensen, Redding and Schott (2007), only 18% of manufac-

turing �rms export at all. �e fraction drops to about 3% when all �rms outside manufacturing

are included.17 Other studies have con�rmed the scarcity of exporters. Plant-level statistics also fall

in the same pattern. For the quantitative exercise, we stay with the fraction of exporters among

U.S. manufacturing �rms.

Empirical regularity 3. Exporters are few — only 18% of manufacturing �rms export in the U.S.

�e second fact is that exporters sell signi�cantly more than non-exporters — about 4.4 times

more than non-exporters according to Bernard, Jensen, Redding and Schott (2007). Again, �rms

outside manufacturing and plant-level evidence reveal similar patterns.�at exporters are few and

they are larger than non-exporters have been con�rmed in other datasets, in other settings, with

other measures of size.

Empirical regularity 4. Exporters are large — among U.S. manufacturing �rms, exporters sell 4.4
times more than non-exporters.

We follow essentially the same steps as before to map the model to the data. �e key di�erence

is that now the output �ow will be originated by �rms, not countries, and will include total sales,

not only exports. As before we obtain the number of balls n per �rm by dividing its total sales by

$36,000 and rounding up.18

We thus need data on total sales per �rm in order to construct the distribution of balls (πn).

Unfortunately we do not have direct access to this data for the U.S.�e 2002 Statistics of U.S. Busi-

nesses of the Census, though, reports the number and total sales of �rms in each of eight size bins

(see Table 9).

As is well known, there is enormous skewness in the size distribution of �rms. Whereas 59% of

�rms sell less than $1 million, the average �rm sells $13.2 million. We approximate the distribution

17See Table 2 in Bernard, Jensen, Redding and Schott (2007).�e data is from the 2002 Economic Census.
18In the previous section we used evidence on the average shipment value to pin down the “ball size.” We have no

direct equivalent for total sales. In Section 7 we document the results for di�erent balls sizes.
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Size bin Fraction of �rms Average sales

0–$100,000 0.145 $55,600

$100,000–$500,000 0.305 $257,000

$500,000–$1 million 0.144 $718,000

$1–5 million 0.257 $2.26 million

$5–10 million 0.060 $6.84 million

$10–50 million 0.063 $19.3 million

$50–100 million 0.010 $56.4 million

over $100 million 0.015 $670 million

Total 1.000 $13.2 million

Table 9:�e distribution of �rm sales in manufacturing – Census

of �rm sales by a lognormal distribution with µ = 13.4 and σ = 2.44. �is corresponds to median

sales of $680,000 and average sales of $13.2 million. We also experimented with �tting a Pareto

distribution with similar results.

To distinguish between exporters and non-exporters we only need two bins: one for domestic

sales, the other for foreign sales. In the 2002 Economic Census, there were 297,873 manufacturing

�rms.�eir total receipts amounted to $3.94 trillion. Exports of manufactured goods amounted to

$545 billion in 2002.19 �at is, 13.9% of manufacturing receipts come from exports. �is pins down

the size of the domestic bin at 0.861 and the size of the export bin at 0.139.

Our �nding here is that exporters are much less common in the data than they would be if sales

were randomly allocated between the domestic and abroadmarket: 74% of the manufacturing �rms

should be exporting according to the balls-and-bins model, compared to 18% in the data.

It is easy to see why the model overpredicts the fraction of exporters.�e probability that a �rm

with n balls of total sales does not export is

(1 − s)n = 0.86n .

Because where each ball ends up is independent of the distribution of existing balls, each $36,000

has quite a high chance to end up going to a foreign market. Among the smallest �rms, that is,

with one ball, 14% of them export. �is is already a very high number given that only 18% of total

manufacturing �rms export. It obviously gets worse. Almost half of the �rms with a paltry $100,000

of total sales should export. It is clear that this is not the case in the data: exporting is more unlikely

event than the random assignment of sales across markets would indicate.

�e unconditional probability of exporting is convex in the fraction of exports, s, so if there is

heterogeneity across industries, the aggregate economy will contain fewer exporters than predicted

by the average s. However, at the 3-digit level, this heterogeneity is rather small, and does not change

the exporting probability substantially.

�e model’s prediction for the exporter’s size premium is also o�. Surprisingly, though, the

model overpredicts the size of exporters. �at is, despite exporters being four ��hs of total �rms

in the model for one ��h in the data, the model predicts that exporters are 34 times larger than

19Bureau of the Census, FT-900, “International Trade in Goods and Services.” We converted all �gures to 2000

dollars.
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non-exporters on average, while in the data they are “only” 4.4 times larger. In terms of the exporter

size premium, in log sales, the di�erence in the model is 3.53, for 1.48 in the data.

To understand why exporters are larger under balls-and-bins than in the data, note that balls-

and-bins implies that the largest �rms export with a probability close to one. Even the median

�rm that has $660,000 dollars in sales, corresponding to 18 balls, exports with probability 0.93.

�e skewness of the �rm sales distribution then implies that the average �rm in the top half of the

distribution is much larger than any of the non-exporters, who mainly come from the bottom half.

�e fact that the size premium is smaller in the data suggests that the sorting of exporters and non-

exporters by size is not as strong as predicted by the model. In other words, there have to be a

substantial fraction of very large �rms that do not export – in contrast with the model.

To derive the size-exporting relationship formally, let πn be the unconditional size distribution

of �rms.�e size distribution conditional on no exports is

Pr(n∣no export) = Pr(no export∣n)πn

Pr(no export) .

�e average sales (number of balls) of non-exporters is

E(n∣no export) =
∞

∑
n=1

πnn(1 − s)n
Pr(no export) .

�e average sales for the population of �rms is then

E(n) =
∞

∑
n=1

πnn.

We recover the notation for the probability generation function G(z) = ∑∞

n=1 πnzn of the �rm
size distribution. We can then express the expected sales of non-exporters as

E(k∣no export) = (1 − s)G′(1 − s)
G(1 − s) ,

the elasticity of G evaluated at 1 − s. Note that G is di�erentiable. �e unconditional mean is given

by the same formula but evaluated at z = 1:

E(k) = 1G′(1)
G(1) .

A su�cient condition for non-exporters being smaller than the average if the elasticity of G is in-

creasing in z.
To see how the skewness in the �rm size distribution leads to large exporter premia, we parametrize

the distribution as the zeta distribution. �is is the discrete analogue to Pareto distribution, and its

probability mass function is

πn =
k−α

ζ(α) .
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Here α is the tail exponent, and is estimated to be about 2.06 by Axtell (2001). �e probability

generating function of the zeta distribution is

G(z) = Liα(z)
ζ(α) ,

where Liα is the (non-analytic) polylogarithm function. By properties of polylogarithm, the elastic-

ity of G(z) is given by

zG′(z)
G(z) = Liα−1(z)

Liα(z)
.

With α = 2.06, this implies that exporters are about 18 times as big as non-exporters. If we lower

α closer to 2, we are putting more mass of the distribution on its upper tail. For α = 2.02, exporters

are 27 times as big as non-exporters.

Summarizing, what do we learn from the balls-and-bins miss? First, the split between exporters

and non-exporters is not just a matter of chance: there is some economic force that makes the two

types of �rms quite di�erent. Second, the data has a weak sorting of exporters by size: exporters are

smaller, not larger, than expected.20

6 Firm-level export patterns
We then turn to evidence on the extensive margin at the level of individual exporting �rms. In this

sectionwe ask howmany products �rms export and howmany destinations they serve. Note that the

universe of interest now is the set of exporting �rms, because the empirical facts are usually reported

only for �rms that have some exports.21 �is way we can use the balls-and-binsmodel to understand

these moments without having to factor that the split between exporters and non-exporters is very

di�erent from random.

�e key stylized facts about the extensive margin at the �rm level are that while most �rms

exports a single product to a single country, the bulk of exports is done by multi-product, multi-

destination exporters.22

To start with, 42% of the �rms export only a single product, de�ned by the 10-digit HS code.

While being a little less than half of the total �rms, they account for a tiny fraction of total exports,

0.4%.

Empirical regularity 5. 42% of �rms export a single product (de�ned as a 10-digit HS code). �ese
�rms account for only 0.4% of exports.

A similar pattern exists for �rms that export to a single country.�ese �rms account for a little

less than two thirds of the total, but still amount to a small fraction of total exports.

20Note that a �xed cost model, with a simple cut-o� rule, has a very strong sorting of exporters by size. Indeed, were

it to match a 18% exporter fraction, exporters would be orders of magnitude larger than non-exporters.
21�ough export datasets can bemerged with domestic data such as in Bernard, Jensen, and Schott (2007) and Eaton,

Kortum and Kramarz (2004).
22�e following facts are for U.S. merchandise trade in 2002, reported in Bernard, Jensen, Redding and Schott (2007),

Table 4.
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Empirical regularity 6. 64% of �rms export to a single country. �ese �rms account for only 3.3% of
exports.

But perhaps the most striking fact corresponds to the fraction of �rms that export a single prod-

uct to a single country. �ese �rms represent 40% of the total exporters yet account only for 0.2 %

of total exports.

Empirical regularity 7. 40% of �rms export a single product to a single country. �ese �rms account
for only 0.2% of total exports.

To calibrate bins, we use the same bin sizes as for the aggregate �ows.�e 10-digit HS codes are

calibrated to the aggregate export share of each HS code in total U.S. exports in 2005. �e size of

each country bin is calibrated to the share of that country in total U.S. export �ows.23 �e following

table lists the �ve biggest country bins.

Country Share

Canada 0.228

Mexico 0.127

Japan 0.064

China 0.048

United Kingdom 0.042

Table 10:�e �ve biggest country bins

We assume each �rm has a di�erent number of export balls. �e number of balls can be cali-

brated to the distribution of exports across �rms, reported in Table 7. We approximate the distribu-

tion of exports with a lognormal distribution with µ = 10.99 and σ = 2.99. �is matches the mean

exports of $5.11 million and has a median exports of $59,300. We take each $36,000 of export sales

to represent one ball, rounding up. Because of the extreme skewness in the distribution of exports

by �rm, many �rms will end up with just one export ball.

�e predicted fraction of single-product exporters is 43%.�is is very close to the actual fraction

in the data (42%).�e predicted fraction of exports coming from single-product producers is 0.3%,

close to the actual 0.4%.

Let us see how the balls-and-bins model manages to reproduce the fraction of single-product

exporters with such precision. In the model practically all single-product exporters have only one

ball. �is is because with 8,877 HS codes, the second ball is very likely to fall into an HS category

di�erent from the �rst one. Only 0.3% of two-ball exporters are single-product exporters. �e key

to understanding the incidence of single-product exporters is that there are plenty of very small

exporters, who export $36,000 or less.

With respect to the fraction of single-country exporters the model underpredicts the data, 44%

in the model for 64% in the data. �e relationship between number of balls and number of bins is

somewhat less mechanical for destination countries.�ere is a very large bin (Canada) so there is a

fair chance that the second ball goes in there too. Overall, 8.4% of two-ball �rms are single-country

23�e assumption here is that the structure of aggregate exports did not change too much between 2002 and 2005.
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exporters. For three balls, this fraction is down to 1.5%. In the data, though, we conjecture that there

exists relatively large exporters that export only to Canada (and possibly Mexico).

Last but not least, the balls-and-bins is right on the spot with respect to the fraction of single-

product, single-country exporters.

Note that a fraction of 40% of single-product, single-country exporters implies that most single-

product exporters are also single-country exporters, and vice versa. Is this surprising? �e balls-

and-binsmodelmakes it clear the fact follows from the presence ofmany small exporters. Almost all

single-product exporters have only one ball, and these are all going to be single-country exporters.

And this exactly what we see in the data. �e conditional probability of single-country exporters

among single-product exporters is 99.9% in the model, close to the 96% in the data.

We conclude that the split between single-destination, single-product �rms and the rest is very

much in line with what wewould expect given the skewness of the exporter distribution. Once again

the balls-and-bins points to the very special split between exporters and non-exporters as the key

fact behind most of the patterns on the extensive margin of trade.

Of course, this does not mean there are no interesting facts in the data! First, without all the

reported facts we would have not been able to establish the importance of the skewness of the export

distribution. Second, there are interesting deviations from randomness. We have already pointed to

the fact that exporters to NAFTA countries exhibit some di�erences: they are more likely to export

multiple products and they are larger than expected.

7 Extensions
We have calibrated the size of the ball to the average size of export shipments, $36,000. Given that

lumpiness plays a big role in our analysis, we experiment with other ball sizes, as well. Because

individual export transactions are the fundamental units of observations, we take the average size,

$36,000, as a lower bound on the ball size. �is can easily be explained by some small frictions

and indivisibilities in transportation, such as container shipping, the administrative burden of cus-

toms clearance etc. However, it may well be the case that the relevant decisions concern multiple

transactions at the same time, that is, the ball size is larger.

�e following table shows our quantitative results for ball sizes between $36,000 and $1 million.

�e latter represents such a big indivisibility that around 60% of all manufacturing �rms would only

be given one ball. We only report it to illustrate how the balls-and-bins model works with so few

balls – we think such an indivisibility is hard to defend with economics.

�e changes in the magnitudes are intuitive. First, as balls get bigger, the incidence of empty

product bins increases. Fewer balls make for more empty bins. Bigger balls also reduce the fraction

of exporting �rms, closer to the onewe see in the data.�is is because if �rms aremade of fewer balls,

it is less likely that any one of them comes from exports. However, even the $1 million ball would

predict signi�cantly more exporters (33%) than in the data (18%). �is suggests that economies of

scale in deciding whether or not to export are rather strong. �e fraction of single-product and

single-country exporters increases both in number and it their export share. Again, with larger

balls, most �rms will end up with just one ball and would be called a single-product, single-country

exporter.

Figure 3 replicates Figure 2 for di�erent ball sizes, $36,000, $100,000, and $500,000. A small
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Ball size

Moment Data $36k $100k $500k $1m

Fraction of empty bins 0.821 0.728 0.809 0.904 0.932

Relation to total export −0.063 −0.086 −0.070 −0.042 −0.031
Fraction of �rms that export 0.180 0.737 0.610 0.406 0.331

Exporter premium in log sales 1.48 3.53 3.23 2.80 2.55

Fraction of 1-product, 1-country exporters 0.40 0.43 0.57 0.76 0.83

Exports by 1-product, 1-country exporters 0.002 0.003 0.01 0.07 0.16

Table 11:�e stylized facts with di�erent ball sizes

increase in the ball size not only increases the overall incidence of product-level zeros to match the

one in the data, but also achieves a perfect �t in terms of the relationship of zeros and total export.

0
.2

.4
.6

.8
1

10 15 20 25
Total exports to country (log)

Fraction of missing products $36,000 balls
$100,000 balls $500,000 balls

Figure 3:�e incidence of zeros with di�erent ball sizes

8 Conclusion
Our �ndings suggest directions for building new theories as well as amending existing ones. Be-

cause the balls-and-bins model features shipments as the units of observation, it does not allow for

any economies of scale in export behavior. A large �rm is modeled as a collection of many balls

and is hence very similar to a collection of small �rms. In contrast, if one introduces economies of

scale in exporting (such as a �xed cost), large �rms (who have paid the �xed cost) will be funda-

mentally di�erent from a collection of small �rms (who have not paid the �xed cost). �e fact that
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the balls-and-bins model greatly misses the incidence of exporters suggests that economies of scale

in exporting are indeed very strong.

�e empirical patterns on other margins of export behavior (how many products and where to

export) are well matched by the balls-and-bins model. �is suggests that a model that has enough

heterogeneity to match the enormous size dispersion of exporters will also match the facts about

multi-product and multi-country exporters, even in the absence of (further) economies of scale.

�e challenge for building such a model is to link the dispersion of exports (which is much bigger

than the dispersion of sales or employment) to fundamentals.

We want to emphasize that some of the heterogeneity in the data is necessarily omitted from any

model (even if it allows for some heterogeneity in observables) and would thus be relegated to an

error term. For example, theMelitz (2003) model introduces heterogeneity in �rm productivity and

derives that more productive �rms sort into exporting. In the data however, the export decision is

not fully determined by productivity alone. �e decision to export is a�ected by myriad of other

factors, such as ownership or management. It would be a mistake to reject the Melitz (2003) model

just because two �rmswith the same productivity behave di�erently.24 �e relevant question instead

is how much of the variation in export behavior is due to �rm productivity and how much due to

omitted heterogeneity.

An alternative way of accounting for all the heterogeneity in the data is to build a fully structural

model that has enough heterogeneity in its parameters to be consistent with a set of moments.�e

bene�t of doing so is that one can attach labels to the observed heterogeneity. For example, if some

�rms are bigger than others, it may be because those �rms are more productive. Or if some �rms

export, while others of the same size do not, it may be because those �rms have lower �xed costs
of market access.25 �en one can check whether the estimated parameters conform to our priors

or estimates from other studies. Having a fully speci�ed model is also a constraint, however. �e

model will only explain the set of moments it was designed to explain. Even the slightest change

in the empirical question can cause problems. For example, it is di�cult to compare product-level

models estimated on datasets with di�erent product classi�cations. In contrast, the balls-and-bins

model can be easily adapted to any empirical application and is not sensitive to changes in statistical

classi�cations, for example. We view the balls-and-bins model as more suitable for explorative data

analysis.

We hence hope that our approach can be used in future empirical work using massive micro-

level trade datasets. Recent transaction-level datasets are very detailed,26 and trade �ows are typi-

cally broken down by �rms, 8 or 10-digit product codes, and destination countries. By their very

nature, these datasets are sparse in the sense that most of the �rm-product-country trade �ows are

missing. �e balls-and-bins model provides a natural benchmark for working with such sparse

datasets, and can be easily adapted to any empirical application.

24Similarly, it would be a mistake to reject a Ricardian model because countries import a particular product category

from more than one country. If Belgium imports 99% of its red wine from France and 1% from Argentina, that is still

fundamentally consistent with the predictions of the Ricardian model.
25Eaton, Kortum and Kramarz (2007), for example, build and calibrate a fully structural model of exporting �rms

that matches the key stylized facts in French �rm-level export data.
26Bernard, Jensen and Schott (2007) describe the customs dataset of the U.S.; Eaton, Kortum and Kramarz (2004) for

France; Mayer and Ottaviano (2007) for Belgium; Damijan, Polanec and Prasnikar (2004) for Slovenia; Halpern, Koren

and Szeidl (2007) for Hungary; Eaton, Eslava, Kugler and Tybout (2007) for Colombia.

23



References
[1] Anderson, M. A., Ferrantino, M. J. and Schaefer, K. C.: 2004, Monte Carlo Appraisals of Gravity

Model Speci�cations, Working Paper.

[2] Axtell, R. L.: 2001, Zipf Distribution of U.S. Firm Sizes, Science 293(5536), 1818–1820.

[3] Harrigan, J. and Baldwin, R.: 2007, Zeros, Quality and Space: Trade�eory and Trade Evidence,

NBERWorking Paper No. 13214.

[4] Bernard, A. B., Eaton, J., Jensen, J. B. and Kortum, S.: 2003, Plants and Productivity in Interna-

tional Trade, American Economic Review 93(4), 1268–1290.

[5] Bernard, A. B. and Jensen, J. B: 1999, Exceptional Exporter Performance: Cause, E�ect, or Both?,

Journal of International Economics 47(1), 1–25.

[6] Bernard, A. B., Jensen, J. B., Redding, S. J. and Schott, P. K.: 2007, Firms in International Trade,

Journal of Economic Perspectives 21(3), 105–130.

[7] Bernard, A. B., Jensen, J. B. and Schott, P. K.: 2007, Importers, Exporters and Multinationals:

A Portrait of Firms in the U.S. that Trade Goods, in Dunne, J.B. Jensen and M.J. Roberts (eds.),

Producer Dynamics: New Evidence fromMicro Data.

[8] Damijan, J. P., Polanec, S. and Prasnikar, J.: 2007, Outward FDI and Productivity: Micro-

evidence from Slovenia,World Economy 30(1), 135–155.

[9] Eaton, J., Eslava,M., Kugler,M. andTybout, J.: 2007, ExportDynamics inColombia: Firm-Level

Evidence, NBERWorking Paper No. 13531.

[10] Eaton, J., Kortum, S. and Kramarz, F.: 2004, Dissecting Trade: Firms, Industries, and Export

Destinations, American Economic Review 94(2), 150–154.

[11] Eaton, J., Kortum, S. andKramarz, F.: 2007, AnAnatomy of International Trade: Evidence from

French Firms, Working Paper.

[12] Ellison, G. and Glaeser, E. L.: 1997, Geographic Concentration in U.S. Manufacturing Indus-

tries: A Dartboard Approach, Journal of Political Economy 105(5), 889–927.

[13] Ghosh, S. and Yamarik, S.: 2004, Are Regional Trading Arrangements Trade Creating? An

Application of Extreme Bounds Analysis, Journal of International Economics 63(2), 369–395.

[14] Ghosh, S. and Yamarik, S.: 2004, Does Trade Creation Measure Up? A Reexamination of the

E�ects of Regional Trading Arrangements, Economics Letters 82(2), 213–219.

[15] Yamarik, S. and Ghosh, S.: 2005, A Sensitivity Analysis of the Gravity Model, International
Trade Journal 19(1), 83–126.

[16] Halpern, L., Koren, M. and Szeidl, A.: 2007, Imports and Productivity, Working Paper.

24



[17] Helpman, E., Melitz, M. and Rubinstein, Y.: 2007, Estimating Trade Flows: Trading Partners

and Trading Volumes, Quarterly Journal of Economics, forthcoming.

[18] Hummels, D., Klenow, P. J.: 2005, �e Variety and Quality of a Nation’s Exports, American
Economic Review 95(3), 704–723.

[19] Keller, W.: 1998, Are International R&D Spillovers Trade-Related? Analyzing Spillovers among

Randomly Matched Trade Partners, European Economic Review 42(8), 1469–1481.

[20] Mayer, T. and Ottaviano, G.: 2007, �e Happy Few: �e Internationalization of European

Firms, Bruegel Blueprint Series. Volume III.

[21] Melitz, M. J.: 2003,�e Impact of Trade on Intra-industry Reallocations and Aggregate Indus-

try Productivity, Econometrica 71(6), 1695–1725.

25


