
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Bandwidth-Efficient Emulator of
Biologically-Relevant Spiking Neural
Networks on FPGA
GIANLUCA LEONE1, LUIGI RAFFO2, PAOLO MELONI.3
1Università degli Studi di Cagliari, Cagliari, Italy (e-mail: gianluca.leone94@unica.it)
2Università degli Studi di Cagliari, Cagliari, Italy (e-mail: raffo@unica.it)
3Università degli Studi di Cagliari, Cagliari, Italy (e-mail: paolo.meloni@unica.it)

Corresponding author: Paolo Meloni (e-mail: paolo.meloni@unica.it).

ABSTRACT Closed-loop experiments involving biological and artificial neural networks would improve
the understanding of neural cells functioning principles and lead to the development of new generation
neuroprosthesis. Several technological challenges require to be faced, as the development of real-time
spiking neural network emulators which could bear the increasing amount of data provided by new
generation High-Density Multielectrode Arrays. This work focuses on the development of a real-time
spiking neural network emulator addressing fully-connected neural networks. This work presents a new
way to increase the number of synapses supported by real-time neural network accelerators. The proposed
solution has been implemented on the Xilinx Zynq 7020 All-Programmable SoC and can emulate fully
connected spiking neural networks counting up to 3,098 Izhikevich neurons and 9.6e6 synapses in real-
time, with a resolution of 0.1 ms.

INDEX TERMS APSoC, fixed-point, FPGA, neural emulator, hardware accelerator, neural engineering,
real-time, spiking neural network.

I. INTRODUCTION

DURING the past decades the comprehension of biolog-
ical neural network phenomena has been at the center

of researchers’ interest in the medical and biomedical com-
munities. Countless software and hardware instruments have
been developed to enhance the understanding of neural cells’
working principles [1]. Some tools can simulate biological
neural networks by relying on a wide range of mathematical
models having a different level of detail [2]. These kinds of
tools can help the investigation of how neurons interact with
each other, even though more and more often they are also
exploited to address completely different problems, such as
neuromorphic computing [3].
New generation High-Density Multielectrode Array, scaled
from hundreds to thousands of recording sites [4], pushing
for the development of signal processing systems capable
of sorting order of magnitude more neural data in real-time
than in the past [5], and artificial neural networks capable to
keep up and process the incoming data. This translates into
an imminent demand for bigger and more-connected neural
networks. As a result, during the last years, the development
of neural networks accelerator has increased consistently [6].

Moreover, networks of neural units are innately parallel,
which means, standard Von Neumann architectures are not
the best fit to simulate such networks. Therefore, in a so fickle
and constantly-evolving environment, programmable accel-
erators, such as Field Programmable Gate Array (FPGA)
based accelerators are best suited to the parallel and ever-
changing demands nature of the experiments. Such hardware
tools not only permit scaling down simulation time, but also
make possible real-time interactions between artificial and
biological neural networks in a closed-loop fashion.
In this work, it is proposed a new method to increase the
maximum number of synapses that can be emulated in real-
time, without sacrificing the physiological dynamics and
latency of biological neural networks. The method takes
advantage of a physiological delay that affects the spike
propagation along the cell’s axon. This phenomenon, called
axonal delay [7], makes possible to exploit the off-chip
memory to store the synaptic weights. Furthermore, we ap-
plied the proposed method during the design of an FPGA-
based hardware accelerator targeting fully connected neural
networks of Izhikevich spiking neurons [8]. Indeed, on one
hand, spiking neural networks encode information in the

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

temporal domain, as biological neural cells do, emulating de
facto more accurately the dynamics of biological cells, on the
other hand, their implementation is more memory demanding
than non-spiking neural networks ones. Therefore, in the case
of low-end FPGA implementing spiking neural networks, as
the FPGA embedded into the Xilinx All-Programmable SoC
(APSoC) XC7Z020 used in this work, where is not possible
to store more than 5 Mb of data relying on the on-chip
memory only, the sizes of the network cannot grow above
a certain limit.
The off-chip DDR memory has been used in other works
that utilize spiking neural networks [9][10][11], however,
the focus of these works was on image classification, rather
than in the study of biological phenomena, therefore their
architecture is not meant to be interfaced with a biological
system which can require continuous interaction with a 0.1
ms resolution.
The main findings of this work can be summarized as fol-
lows:

- We demonstrate the physiological spike propagation
delay present in biological neural networks can be
exploited in the real-time emulation of spiking neural
networks, guaranteeing a higher number of synaptic
connections than by only using on-chip memory;

- We demonstrate Xilinx’s APSoCs are eligible to apply
the presented method, as their off-chip DDR memory
has an adequate bandwidth to transfer the synaptic
weights, and their use allows to increase the number of
synapses that can be emulated in real-time;

- We demonstrate the Izhikevich neuron model equations
[8] can be integrated into fixed-point arithmetic by re-
lying on a few FPGA resources, such as DSP and LUT,
without consistent behavioral variations.

The remainder of this article is organized as follows. Sec-
tion II is an overview of existing FPGA-based neural network
accelerators. Section III describes the utilized neuron model
and his fixed-point arithmetic. Section IV is an overview of
the hardware architecture. Section V presents the results in
terms of accuracy and performances achieved by this work.
Section VI is a comparison with the state of the art. Section
VII is left to conclusions and future works.

II. RELATED WORK
A wide scope of software and hardware tools addressing
spiking neural network emulation have been developed in
the last few years. Software tools such as Nest [2], Neuron
[12], and Brian [13] are well suited for biologically realistic
simulation of spiking neural networks. They are flexible, and
widely used by the scientific community for a wide range of
experiments. However, they require larger and larger com-
puter clusters for simulating high-count neural networks [14]
and therefore are not the best fit for embedded applications.
Alternatively, parallel computing systems, implemented on a
wide range of different platforms, such as CPU, GPU, and
FPGA clusters, can achieve high throughput either. SpiN-
Naker [15] is a multiprocessor chip organized in a mesh of

48 neural computational cores, each made by 18 ARM968
processors. A board equipped with 4 SpiNNaker chips is
capable of emulating in real-time a range of synapses going
from 8e5 to 1.6e7 and a number of neurons ranging from
1,600 to 16,000, depending on the complexity of the neuron
model used. NeuroFlow [16] is an FPGA-based spiking neu-
ral network simulation platform capable of emulating both
integrate-and-fire and Izhikevich neurons. When hosted by a
cluster of 6 FPGAs it can simulate about 600,000 neurons,
and from 1,000 to 10,000 synapses per neuron. The total
amount of neurons decreases to 400,000 when the emulation
is in real-time.
Moreover, at the state of the art, exists a broad collection
of real-time FPGA-based spiking neural network accelera-
tors more suited for embedded applications, having different
scales, architectures, and use cases. Some work aims to
implement low-power solutions, such as [17], where a neural
network of 800 neurons and 12,544 synapses is implemented
on a Xilinx Virtex-6 FPGA. The system implements a sim-
plified Leaky Integrate-and-Fire (LIF) model [18] with a time
resolution of 1 ms, and embeds real-time learning capabilities
by integrating a simplified version of the Spike-Time Depen-
dent Plasticity (STDP) algorithm [19]. Other works make
use of the reprogrammable feature of FPGA and present
configurable designs which could be exploited for a wider
range of experiments, such as the work Snava [20]. Snava is a
real-time programmable multi-model spiking neural network
emulation system, capable of hosting up to 12,800 neurons
and 20,000 synapses. The system, implemented on a Xilinx
Kintex-7 FPGA, guarantees a resolution of 1 ms. The Snava
system, employing a Graphical User Interface (GUI), permits
to monitor the spiking activity, to configure the neuron, the
synapse models, and the interconnections.
The hardware implementation presented in [21] focuses on
studying fully-connected neural networks; their real-time
emulator targets closed-loop experiments, and it is hosted
by a Xilinx Virtex-6 FPGA. The system implements 1,440
Izhikevich neurons with a resolution of 0.1 ms and a spike
latency of 1 ms.
Other studies focus on more specific problems, such as
minimizing the neurons emulation latency down to 8 ns
to increase the maximum number of neurons that can be
emulated in a single FPGA chip, at the expense of the
biological meaning [22]. This result has been achieved by
designing a systolic array to integrate a simplified version of
the Izhikevich neural model. By following the considerations
found in [23], it is possible to decrease the computational
load without renouncing the main emulating features of the
Izhikevich model.
Conversely, Luo et. al [24] presented a bio-realistic cerebel-
lum model, and propose it as the first step for the realization
of neuroprosthesis systems with the purpose of substituting
damaged motor control units in the brain. Luo et. al [24]
propose a Network on Chip (NoC) hardware architecture, im-
plemented on a Xilinx Virtex-7 FPGA, capable of emulating
101,000 LIF neurons [20] and 100,000 synapses in closed-

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Real-time FPGA-based neural network emulators comparison

Work Year Target FPGA Neurons Synapses

this work 2021 Xilinx Virtex-6 3,098 9.6e6
Gupta [17] 2020 Xilinx Virtex-6 800 1.25e4
Sripad [20] 2018 Xilinx Kintex-7 12,800 2.00e4
Pani [21] 2017 Xilinx Virtex-6 1,440 2.07e6
Bandeira [22] 2017 Altera Stratix IV 364 3.64e2
Luo [24] 2016 Xilinx Virtex-7 101,000 1.00e5
Ambroise [26] 2013 Xilinx Virtex-4 117 1.37e4
Han [9] 2020 Xilinx Kintex-7 2,842 1.86e6
Panchapakesan [10] 2020 Xilinx ZCU102 2,410 -

loop experiments.
In Khodamoradi et. Al [25] is proposed an architectural
solution to support several axonal delays without using extra
FIFOs, schedulers, and separate routing networks for spiking
feedforward neural networks.
In Ambroise et. al [26], a folded low-resources architecture
capable of emulating 117 Izhikevich neurons in real-time
with a time resolution of 1 ms is presented. The system is
implemented on a Xilinx Virtex-4 chip, and the interconnec-
tions of the neuron are configurable, ranging from zero to a
fully connected network.
Finally, in Han et. Al [9] and Panchapakesan et. Al [10][11]
Leak Integrate and Fire and Integrate and Fire based spiking
neural networks are used to address image classification tasks
on the MNIST and CIFAR-10 datasets on Xilinx Zynq de-
vices, chip provided with both FPGAs and ARM processors.
Their approaches take advantage of the off-chip DDR mem-
ory to store the weights of the network, however, not being
designed as a biological relevant neural network emulator,
it is not applied any method to guarantee the physiological
dynamics of biological neural networks are respected.
Table I summarizes the main characteristics of the above-
mentioned FPGA works. It is possible to notice how the
presented architecture, being fully connected, owns a dif-
ferent balance between its number of neurons and synapses
than most of the works in Table I [9][10][17][20][22][24],
a significantly higher number of synapses and neurons than
the other works addressing fully connected neural networks
[21][26], and a higher number of synapses in general. In
fact, the presented work has been conceived as a tool to
study the behaviors of biological neural networks, rather than
a machine learning accelerator. Therefore, willing to allow
the emulation of arbitrarily connected population of neurons,
being the connectivity of the neurons still a topic of interest in
neuroscience research, it has been designed a system where
the neurons can be connected without restrictions, up to be
completely connected.

III. IZHIKEVICH NEURON MODEL

The Izhikevich model [8] permits the emulation of a large
set of biological behaviors at a low computational cost. The
model is composed by a two dimensional system of ordinary

differential equations 1, 2, plus a reset condition 3.

dv

dt
= 0.04v2 + 5v + 140− u+ I (1)

du

dt
= a(bv − u) (2)

v > vth →

{
v = c

u = u+ d
(3)

v is the membrane potential of the neuron, and u is the
membrane recovery variable, both measured in mV . The
term vth is the threshold above which the modeled neuron
fires a spike. When it happens, both the membrane potential
and the membrane recovery variable are reset. The dimen-
sionless parameters a, b, c, and d permit tuning the model in
order to emulate properly the behaviors of neocortical and
thalamic neurons. I is the synaptic current, it permits taking
into account the synaptic connection among neurons. Indeed,
each synapse can be described as an oriented and weighted
connection between two neurons. When a neuron fires, its
post-synaptic neurons counts the spike by adding to I the
weight of its interconnection.

A. THE QUANTIZATION PROBLEM
The simplest and most common way to evaluate the Izhike-
vich model, nevertheless the way used in [8], is the one-step
forward Euler scheme, described by 4, 5, and 6.

vk+1 = vk + h(0.04v2k + 5vk + 140− uk + I + Ie) (4)
uk+1 = uk + ha(bvk − uk) (5)

vk+1 > vth →

{
vk+1 = c

uk+1 = uk + d
(6)

Where h is the time step, equal to 0.1 ms, chosen to be
compatible with most High-Density Multielectrode Arrays
based data acquisition systems, and Ie is a parametric DC
offset.
The above equations are solved by using fixed-point arith-
metic so that a considerable amount of FPGA’s resources
could be saved. However, we found out the accuracy and
the convergence of the model, when operating in fixed-point,
are not to be taken for granted. In order to investigate the
behavior of the fixed-point implementation of the model, two
MATLAB scripts have been developed. The former is used
to provide a trustworthy ground truth for the experiments,
which has been obtained by making use of floating-point
arithmetic. The latter script is used to test the accuracy of
the fixed-point solution at different levels of quantization.

IV. HARDWARE SPIKING NEURAL NETWORK
The spiking neural network emulator architecture is shown
in Figure 1. The Potential modules integrate the Izhikevich
equations, updating both the membrane potentials of the neu-
rons and the spike conditions. The neural potentials and the
spikes conditions are stored in two BRAM-based memories
called Potential mem and Spike mem. The Izhikevich equa-
tions’ parameters are stored in the BRAM-based memory

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1. The block diagram of the neural network emulator.

Param mem.
The synaptic current is stored in an additional BRAM-based
memory called Current mem, updated by the Current mod-
ules. In order to update the Current memory, the Current
modules read the stream of synaptic weights coming from
the off-chip DDR through four axi-stream interfaces and
the spike conditions from the Spike mem. The system is
designed to exploit the shared characteristics of the Xilinx
Zynq-7000 family APSoC devices. The architecture is para-
metric, so the netlist can be generated to fit in different
devices of the family and to emulate neural networks of
different sizes. The system setup presented in this paper is
implemented on a Z-7020 chip.
The number of synaptic weights grows quadratically with the
number of neurons in fully connected neural networks, and
the Block-RAM (BRAM), which are the internal memories
embedded in Xilinx’s FPGA, are usually the bottleneck that
prevent to increase the number of synapses over a certain
limit. In the fully-connected neural network implemented in
[21], the synaptic weights are stored on-chip, in the BRAMs,
and the largest possible network which fits in is of about
1,440 neurons, obtained using 392 36 kb BRAM tiles in
a Xilinx Virtex-6 XC6VLX240T chip. Indeed, if on one
hand, the Programmable Logic (PL) is capable of performing
heavy parallel computations, on the other hand, the available
memory space is not enough to host larger fully-connected
neural networks. Willing to overcome this result, it is possible
to exploit the off-chip DDR memory, which is the largest

memory available in the Zedboard development board used in
this work. The DDR is 512 MB large, and it can be accessed
concurrently from 4 High-Performance AXI ports (HP AXI
ports), by using 4 AXI DMA operating at their maximum
speed of 150 MHz [27], with an overall theoretical bandwidth
of 4.8e9 B/s[27]. Keeping the same sampling frequency of
[21], which is 10 kHz, it would be possible to move about
4.8e5 B in 0.1 ms, which by using synaptic weights of 8 bits
each, would correspond to a fully-connected neural network
of about 692 neurons. However, taking into consideration the
biological delay which exists between the generation of a
spike in the soma, and the propagation of the spike through
the axon, towards the post-synaptic neurons, called Axonal
Delay (AD), it is possible to relax the 0.1 ms deadline in
favor of a looser one. By using an axonal delay of 1 ms, as in
[21], it would be possible to transfer the whole set of weights
every millisecond instead of every tenth of a millisecond and
reuse them 10 times to solve the Izhikevich equations. In
this way, it would be possible to transfer 10x weights, which
correspond to a fully connected neural network of 4.8e6
synapses, and therefore 2.191 neurons. The computational
load increases consistently, as a matter of fact, in the case
of an axonal delay of 1 ms, and an integration frequency of
10 kHz, the throughput of the digital system should increase
by a x10 factor. However, this is a mandatory requirement
if more neurons and synapses need to be emulated in the
same amount of time. Figure 2 (a) shows how without taking
advantage of the axonal delay the neurons are updated at

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2. (a) The execution flow of a network which takes into account the axonal delay. (b) The execution flow of a network which takes advantage of the axonal
delay to emulate more synapsis in real-time.

every integration step, whereas the spikes are forwarded 1 ms
later their computation to the output, because of the axonal
delay. By looking at Figure 2 (b) it is possible to observe the
synaptic weights can be transferred during a longer period
of time, 10 integration steps in the example, and the neuron
emulation can be spread along this period, by increasing by a
factor of 10 the operations per byte.
In the work [7], typical axonal delay values are reported for
different mammalian species and neural tissue areas. Values
range from 0.3 ms for fast-conducting axons, such as cat
visual thalamocortical axons, up to 130 ms, required to reach
axon terminals in monkeys’ visual cortex.

A. ARCHITECTURAL OVERVIEW
The main blocks of the biological neural network emula-
tor and their interconnections are shown in Figure 1. The
main actors are the Potential modules, which integrate the
Izhikevich Equations 4, 5, and 6, and the Current modules
which compute the synaptic current. Moreover, the spikes,
the synaptic currents, the parameters of the Izhikevich model
a, b, c, d, the membrane potentials, and the membrane re-
covery variables are stored inside BRAM-based memories,
called after their contents, as shown in the schematic depicted
in Figure 1.
The Potential modules are fully pipelined and have a through-
put of one integrated neuron per clock cycle. By taking
advantage of the parametric port size of Xilinx’s BRAMs,
it is possible to instantiate more potential modules in paral-
lel when higher throughput is required. Moreover, the cur-
rent modules are fully pipelined, this allows to achieve a
throughput of 8 summed synaptic weights per clock cycle.
The synaptic weights are stored in the off-chip DDR and
streamed through four AXI High-Performance Ports to the
programmable logic. The stream is handled by four DMAs.
A different current module is instantiated to handle each of
the four streams of synaptic weights. In this way, it is possible
to reach the maximum throughput possible, since the four

streams of weights are not processed in time-multiplexing by
the same current module, but in parallel from four different
modules. With this setup, there is no need to store the
synaptic weights on-chip, since they are processed as they
arrive, and the BRAMs can be saved to store the neurons’
model parameters. If the axonal delay is set to a number
higher than 0.1 ms (the time resolution chosen in this work),
more current modules can be placed in parallel, and the
current of multiple time steps can be computed at once.
Multiple instances of the Current mem and the Spike mem
are required too. The modules Spike Memory Reader and
Current Memory Writer are used by the Current modules as
interfaces to write the computed synaptic currents into the
Current memory and read the spike conditions from the Spike
memory. These interface modules permit sharing a single
memory port between the four sets of current modules in a
time-multiplexed fashion, without creating any bottleneck, as
explained in Section IV-B

1) Data transfer
The synaptic weights are moved from the DDR to the Pro-
grammable Logic (PL). The transaction is entrusted to 4
Xilinx AXI DMA IPs, each one connected to a different AXI
High-Performance port. The response channels of the AXI
buses are used to write back the spikes of the network in the
DDR.

2) Potential
The Potential module implements the Izhikevich Equations 4,
5, and 6, and it has been designed by using the Verilog hard-
ware description language, as the other modules. Equations
4, 5, and 6 are implemented by means of a systolic array,
shared among the neurons in a time-multiplexed fashion,
which guarantees a throughput of one integrated neuron per
clock cycle. Multiple Potential modules can be instanced in
the design.
The membrane potential pipeline makes use of three DSP and

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

a LUT-based multi-inputs adder, its architecture is shown in
Figure 3. The first DSP is used to multiply the membrane

FIGURE 3. The block diagram of the membrane potential pipeline.

potential vk to the constant 0.04. The product feeds the input
of the second DSP block which multiplies 0.04vk again by
the membrane potential, obtaining 0.04v2k. Concurrently, the
addition sumv = 5v + 140 + uk + I + Ie takes place by
means of a LUT-based multi-inputs adder. The sum goes
in input to the post-multiplication adder embedded in the
second DSP, so that the second DSP’s output could be δv =
0.04v2k + sumv . The third DSP implements the operation
vnew = hδv + vk.
The membrane recovery variable pipeline can be mapped
into two additional DSPs. The block diagram, implementing
Equation 5 is shown in Figure 4. The former DSP implements

FIGURE 4. The block diagram of the membrane recovery variable pipeline.

the operation sumu = bvk + uk, and feeds the latter DSP,
which multiplies sumu by the pre-computed parameter ha,
and add uk to it, obtaining unew = uk + ha(bvk + uk).
The reset or spike condition stated by equation 6 is verified
by a comparator, which in turn controls two multiplexers as
shown in Figure 5. When vnew > vthr the reset condition is
activated, the second inputs of the multiplexers are chosen,
therefore vk+1 = c and uk+1 = unew + d. Otherwise
vk+1 = vnew and uk+1 = unew.
Once evaluated, the membrane potential vk+1, the recovery

variable uk+1, and the spike condition, are stored in the
Potential memory and in the Spike memory.

3) Current
The Current module evaluates the synaptic current of every
neuron of the network, so that Equation 4 could be integrated.
The Current module architecture is shown in Figure 6. The
synaptic weights are transmitted from the DDR through

FIGURE 5. The block diagram of the reset condition architecture.

the AXI High-Performance ports, and processed on the fly,
without the need to buffer them. Every synaptic weight is
counted in the evaluation of the synaptic current if the pre-
synaptic neuron is active. The spike conditions are read from
the Spike memory as the weights come, in order not to
count the weights of the inactive neurons. The weights of the
inactive neurons are excluded from the addition by means
of a logical-and involving both the weights and the spike
conditions. Each AXI High-Performance port transmits 64
bits per clock cycle, and since the synaptic weights are 8 bits
long, the Current module processes 8 synaptic weights per
clock cycle. Four clusters of Current modules are instanced
in the design, one for each AXI High-Performance port, and
every cluster is made by R Current modules, where R is
the ratio between the selected axonal delay (AD) and the
integration step, so that R synaptic currents could be evalu-
ated in parallel, without retransmitting or storing the synaptic
weights. The weights are added by means of a LUT-based
adder, whose result drives a DSP-based accumulator, which
permits computing the synaptic current during multiple clock
cycles. Once evaluated, the synaptic current is stored in the
Current memory.

B. EXECUTION FLOW
The system execution flow repeats every time the selected
axonal delay period expires. Each cycle can be described as
follow:

- The Processing System (PS) enables four AXI DMA,
which handle the transmission of the synaptic weights
from the DDR to the PL, through 4 High-Performance
AXI-Stream buses.

- Four clusters of R Current modules process the synap-
tic weights transmitted from the four DMAs through
the four AXI High-Performance ports, meanwhile, the
Spike memories are accessed not to count the weights
of the inactive synapses. A module called Spike Mem-
ory Reader arbitrates the access to the spike memory
through a single port, by allowing only a cluster of Cur-
rent modules per clock cycle to access, in the meantime
the others wait. The AXI-Stream transactions of the
waiting clusters of current modules are paused. Every

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 6. The block diagram of the Current module architecture

time the Spike Memory Reader gets access to the spike
memory on behalf of a cluster of Current modules,
it reads in advance the spikes needed by that cluster
for the next 4 clock cycles, taking advantage of the
configurable width of the BRAM ports. Therefore, since
8 weights are transmitted per clock cycle, 32 spikes
are read each time. By doing so, during steady-state
processing, access conflicts do not take place.

- Once a stream of weights starts, each Current module
in the same cluster computes the synaptic current of
the same neuron, just at a different point in time. This
is possible because the computation of the synaptic
currents requires the synaptic weights and the spike
conditions of AD ms before, and therefore they have
just been computed and stored in the Spike memory.
Once evaluated, the synaptic currents are stored in the
Current memory. The Current memory is organized as a
multi-banked memory ofR banks, whereR is the ration
between the axonal delay and the integration step. Each
bank has an entry per neuron, whereas different banks
host currents of different integration steps.

- As soon as the synaptic currents are available, it is
possible to integrate the Izhikevich Equations. In or-
der to keep the potential fetching logic simple, four
Potential modules integrate the Izhikevich equations of
four different neurons concurrently. Once finished, the
membrane potential of the same neurons in the next
integration steps are evaluated. When all the integra-
tion steps of those neurons are evaluated, the Potential
modules start integrating 4 new neurons. The results are
stored in the Potential and in the Spike memories.

- The evaluated spikes are written into the DDR. The
spikes are moved by using the response channels of the
AXI High-Performance ports.

V. RESULTS
In this section, the performance, the hardware resource uti-
lization, and the accuracy of the presented work are analyzed.

A. SYSTEM PERFORMANCE
The design presented in this paper is implemented on a Zed-
Board, a low-cost development board for the Xilinx Zynq Z-
7020 All-Programmable SoC. The architecture is parametric
along multiple axes, as the number of neurons, synapses, and
the axonal delay. The system setup chosen is the one that
permits the emulation of the maximum number of fully con-
nected neurons, which is 3,098, with 9.6e6 synapses and an
axonal delay of 3 ms. To achieve this result, instead of storing
the synaptic weights into the chip’s internal BRAMs, which
are not enough to memorize 9.6e6 bytes, the synaptic weights
are stored in the off-chip DDR and transferred through the 4
AXI High-Performance ports present in every Zynq device.
Four DMAs take care of the transmission of the weights,
clocked at their maximum speed of 150 MHz [27].
Taking into account that the chosen emulation step is 0.1 ms,
which is a common value in neuro-engineering applications,
the system should process the whole set of synaptic weights
every 0.1 ms. However, taking advantage of the axonal delay,
a physiological latency that exists between the generation of
a spike in the soma, and its propagation through the axon, to-
wards the post-synaptic neurons [7], it is possible to generate
the outputs with a certain latency. Taking advantage of this, it
becomes possible to spread the transmission of the synaptic
weights into more than a tenth of a millisecond, and then have
more weights transmitted without violating the physiological
dynamics of the neuronal cells. Increasing the axonal delay,
from the performance point of view, permits to increase
the operational intensity, i.e. the number of operations per
byte, and therefore to enhance the FPGA throughput, at
the expense of instantiating multiple current modules. The
Roofline model, shown in figure 7, helps understand how the
operational intensity and the performances of the architecture
change depending on the Axonal Delay (AD) value. The
x-axis is the operational intensity measured in operations
per byte (ops/byte), and the y-axis represents the overall
performance in terms of the number of operations per second
(Gops). It can be observed how the operational intensity rises
up to 30 ops/byte as the axonal delay increases. It is not
possible to go beyond this limit, reached for an axonal delay
equal to 3 ms, because of the saturation of the BRAM tiles
required to store the Izhikevich parameters, among which are
the synaptic currents.
The computational bound of 240 Gops, represented by the
upper horizontal dotted line in Figure 7, would be reached
with an axonal delay equal to 5 ms, which would permit
an operational intensity of 50 ops/byte. To achieve such
performances, it would be necessary to instantiate 50 current
modules per axi port, for an overall number of 200 current
modules, any of which would compute 8 additions per clock
cycle at 150 MHz.
In the case of a 3 ms axonal delay: the theoretical number

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

10 20 30 40 50 60

Operational Intensity [OPS/byte]

50

100

150

200

250

300

P
er

fo
rm

an
ce

 [G
O

P
S

]

Roofline Model

AD = 2 ms

AD = 3 ms

AD = 5 ms

BANDWIDTH BOUND
AD = 1 ms

COMPUTATIONAL BOUND

BRAM BOUND

FIGURE 7. The Roofline model at the varying of the Axonal Delay (AD).

of weights that can be transmitted in real-time in 3 ms is
1.4e7 [27]. However, we experimented that is not possible to
transmit more than 9.6e6 synapses. To process the 4 streams
of weights coming from the 4 AXI High-Performance ports,
the PL has been clocked at the same frequency of 150 MHz
used to stream the weights. Thirty instances of the Current
module have been placed per each AXI High-Performance
port, for an overall number of Current modules equal to
120. Moreover, four Potential modules read the synaptic cur-
rents once computed, integrate the Izhikevich equations, and
evaluate the spike conditions. With this setup, the presented
system is capable to emulate in real-time a fully connected
neural network of 3,098 neurons and 9.6e6 synapses, with a
resolution of 0.1 ms and an axonal delay of 3 ms.

B. HARDWARE RESOURCE UTILIZATION
The Zynq 7020 hosts 106,400 Flip-Flops (FFs), 53,200
Look Up Tables (LUTs), 140 36Kb BRAMs tiles, and 220
DSP48E1 slices.
The Current module is implemented using an array of and-
gates, a LUT-based eight-inputs adder, and a DSP-based
accumulator. To meet the timing constraints of 150 MHz,
two pipeline stages have been introduced inside the cascade
of the and-gates array and the multi-addends adder. The
pipeline stages have been properly placed along the combi-
national paths by enabling the retiming option in the settings
panel of the Vivado synthesizer. Table 2 shows the post-
implementation resource requirement of a single Current
module, obtained utilizing Vivado 2019.2. Note that 120
Current module instances are necessary to properly work in
real-time since the selected axonal delay is 3 ms.
The potential module is mapped in hardware by the use
of 5 DSP, a LUT-based multi-inputs adder, and a LUT-
based comparator. One DSP is used as a multiplier only,
whereas the remaining four DSP are configured to use both

TABLE 2. Hardware resources distribution among the main modules

Processing Elements Memory

Resource Current Potential Current Potential Param Spike

INSTANCE 120 4 30 1 1 60
LUT 45 173 0 0 0 0
LUTRAM 0 0 0 0 0 0
FF 78 452 0 0 0 0
BRAM 0 0 2 5 13.5 0.5
DSP 1 5 0 0 0 0

the multiplier and the post-multiplier adder. To meet the
timing constraints of 150 MHz, the Potential module has
been pipelined by adding three pipeline stages for each
multiplication and multiply-and-accumulate operation, one
for each addition, and one for the threshold comparison,
for a total of 10 pipeline stages. Table 2 shows the post-
implementation resource requirement of a single Potential
module, four of them have been instanced in the presented
design.
The Current memory has an entry of 15 bits per neuron and
two 60 bits ports; 30 instances of the Current memory are
placed since the currents of 30 consecutive integration cycles
are computed at the same time, for a total amount of 60
BRAMs as shown in Table 2.
The Potential Memory has an entry of 42 bits per neuron;
one instance of the Potential memory requires 5 BRAMs, as
shown in Table 2. A single instance of the Potential memory
is sufficient in the design, since the old potential values, once
used, can be overwritten. Moreover, 13.5 BRAM are required
to store the neuron parameters (a, b, c, d, Ie, h).
The Spike memory contains a bit per neuron, and 60 in-
stances are required, two per each integration step, since it
is not possible to overwrite the entries of the Spike memory
while computing the new spike conditions. In fact, the synap-
tic currents of the following neurons should be computed
by relying on the old spike conditions. Every Spike memory
requires a single 18Kb BRAM, for a total amount of 30 36
KB BRAM tiles as shown in Table 2.
The post-implementation resource utilization report of the

whole system is shown in Table 3. The Zynq 7020 chip is
only partially used. As expected the BRAM tiles are almost
fully occupied, as the 93.21% is utilized. Since most of the
data-crunchy computational logic has been mapped into the
DSPs, 63.64% of the DSPs are used. The 66.96% of the FFs
are free, as well as more than half of the LUTs (53.98%), and
only 4.5% of the LUTRAMs are used.

TABLE 3. Resource utilization table

Resource Utilization Available Utilization %

LUT 24,480 53,200 46.02
LUTRAM 802 17,400 4.61
FF 35,158 106,400 33.04
BRAM 130.5 140 93.21
DSP 140 220 63.64

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

C. ACCURACY EVALUATION
Equations 1, 2, and 3 are solved by using fixed-point arith-
metic, so that a considerable amount of FPGA’s resources
could be saved. However, we found out the accuracy and
the convergence of the Izhikevich model, when operating in
fixed-point, are not to be taken for granted. In order to inves-
tigate the behavior of the fixed-point implementation of the
model, two MATLAB scripts were produced. The former is
used to provide trustworthy ground truth for the experiments,
generated from a floating-point implementation of the Izhike-
vich model. The latter script is used to analyze the fixed-
point accuracy and understand how many bits are needed
to smoothly move towards a fixed-point representation. To
assess the behavior of the fixed-point neural network a set of
1024 fully-connected Izhikevich neurons were simulated, of
which 768 are of the excitatory type, and the remaining 256
are of the inhibitory type. Even if it is possible making use of
regular spiking and fast-spiking cells to model the whole set
of excitatory and inhibitory neurons respectively, to simulate
a more heterogeneous network, the directives proposed in
[8] had been followed. The excitatory neurons are modelled
by setting ai = 0.02, bi = 0.2, ci = −65.0 + 15r2i
and di = 8.0 + 6r2i , with ri a random variable uniformly
distributed on the interval [0,1], and i the neuron index. On
the value of ri depends the kind of neuron dynamic obtained.
With ri = 0 the cell dynamic is the one of a regular spiking
cell, with ri = 1 is obtained the dynamic of a chattering cell,
and with ri around the value 0.8, is emulated the dynamic
of an intrinsically bursting neuron. In a similar way all the
inhibitory cells parameters are randomly assigned by using
the following rules ai = 0.02 + 0.08r2i , bi = 0.25− 0.05r2i ,
ci = −65 and di = 2; so that for ri = 1 is obtained the
dynamic of a fast spiking cell, and for ri = 0 is simulated the
dynamic of a low-threshold spiking cell. For all the excitatory
cells the DC offset Ie is set at 4 pA, whereas for all the
inhibitory cells the DC offset is set at 2 pA.
The functionality of the fixed-point network has been as-
sessed at both the single-cell and the network levels. The
spike jitter, or spike lag, has been verified neuron by neuron
between the floating and fixed point networks and used as a
comparison metric such in [28], as long as the mean firing
rate, and the interspike interval. Moreover, the networks
bursts have been analyzed: the mean bursting rate, the burst
duration, and the interburst interval of the networks have been
compared. The bursts are identified as a sequence of more
than 4 spikes with an interspike interval of less than 100 ms.

1) Custom Data Width Selection
The data width of every input, output and internal signal was
chosen to optimize at the same time the emulation accuracy
and the resource utilization. We analysed the dynamics of the
membrane potential, the recovery variable, and the synaptic
current by relying on the floating-point Matlab simulation of
the Izhikevich model. We found out the membrane potential
reaches maximum values which fit into 8 integer bits, the
recovery variable into 6 integer bits, and as regards the synap-

tic current, it fits into 8 bits. In order to optimize the data
mapping into Xilinx’s DSP48E1, the DSP’s input data width
has not to be exceeded. Conversely, to obtain the best possible
accuracy with such processing elements, once placed the
integer part of the data in input to the DSP, the remaining
bits of the DSP’s inputs can be filled with fractional bits. The
DSP48E1 contains a multiplier with two input ports of 25
and 18 bits and an adder with three 48-bits input ports, two of
which are used to carry out the multiplication. Therefore, in
the case of the membrane potential, which goes in input to the
DSP multiplier, it is possible to choose 18 bits or 25 bits data
widths, corresponding to the formats < 8.10 > or < 8.17 >
bits. We did not find any significant difference in accuracy
between the two formats, therefore, we chose < 8.10 > to
save BRAM tiles. As regards the recovery variable, it does
not go directly inside a multiplier, therefore its data width
can go up to 48 bits, being 48 bits the input data width of the
adder embedded in the DSP. However, 24 bits, with the data
format < 6.18 >, are a good trade-off between accuracy and
BRAM utilization. When it comes to the synaptic current,
since its integer part fits into 8 bits, and the synaptic weights
have the format < 1.7 > bits, the format < 8.7 > bits can be
used.
The constant 0.04 can be represented with the format <
1.24 >. The first multiplication 0.04vk requires fewer integer
bits than the sum of the two integer parts of the factors
involved in the multiplication. In fact, 0.04 is smaller than
one. Since 1/16 is bigger than 0.04, and it would be a 4
digits shift to the right, it can be inferred the integer part
will lose 4 bits. Therefore, the new format for 0.04vk will
be < 4.21 >. The fractional part size has been selected to fit
the next multiplier input width, and maximize the emulation
precision. The addition sumv = 4vk+vk+140−uk+I+Ie is
implemented by means of a multi-addend LUT-based adder.
The addends sizes are listed in Table 4. The fractional bits
of the term sumv are the same of the membrane recovery
variable uk, whereas its integer part fits into ten bits. The
product 0.04vk is multiplied by vk and added to sumv em-
ploying a DSP. The integer part of the product fits in eleven
bits, whereas the fractional part size is truncated to fourteen
bits before being multiplied by the integration step h in the
next DSP. The integration step is equal to 0.1, therefore the
output of the multiplication h(0.04v2k + sumv) will require
fewer integer bits than the input factors. The power of two
2−3 corresponds to a three digits right shift, and it is bigger
than 0.1. Then, the integer part of the product will fit into 8
bits. The term h(0.04v2k + sumv) is added to vk by means
of the post-multiplication adder of the same DSP. Since the
dynamic of vk does not exceed 8 integer bits, as observed
in the floating-point simulation, this sum will still fit into 8
integer bits.
The membrane recovery variable pipeline is composed of
two DSPs which implement the operations bvk − uk and
ha(bvk − uk) + uk. The 25 bits input port of the first DSP
are used for the parameter b, with the format < 1.24 >. This
term’s maximum value is 0.25, which corresponds to a two-

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 4. Potential module signals format

Data Format Data Format

vk 8.10 0.04 01.24
0.04vk 4.21 4vk 10.10
I 8.7 Ie 5.7
140 09.00 uk 6.18
sumv 10.18 0.04v2k + sumv 11.14
h 01.17 vnew 8.10
vthr 08.10 c 08.10
b 01.24 bvk − uk 6.19
ha 01.17 unew 6.18
d 06.18 weight 1.7

digits right-shift, therefore bvk will require 6 integer bits at
most. The multiplier output is subtracted by uk by means
of the adder embedded in the same DSP. The output, in the
format < 6.19 >, fits into the 25 bits input of the second
DSP implementing the operation ha(bvk − uk) + uk. The
term ha, directly stored pre-computed instead of a (to save a
multiplier), can reach the maximum value of 0.01. Therefore
it reduces by at least 6 bits the dynamic of (bvk−uk). In any
case, being ha(bvk−uk)+uk the new value of the membrane
recovery variable, it cannot have a dynamic that goes above 6
integer bits, as observed during the floating-point simulation.

2) Single Neuron Behaviour
This section shows the behavior of the Izhikevich neuron
obtained by using the custom data width presented in V-C1.
Moreover, the single-cell behavior at the varying of the fixed-
point data width is shown as well. We selected 10 bits for the
integer part. Using less than 10 bits causes data overflows,
as pointed out in [26]. On the other hand, using more than
10 bits for the integer part does not provide any accuracy
benefits.
Figure 8 shows the superimposition of the fixed- and the
floating-point simulation of the membrane potential for sev-
eral fractional bits widths, within a time window of 200 ms.
From left to write regular spiking, chattering, intrinsically
bursting, fast-spiking, and low-threshold spiking cells. The
parameters used to simulate each neuron are listed in Table
5. In the first row are used 10 fractional bits. The membrane
potential superimposition shows evident differences with the
floating-point model. Both the number of spikes and the
spikes timing differ. In the second row, the number of frac-
tional bits is increased to 16. Starting from this format the
spikes count between the floating- and the fixed-point cells is
the same, for all the cell types. However, it is still possible
to observe a significant timing lag among the spikes. In the
third row, 22 fractional bits are used, for a total data size
of 32 bits. This format permits obtaining two perfectly su-
perimposed simulations. The last row shows the case where
the custom format described in V-C1 is used. There are
no significant behavioral differences between using 32 bits
fixed-point arithmetic and the custom data-width proposed
in this work. However, the custom data-width permits to

TABLE 5. Single Cell Simulation Parameters Values

Type a b c d Ie

Regular Spiking 0.02 0.2 7 -65 8 4
Chattering 0.02 0.2 -55 4 4
Intrinsically Bursting 0.02 0.2 -50 2 4
Fast Spiking 0.1 0.2 -65 2 4
Low-Threshold Spiking 0.02 0.25 -65 2 4

map efficiently the computations into the Xilinx’s DSPs and
LUTs. Moreover, the overall memory required per neuron is
371 bits, about the 61% required if 32 bits data-width is used.

3) Neural Network behavior
The firing patterns of the hardware fully-connected neural
network of 1024 Izhikevich neurons were compared to the
floating-point Matlab model. The network had been com-
pared along two seconds of activity.
The spike timing for each neuron of the network is shown
in Figure 9. The x-axis represents the time in samples (the
integration step is 0.1 ms, so 20k samples correspond to 2
seconds), whereas the y-axis has an entry for each neuron
of the network; neuron identifiers from 1 to 768 are of
excitatory neurons, neuron identifiers from 769 to 1024 are
of inhibitory neurons. The firing activity superimposition
of Figure 9 shows a match between the hardware and the
Matlab reference models. Within 2 seconds of activity, a total
amount of 20,874 spikes were fired from the Matlab refer-
ence model, whereas 20,886 were fired from the presented
hardware implementation. The total number of spikes fired
by the networks differs by about 0.06%. The mean firing
rate of the two networks is shown in Figure 10; in the case
of the hardware network, the MFR is 10.1924 spikes per
second, whereas it is 10.1982 spikes per second in the case
of the Matlab reference model. Among the spikes fired from
the Matlab reference model, 20,620 were correctly replicated
from the hardware network, with a maximum timing jitter of
2 ms, which corresponds to the 98.78% of the spikes fired.
The 1.27% of the fired spikes are instead false positives, and
the 1.22% are false negatives.
The spike jitter distribution is shown in Figure 11, the 98.78%
of the spikes are correctly reproduced with a maximum jitter
of 2 ms, of which the 89.68% have a time jitter less or equal
to 1 ms.
The Inter-Spike interval (ISI) values are shown in Figure

12. The first and the second columns depict respectively the
excitatory and inhibitory neurons of the networks, whereas
the first and the second rows show the Inter-Spike interval
of the Matlab and the Hardware networks. There are not
significant difference in the interspike time distributions of
the hardware and Matlab networks, for both the inhibitory
and the excitatory neurons.
The analysis of the bursting activity shows how the hardware
network behavior still retraces the firing pattern of the Matlab

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

10.10

Regular Spiking Cell Chattering Cell Intrinsically Bursting Cell Fast Spiking Cell Low-Threshold Spiking Cell

10.16

10.22

CUSTOM

Floating-Point
Fixed-Point

Izhikevich Single-Cell Behaviour

FIGURE 8. Fixed- and floating-point Izhikevich single-cell membrane potential superimposition at the varying of the fixed-point data width. The waveforms have
been captured within a time window of 200 ms. On the left is indicated the fixed-point data format. Each column depicts a different kind of neuron, from left to right
regular spiking, chattering, intrinsically bursting, fast-spiking, and low-threshold spiking cells.

0 0.5 1 1.5 2

Samples 104

0

200

400

600

800

1000

1200

N
eu

ro
n

 ID

Firing Activity

Floating-point
Hardware

FIGURE 9. Floating-point vs Hardware neural networks firing activity

reference model. Figure 13 shows the Mean Bursting Rate
(MBR) of the two networks, the Burst Duration (BD), and
the Inter-Burst Interval (IBI). The mean bursting rates are
identical, in fact, the numbers of bursts of the two networks
are the same. The average burst duration of the hardware

Mean Firing Rate

Hardware Software

Simulation type

0

2

4

6

8

10

12

M
F

R
 [

sp
ik

e/
s]

FIGURE 10. Mean firing rate comparison

network is 149.95 ms, whereas it is 150.55 ms for the ref-
erence network. The mean interburst interval of the hardware
network is 123.49 ms, the one of the software network is
123.03 ms.

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Spike Jitter

1 2 3 4 5

Spike Jitter [ms]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
re

q
u

en
cy

104

FIGURE 11. Spike time jitter between software and hardware neural networks

Excitatory - Software

0 5 10 15
0

5000

10000

15000

F
re

q
u

en
cy

Inibitory - Software

0 5 10 15
0

2000

4000

6000

Excitatory - Hardware

0 5 10 15
ISI [ms]

0

5000

10000

15000

F
re

q
u

en
cy

Inibitory - Hardware

0 5 10 15
ISI [ms]

0

2000

4000

6000

Inter Spike Interval

FIGURE 12. Inter spike interval of excitatory and inhibitory neurons

VI. COMPARISON WITH THE STATE OF THE ART
The main characteristics of the FPGA accelerator we target
for comparison with our work are shown in Table 6.
The low-power embedded system implementation presented
in [17] emulates 800 Leakage Integrate-and-Fire (LIF) neu-
rons and 1.25e4 synapses. Our requirements in terms of
DSP and registers are higher, 2.2x more DSP and 1.5x more
registers respectively. However, the work [17] uses 2.3x more
LUT than the presented system, and emulates only 25.82% of
the neurons, and about 0.13% of the synapses of this work.
Moreover, the neuron integration frequency is 10 times lower.
The digital system presented in [20] is capable of hosting
12,800 neurons and 20,000 synapses with a time resolution

Mean Bursting Rate

Har
dw

ar
e

Sof
tw

ar
e

0

1

2

3

4

5

6

7

8

M
B

R
 [

b
u

rs
t/

s]

Burst Duration

Har
dw

ar
e

Sof
tw

ar
e

Simulation type

0

20

40

60

80

100

120

140

160

B
D

 [
m

s]

Interburst Interval

Har
dw

ar
e

Sof
tw

ar
e

0

20

40

60

80

100

120

140

IB
I [

m
s]

FIGURE 13. Burst metrics comparison

of 1.5 us. The network topology and the resolution used in
[20] do not permit a fair comparison with this work. In fact,
this work emulates fully-connected neural networks with a
time resolution of 0.1 ms, it counts 4.1 times fewer neurons,
however, hosting 480 times more synaptic connections than
in [20], it allows to emulate arbitrarily connected neural
networks.
The system presented in [21] is a fully connected neural net-
work accelerator prototyped into a high-end Virtex-6 FPGA.
The time resolution and the neuron model are the same
of the presented work. Their digital system can emulate
1,440 neurons and 2.07e6 synapses, which are the 46.48%
and the 21.56% of this work’s result. Moreover, our work
requires only the 43.80% of the LUTs, the 72.49% of the
FFs, the 33.29% of the BRAMs, and the 34.31% of the DSPs
compared to the implementation in [21].
The low-latency neural network accelerator presented in [22]
is implemented on a Stratix-IV device, and can sustain a
maximum clock frequency of 250 MHz. This allows to
integrate the Izhikevich model in 8 ns and reuse many times
the same neuron computational core within their 0.78 ms
integrating step, as it happens in the presented work. How-
ever, the throughput of our Potential module guarantees an
integrated neuron every 6 ns, which is higher than 8 ns, even
though our maximum clock frequency is lower. In addition,
the neuron interconnections scheme of this work has more
biological meaning than in [22], where the neurons can have
a single synaptic interconnection. The maximum number
of neuron computational cores which fit in the Stratix-IV
device is 364, but it is not explicitly declared the maximum
number of neurons their architecture can handle in real-time.
Moreover, having a single synaptic connection per neuron,
the comparison with the other architectures of Table 6 would
not be fair.

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 6. Real-time FPGA-based neural network emulators comparison

Work Year Family Part Neu Syn FC Off-
chip
mem

Model Res Data
Format
[bit]

LUT FF BRAM DSP

this work 2021 Virtex-6 XC7Z020 3,098 9.6e6 3 3 Izhikevich 0.1 ms custom 24,480 35,158 130.5 140
Gupta [17] 2020 Virtex-6 XC6VLX240T 800 1.25e4 7 7 Simp. LIF 1.0 ms 24 56,230 23,238 16 64
Sripad [20] 2018 Kintex-7 XC7K325T 12,800 2.00e4 7 7 Izhikevich 1.5 µs 16 148,774 97,824 213 100
Pani [21] 2017 Virtex-6 XC6VLX240T 1,440 2.07e6 3 7 Izhikevich 0.1 ms 32 55,884 48,502 392 408
Bandeira [22] 2017 Stratix IV EP4SGX230 - - 7 7 Izhikevich 0.78 ms 18 84,816* 84,816* - -
Luo [24] 2016 Virtex-7 XC7VX485T 101,000 1.00e5 7 7 LIF - 40 268,455 176,424 960 2.304
Ambroise [26] 2013 Virtex-4 SX55 117 1.37e4 3 7 Izhikevich 1.0 ms 18 1,598 970 4 1
Han [9] 2020 Kintex-7 XC7Z045 2,842 1.86e6 7 3 LIF - 16 5,381 7,309 40.5 -

*The quantity refers to the number of Adaptive Logic Module of Altera’s FPGAs

The bio-realistic cerebellum model presented by Luo et. al
[24] emulates 101,000 LIF neurons [20]. So as the presented
work, the digital system can be coupled with biological
neural networks in closed-loop experiments. Even though the
number of neural units is consistently higher compared to
this work, it is to be taken into account that the presented
system emulates Izhikevich neurons, which are far more
computationally expensive than LIF neurons. Moreover, the
number of synapses this work supports is 96 times higher
than in [24] and this result is obtained by using the 9.11% of
the LUT, the 19.93% of the FF, the 13.59% of the BRAM,
and the 6.07% of the DSP of the implementation in [24].
The folded architecture presented in [26] permits saving
resources by reusing the same processing elements along
multiple clock cycles to evaluate the Izhikevich model. They
instanced a single neural computational core that can be
compared to our Potential module. Their core uses a single
DSP, whereas ours makes use of 5 DSP. However, due to
this, their architecture requires about x9 more LUT than
our Potential module. Moreover, even though in a folded
architecture is possible to save registers, by sharing them
in time among multiple variables, the folded architecture
in [26] still requires x3.5 more registers, probably because
most of the registers used by the presented work are the
ones embedded into the DSPs. The folded architecture needs
11 clock cycles to integrate the Izhikevich model, whereas
our Potential module can integrate a neuron per clock cycle.
In addition, the maximum clock frequency of the presented
work is higher: 150 MHz against the 85 Mhz of the folded
architecture in [26], and summing up, this leads to a through-
put 19.4 times higher in favor of the presented architecture.
The image classifier presented in [9] accelerates the exe-
cution of spiking neural networks of LIF neurons. Their
approach takes advantage of the off-chip DDR memory to
store the synaptic weights of the network, as in this work. As
a matter of fact, their utilization in terms of BRAMs is lower
than most of the other works in Table 6. Moreover, being
the LIF model simpler than the Izhikevich model, and counts
fewer parameters, their LUTs and FFs utilization is about a
fifth of this work, and their BRAM utilization is the 31.03%
of the presented work. However, being a hardware acceler-

ator for image classification tasks, even though the number
of neurons is almost the same (they emulate about 9% fewer
neurons than the presented design), the synapses only serve
to connect the neurons among the layers. Therefore, our
design counts 5.16 times more synapses than [9]. Finally, not
being conceived as a biological-meaningful neural network
emulator, [9] is not suited to be interfaced with biological
neural networks.

VII. CONCLUSION

We have presented a new method for increasing the synapses
count of real-time neural network accelerators. We demon-
strated the feasibility of the method by implementing a
real-time neural network accelerator counting up to 3,098
neurons and 9.6e6 synapses into a Xilinx Zynq 7020 All-
Programmable SoC, with a resolution of 0.1 ms. We showed
the DDR memory provides enough storage capability and I/O
bandwidth to transfer the synaptic weights in real-time, and
that by relying on the DDR, it is possible to overcome the
number of synapses that a real-time spiking neural network
emulator can store inside its BRAM. This work demonstrates
it is possible to emulate highly-connected neural networks
in real-time and paves the way to closed-loop experiments
addressing biological and artificial neural network interac-
tion, with the aim of increasing the actual comprehension of
biological neural network functioning principles and neuro-
prosthesis development.
We studied how to map the Izhikevich neuron model in fixed-
point arithmetic so as to simultaneously find a good map
into Xilinx’s DSP and LUT, and degrade the accuracy of the
network the least possible. We found a difference of 0.06% in
the total amount of fired spikes by the proposed fixed-point
neural network and the floating-point reference model, with
98.78% of the spikes having a time jitter less than 2 ms.
A long-term purpose for our work is interfacing biological
and artificial neural networks in real-time. By relying on the
support of a multielectrode array and a neural processing
interface, it could be possible to provide input and output
data exchange between the networks, paving the way to bio
and artificial neural network cooperation.

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ACKNOWLEDGMENT
thank you all.

BIBLIOGRAPHY
[1] Robert C Froemke and Yang Dan. “Spike-timing-

dependent synaptic modification induced by natural
spike trains”. In: Nature 416.6879 (2002), pp. 433–
438.

[2] Marc-Oliver Gewaltig and Markus Diesmann. “NEST
(NEural Simulation Tool)”. In: Scholarpedia 2.4
(2007), p. 1430.

[3] Daria Lisitsa and Anton A. Zhilenkov. “Prospects for
the development and application of spiking neural net-
works”. In: 2017 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineer-
ing (EIConRus). 2017, pp. 926–929. DOI: 10 . 1109 /
EIConRus.2017.7910708.

[4] Nick Steinmetz, Cagatay Aydin, Anna Lebedeva,
Michael Okun, Marius Pachitariu, Marius Bauza,
Maxime Beau, Jai Bhagat, Claudia Böhm, Martijn
Broux, Susu Chen, Jennifer Colonell, Richard Gard-
ner, Bill Karsh, Dimitar Kostadinov, Carolina Lopez,
Junchol Park, Jan Putzeys, Britton Sauerbrei, and Tim-
othy Harris. “Neuropixels 2.0: A miniaturized high-
density probe for stable, long-term brain recordings”.
In: (Nov. 2020). DOI: 10.1101/2020.10.27.358291.

[5] Gianluca Leone, Luigi Raffo, and Paolo Meloni.
“ZyON: Enabling Spike Sorting on APSoC-Based
Signal Processors for High-Density Microelectrode
Arrays”. In: IEEE Access 8 (2020), pp. 218145–
218160. DOI: 10.1109/ACCESS.2020.3042034.

[6] Maxence Bouvier, Alexandre Valentian, Thomas
Mesquida, Francois Rummens, Marina Reyboz, Elisa
Vianello, and Edith Beigne. “Spiking neural networks
hardware implementations and challenges: A survey”.
In: ACM Journal on Emerging Technologies in Com-
puting Systems (JETC) 15.2 (2019), pp. 1–35.

[7] H. A. Swadlow and S. G. Waxman. “Axonal con-
duction delays”. In: Scholarpedia 7.6 (2012). revision
#125736, p. 1451. DOI: 10.4249/scholarpedia.1451.

[8] E.M. Izhikevich. “Simple model of spiking neurons”.
In: IEEE Transactions on Neural Networks 14.6
(2003), pp. 1569–1572. DOI: 10 . 1109 / TNN . 2003 .
820440.

[9] Jianhui Han, Zhaolin Li, Weimin Zheng, and Youhui
Zhang. “Hardware implementation of spiking neural
networks on FPGA”. In: Tsinghua Science and Tech-
nology 25.4 (2020), pp. 479–486.

[10] Sathish Panchapakesan, Zhenman Fang, and Nitin
Chandrachoodan. “EASpiNN: Effective Automated
Spiking Neural Network Evaluation on FPGA”. In:
2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines
(FCCM). IEEE. 2020, pp. 242–242.

[11] Sathish Panchapakesan, Zhenman Fang, and Jian Li.
“SyncNN: Evaluating and Accelerating Spiking Neu-

ral Networks on FPGAs”. In: 2021 31st International
Conference on Field-Programmable Logic and Appli-
cations (FPL). IEEE. 2021, pp. 286–293.

[12] Nicholas T Carnevale and Michael L Hines. The NEU-
RON book. Cambridge University Press, 2006.

[13] Dan Goodman and Romain Brette. “The Brian simu-
lator”. In: Frontiers in Neuroscience 3 (2009), p. 26.
ISSN: 1662-453X. DOI: 10.3389/neuro.01.026.2009.
URL: https : / /www.frontiersin .org /article /10 .3389 /
neuro.01.026.2009.

[14] Alexander D Rast, Xin Jin, Francesco Galluppi, Luis
A Plana, Cameron Patterson, and Steve Furber. “Scal-
able event-driven native parallel processing: the SpiN-
Naker neuromimetic system”. In: Proceedings of the
7th ACM international conference on Computing fron-
tiers. 2010, pp. 21–30.

[15] Eustace Painkras, Luis A. Plana, Jim Garside, Steve
Temple, Francesco Galluppi, Cameron Patterson,
David R. Lester, Andrew D. Brown, and Steve B.
Furber. “SpiNNaker: A 1-W 18-Core System-on-Chip
for Massively-Parallel Neural Network Simulation”.
In: IEEE Journal of Solid-State Circuits 48.8 (2013),
pp. 1943–1953. DOI: 10.1109/JSSC.2013.2259038.

[16] Kit Cheung, Simon R. Schultz, and Wayne Luk. “Neu-
roFlow: A General Purpose Spiking Neural Network
Simulation Platform using Customizable Processors”.
In: Frontiers in Neuroscience 9 (2016), p. 516. ISSN:
1662-453X. DOI: 10 . 3389 / fnins . 2015 . 00516. URL:
https : / /www.frontiersin .org /article /10 .3389/ fnins .
2015.00516.

[17] Shikhar Gupta, Arpan Vyas, and Gaurav Trivedi.
“FPGA Implementation of Simplified Spiking Neural
Network”. In: 2020 27th IEEE International Confer-
ence on Electronics, Circuits and Systems (ICECS).
2020, pp. 1–4. DOI: 10 . 1109 / ICECS49266 . 2020 .
9294790.

[18] Wulfram Gerstner and Werner M Kistler. Spiking neu-
ron models: Single neurons, populations, plasticity.
Cambridge university press, 2002.

[19] Henry Markram, Wulfram Gerstner, and Per Jesper
Sjöström. “Spike-timing-dependent plasticity: a com-
prehensive overview”. In: Frontiers in synaptic neuro-
science 4 (2012), p. 2.

[20] Athul Sripad, Giovanny Sanchez, Mireya Zapata,
Vito Pirrone, Taho Dorta, Salvatore Cambria, Al-
bert Marti, Karthikeyan Krishnamourthy, and Jordi
Madrenas. “SNAVA—A real-time multi-FPGA multi-
model spiking neural network simulation architec-
ture”. In: Neural Networks 97 (2018), pp. 28–45. ISSN:
0893-6080. DOI: https : / /doi .org /10.1016/ j .neunet .
2017.09.011. URL: https://www.sciencedirect.com/
science/article/pii/S0893608017302150.

[21] Danilo Pani, Paolo Meloni, Giuseppe Tuveri,
Francesca Palumbo, Paolo Massobrio, and Luigi
Raffo. “An FPGA Platform for Real-Time Simulation
of Spiking Neuronal Networks”. In: Frontiers in Neu-

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

roscience 11 (2017), p. 90. ISSN: 1662-453X. DOI: 10.
3389/fnins.2017.00090. URL: https://www.frontiersin.
org/article/10.3389/fnins.2017.00090.

[22] Vitor Bandeira, Vivianne Costa, Guilherme Bontorin,
and Ricardo Reis. “Low Latency FPGA Implemen-
tation of Izhikevich-Neuron Model”. In: Jan. 2017,
pp. 210–217. ISBN: 978-3-319-90022-3. DOI: 10 .
1007/978-3-319-90023-0_17.

[23] Andrew Cassidy and Andreas G Andreou. “Dynam-
ical digital silicon neurons”. In: 2008 IEEE Biomed-
ical Circuits and Systems Conference. IEEE. 2008,
pp. 289–292.

[24] Junwen Luo, Graeme Coapes, Terrence Mak, Tadashi
Yamazaki, Chung Tin, and Patrick Degenaar. “Real-
Time Simulation of Passage-of-Time Encoding in
Cerebellum Using a Scalable FPGA-Based System”.
In: IEEE Transactions on Biomedical Circuits and
Systems 10.3 (2016), pp. 742–753. DOI: 10 . 1109 /
TBCAS.2015.2460232.

[25] Alireza Khodamoradi, Kristof Denolf, and Ryan Kast-
ner. “S2n2: A fpga accelerator for streaming spiking
neural networks”. In: The 2021 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Ar-
rays. 2021, pp. 194–205.

[26] Matthieu Ambroise, Timothee Levi, Yannick Bornat,
and Sylvain Saighi. “Biorealistic spiking neural net-
work on FPGA”. In: 2013 47th Annual Conference
on Information Sciences and Systems (CISS). 2013,
pp. 1–6. DOI: 10.1109/CISS.2013.6616689.

[27] Xilinx. “AXI DMA v7.1”. In: LogiCORE IP Product
Guide (2019), p. 8.

[28] Michael Hopkins, Mantas Mikaitis, Dave R Lester,
and Steve Furber. “Stochastic rounding and reduced-
precision fixed-point arithmetic for solving neural
ordinary differential equations”. In: Philosophical
Transactions of the Royal Society A 378.2166 (2020),
p. 20190052.

GIANLUCA LEONE is a Ph.D. student in Elec-
tronic and Computer Engineering at the Univer-
sity of Cagliari since 2019. He received the B.S.
degree in Electronics Engineering from the Uni-
versity of Cagliari, Cagliari, Italy, in 2016, and the
M.S. degree in Electronics Engineering from the
Politecnico di Torino, Turin, Italy, in 2019. His
research activity concerns the development and
optimization of hardware accelerators on FPGA.

LUIGI RAFFO is full professor of Electronics
at University of Cagliari (ITALY) since 2006. In
1994 he joined the Department of Electrical and
Electronic Engineering of University of Cagliari
(ITALY). He teaches courses on system design,
digital and analog electronics design and processor
architectures. Since 2012 he has been Rector’s
delegate for International Research Projects. He
has been coordinator of the Course of Studies in
Biomedical Engineering from 2006 to 2012 and

from 2017 to 2018. His research topics are in the field of the study, design,
development of systems and micro-systems for application where high
performance, high efficiency, low power are required. In such a filed he is
author of more than 200 scientific papers.

PAOLO MELONI is assistant professor at Univer-
sity of Cagliari since 2012. His research activity is
on the development of advanced digital systems,
on the application-driven design and programming
of multi-core on-chip architectures and FPGAs.
He is author of a significant track of international
research papers. He teaches Advanced Embed-
ded Systems at the University of Cagliari and
is currently scientific coordinator of the ALOHA
(www.aloha-h2020.eu) H2020 project.

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3192826

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

