
A Bandwidth Reduction Scheme
for 3D Texture-Based Volume Rendering

on Commodity Graphics Hardware

1Won-Jong Lee, 2Woo-Chan Park, 3Jung-Woo Kim, 1Tack-Don Han,
1Sung-Bong Yang, and 1Francis Neelamkavil

1Media System Laboratory, Department of Computer Science,
Yonsei University, Seoul 120-749 Korea,

{airtight, hantack}@kurene.yonsei.ac.kr
{yang, francis}@cs.yonsei.ac.kr

2School of Computer Engineering, Department of Internet Engineering,
Sejong University, Seoul 143-747, Korea,

pwchan@sejong.ac.kr
3Digital Media R&D Center, Samsung Electronics, 416,
Maetan-3Dong, Paldal-Gu, Suwon City 442-742, Korea,

jwoo.kim@samsung.com

Abstract. In this paper, we propose a bandwidth-effective volume ren-
dering scheme which subdivides the volume into the sub-volumes and
transmits them to the texture units in visibility order. Each sub-volume
is rendered in the same manner as the original volume on the graph-
ics hardware and the corresponding sub-image is blended in the alpha
blending unit. The sub-volume oriented processing improves the cache
efficiency and allows empty space skipping. Moreover, it is capable of
rendering volume datasets that do not fit into the texture memory. Sim-
ulations show that the proposed scheme is effective for 3D texture-based
volume rendering on commodity graphics hardware by reducing memory
bandwidth up to 30 times when compared with the traditional method.

1 Introduction

Direct volume rendering is one of the popular methods to visualize volumetric
data in various areas such as medicine, science, and engineering. Due to the
rapid advances in graphics processing unit (GPU), 3D texture-based volume
rendering on commodity graphics hardware receives great attention in these
days [1, 2, 3]. Although using the commodity graphics hardware for volume
rendering allows us to perform the 3D texture mapping with a low-cost, there
are several disadvantages as mentioned in [4, 12, 16]. First, a large amount of data
traffic causes bottlenecks in memory bandwidth both for 3D texture mapping and
pixel processing. In 3D texture mapping, tri-linear interpolation may degrade
the temporal locality of the texture memory accesses. Thus, we cannot achieve a
satisfiable hit rate with the texture cache optimized only for 2D textures. In pixel
processing, one depth test and one read/write operation must be done for each

pixel and accesses to the same screen location are separated by too many accesses
to other pixels. As a result, using the commodity graphics hardware causes
poor pixel cache utilization, which results in excessive frame buffer traffic in the
blending operation. Second, empty space skipping is also problematic due to the
slice-oriented processing order. Thus unnecessary computation for meaningless
space cannot be avoided. Third, the size of a dataset that can be processed on
the commodity graphics hardware is very limited. A realtime rendering of a large
dataset (5123 or larger) is infeasible on the current graphics hardware [19, 20]
in general.

This paper proposes a bandwidth-effective rendering scheme by improving
the cache utilization on the commodity graphics hardware. The proposed scheme
subdivides the original volume into uniform sized sub-volumes logically. Each
sub-volume is tested if it is an empty space or not, and then it is rendered on
GPU separately. Finally each rendered sub-image is blended in the alpha blend-
ing unit for generating frame image (see Fig. 3). The advantages of the proposed
rendering scheme are as follows. First, sub-volume ordered processing increases
the locality of the memory access and hence improves cache efficiency, which
results in a dramatic reduction of the memory bandwidth. Second, empty space
testing for each sub-volume is possible in the preprocessing step so that we can
avoid computation for meaningless space by skipping these empty sub-volumes.
Third, a volume dataset that does not fit into texture memory can be rendered,
because the original volume is subdivided into much smaller sub-volumes. A
drawback of the proposed rendering scheme is that the subdivision operation
generates additional vertices for each sub-volume, which causes overhead on a
hardware T&L engine. However, according to the specification of a recent com-
modity graphic hardware [19, 20], the T&L engine has a capability of processing
more than 350x106 vertices per second. On the other hand, in spite of the worst
case of the proposed rendering scheme (the case of 163 sub-volume), as shown
in the simulation results in Section 4, the required bandwidth for rendering at
a rate of 30 frames per second is about 230x106 vertices per second. Thus, the
additional vertices do not causes any problem in practice.

We have built a simulator to evaluate achievable performance. Memory ac-
cess traces has been generated during the benchmark volume datasets of size
5123 were rendered on this simulator. The performance has been evaluated with
the trace-driven cache simulator, DineroIII [5]. Simulation results show that the
proposed rendering scheme reduces memory bandwidth from 2 to 30 times com-
pared with a non-subdivided method with the cache size varying from 16Kbytes
to 128Kbytes. The rest of the paper is organized as follows. Section 2 reviews
the related work, Section 3 describes the proposed sub-volume rendering scheme,
Section 4 provides simulation results.

2 Related Work

The subdivision method has been adopted in a variety of researches for pro-
cessing large scaled volume datasets. This method was used for load balancing

on parallel rendering machines [6] early in the research. Dedicated hardware for
ray-casting [7, 8] partitioned the volume data suitable for their own memory
organization. In particular, RaceEngine [7] proposed a new method to keep the
visibility order of the sub-volumes. Recently, a networked cluster of PCs each
of which is equipped with a fast graphics accelerator to render each sub-volume
has been proposed [9]. However, parallel volume rendering is a quite expensive
approach, because it requires dedicated hardware or a massive parallel rendering
machine.

Nowadays the performance of commodity graphics hardware has been im-
proved dramatically. High-level GPU-programming environment and relevant
graphic APIs such as OpenGL and Direct3D are fully supported. Especially var-
ious 3D texture-based volume rendering methods using the commodity graphics
hardware have been being proposed [2, 3, 4]. TriangleCaster [4] employed the ex-
tension units to divide the image plane and blend the corresponding sub-planes.
However, the additional hardware units such as the composition buffer and the
triangle generator should be implemented to extend the existing graphics hard-
ware.

In order to render large scaled volume datasets on the commodity graphic
hardware, the subdivision method can be applied to multi-resolution and com-
pression. Multi-resolution volume rendering uses a spatial hierarchy to adapt
the resolution to project onto the screen with hierarchical structures such as
an octree. A variety of techniques have been applied to volume rendering [10,
11], since multi-resolution technique was first proposed in polygonal rendering.
Moreover, volume data compression for reducing the size of such data as vector
quantization [12], fractal compression [13], and wavelet transform [14, 15] utilizes
hierarchical division method.

The goal of the proposed scheme is to resolve the memory bandwidth prob-
lem in 3D texture mapping by subdividing original volume into optimal sized
sub-volumes to increase cache locality and by rendering in visibility order. The
proposed scheme can support the rendering of the volume datasets that do not
have fit into the texture memory. Also volume data compression in [15] can be
easily adopted in the proposed scheme.

3 Bandwidth-Effective Sub-Volume Rendering

The proposed rendering scheme is composed of three steps; the preprocessing
step for subdivision of the volume data, the rendering step including the classifi-
cation and the 3D texture mapping, and the composition step for blending each
corresponding sub-images. This section describes each step in detail.

3.1 The Preprocessing Step

In the preprocessing, we divide the original volume into uniform sized sub-
volumes after determining the sub-volume size. For each sub-volume, vertices
and texture coordinates of slices are generated with using the bound cube in [1,

Fig. 1. Overall processing flow of the bandwidth-effective sub-volume rendering scheme

11]. We define a new data structure, called the volume division table (VDT) for
managing the information of empty spaces and the geometry (min/max bounds
of positions in the texture and the object space) of sub-volumes.

Fig. 1 illustrates the overall processing flow of the bandwidth-effective sub-
volume rendering scheme. In the preprocessing step, the transfer function ta-
ble is created for classification and the VDT is generated with the information
about the sizes of the original volume and sub-volume. During loading the orig-
inal volume to the system memory, each sub-volume can be tagged with either
empty space or non-empty space after each voxel is compared with a user-defined
threshold. If a sub-volume is tagged with empty, a single bit is stored into the
corresponding position in the VDT. After the preprocessing step, the visibility
order of each sub-volume is determined and each sub-volume is transmitted to
GPU in this order which will be described in Section 3.2.

To increase cache locality, the size of a sub-volume is smaller than that of
the texture cache, and the size of the slice to be mapped for this sub-volume
is smaller than that of the pixel cache. This leads to minimize the bandwidth
between the rendering processor and the graphics memory.

3.2 Sub-volume Rendering

In the sub-volume rendering step, each sub-volume is rendered in the same man-
ner as the original volume is done and the corresponding sub-images are blended
in the alpha blending unit to generate final frame image as shown in Fig. 3. The
sub-volumes should be rendered according to the visibility order, because the
volume data is not fully transparent in general and there are overlapped parts
between adjacent sub-images. Whenever the viewpoint (for perspective projec-
tion) and the view direction (for parallel projection) are changed, this order

needs to be sorted again. We adopt the ordering method in [7]. In this method,
the sub-volumes are ordered based on three types of classifications. First, view-
point is parallel with a face of the volume in parallel projection. Second, looking
at an edge or at a point of the volume in parallel projection, and the last type is
perspective projection. In case of the parallel projection, the order is set either
by height or by width based on the oriented position in the volume. In case of
the perspective projection, the nearest sub-volume from the viewpoint precedes
other sub-volumes.

One of the advantages of the sub-volume based rendering is that we can skip
empty space easily. Because a significant portion of the volume data (more than
50% on the average in general) is empty space [18], empty space skipping is a
common method to accelerate rendering for ray-casting based volume rendering.
However, empty space skipping is difficult to be applied to the conventional 3D
texture based volume rendering, because the whole voxels to be mapped onto
slices should be fetched [16]. In contrast, the sub-volume based rendering [11,
17] has a capability of checking whether the current sub-volume is empty or not
in the preprocessing step. As a result, rendering can be skipped for the empty
sub-volume by referring the VDT. According to the simulation results of Section
4, the average empty space is more than 50% of the volume data. Such results
can also be found in [7].

3.3 Texture and Pixel Cache Efficiency

Recent commodity graphics accelerators employ both the texture cache and pixel
(color and depth) caches to reduce the bandwidth between the rendering proces-
sor and the graphics memory. But they are designed to optimize accesses only
to process the polygonal data. Thus we cannot achieve satisfiable performance
with them for volume rendering applications. We now describe the effective cache
utilization issue of sub-volume rendering.

The tri-linear interpolation for 3D texture mapping requires accesses to the
neighborhoods of voxels in the x-, y-, z-dimensions. For the volume stored in
memory such as the neighboring voxels along the x-axis are adjacent, the neigh-
boring voxels along the y-axis are one row of the x-axis voxels apart. The locality
of the neighboring voxels along the z-axis is even worse. They are one row of the
x-axis voxels times one column of the y-axis voxels apart. Thus a serious problem
occurs in the texture cache as mentioned in [16, 18]. Due to this weak locality, ac-
cess the neighboring voxel along the z-axis causes subsequent cache misses, which
results in frequent replacement of cache blocks. Although some dedicated hard-
ware accelerators for ray-casting [7, 8] are optimized for the three-dimensional
data access to solve this problem, the texture cache of a commodity graphic
accelerator is optimized only for 2D texture mapping. In this case, the caching
is almost useless for volume rendering.

However, we can resolve this problem by subdividing and reorganizing the
volume data, which make rendering of the sub-volumes more manageable. An
8bit-163 sub-volume consumes 4Kbytes (when 16bit-163 sub-volume, 8Kbytes)
and a 8bit-323 sub-volume consumes 32Kbytes (when 16bit-323 sub-volume,

64Kbytes) of memory space. This chunk of data fits easily within the texture
cache of a typical graphics accelerator available today. Thus the locality of mem-
ory accesses can be improved. Hence we can significantly increase cache hit rate.

There is a similar problem in the pixel cache. The size of each slice is the
same as that of a slice in the view-plane in general. Each slice covers the entire
screen. Moreover, the blending operation requires read/write operation for both
the depth test and alpha-blending per each fragment of a slice. Thus the entire
screen must be processed before a particular pixel is visited again. As a result,
the locality of the frame buffer accesses is decreased and cache miss rate can be
increased enormously. On the other hand, if the size of a sub-image of a sub-
volume is smaller than the pixel cache size, cache hit can be guaranteed for all
slices except the cache misses (compulsory miss) on the first slice. Therefore, we
can improve cache utilization significantly.

4 Experimental Results

We have built a simulator to evaluate cache efficiency, memory traffic, and achiev-
able performance. We model a standard graphics pipeline composed of the T&L
engine, the Goraud shader, the 3D texture mapping unit, the blending unit, the
framebuffer (color and depth buffer), and the texture memory. Memory access
traces have been generated during the benchmark volume datasets are rendered
on the simulator. The performance has been evaluated with the trace-driven
cache simulator, DineroIII [5]. Because the pixel cache consists of the color cache
and the depth cache in most of commodity graphics accelerators [19, 20], a sep-
arate simulation has been performed for each cache. All caches are configured
with direct-mapped, a block size of 32Bytes. We have experimented varying the
cache size from 16K to 128Kbytes.

We have used three datasets, the HeadMR, the Foot, and the Skull (see Fig.
4) from the volren web-page (http://www.volren.org). Each of these datasets has
8bit-intensity and the size of 2563, but has been re-sampled to 5123 (128Mbytes)
to test the large volume data. Rendering is directed to a 512x512 viewport, with
100 slices, and the back-to-front blending method is used. 163 and 323 have been
chosen as the size of sub-volume. Ten frames have been rendered for each case.
For fair generation of memory access patterns, the volume is rotated by width
and height for rendering. We describe the simulation results of the proposed
rendering scheme in this section.

4.1 Texture and Pixel Cache Efficiency

Fig. 2 shows the comparison of each cache miss rate for our subdivided rendering
scheme (SD) and the traditional non-subdivided rendering scheme (NSD). More
than 50% of the miss rate of the texture cache with NSD was occurred due to
frequent cache thrash, which means the cache could not perform its own duty. On
the other hand, the miss rate was reduced sharply in the case of rendering with
SD due to locality improvement. As shown in Fig. 2, all the datasets recorded

Fig. 2. Comparison of the cache miss rate for our subdivided (SD) rendering and the
traditional non-subdivided (NSD) rendering

less than 5% of the miss rate of the texture cache when the cache size is larger
than 32Kbytes. Even though the size is larger than 32Kbytes, the miss rate is
hardly reduced for all the cases. This result shows that the miss rate had no
relation with the cache size when the size is over a critical point as the case of
2D texture cache [21]. The miss rate of SD when the size of a sub-volume is 163

is little higher than that of SD when the size is 323 from the 32Kbytes for the
HeadMR and the 64Kbytes for the Foot and the Skull, because more overlapped
voxels are generated as the sub-volume size is decreased.

Similarly the miss rates in the pixel cache for SD have also been reduced due
to high cache locality. For simplicity, we show the results for the color cache in
the Fig. 2, because the number of accesses to the depth buffer for depth test
and accesses to the color buffer for the blending are the same. In case of NSD,
the miss rate is almost the same, over 6%, regardless of the cache size, because
the size of a slice is larger than that of the pixel cache. In contrast, because
the sub-image of a sub-volume is smaller than that of the pixel cache for SD,
the locality is increased and the miss rate is reduced. The miss rate is sharply
decreased from 64Kbytes for the 323 sub-volume and from 32Kbytes for the 163

sub-volume. When the size is 16Kbytes, on the contrary, each sub-image could
not fit into the pixel cache, and hence the miss rate of SD was higher than that
of NSD.

4.2 Total Bandwidth Comparison

Table 1 shows the comparison of the total bandwidth during 10 frames render-
ing. The total bandwidth is calculated by summing up the amount of fetched
data from the texture memory due to texture cache misses, the amount of the
read/write data from/to the frame buffer due to pixel cache misses, and the
amount of vertices.

Table 1. The comparison of the required bandwidth between SD and NSD

In case of NSD, over 14Gbytes of data was transmitted from the texture
memory on the average. If the frame buffer bandwidth is considered, the total
required bandwidth for rendering 30 frames per second was more than 40Gbytes.
Because the internal memory bandwidth of recent commodity graphics hardware
[19, 20] is about 30Gbytes, it is difficult to render at a real-time frame rate.

When rendering the datasets with SD, the total required bandwidth for
rendering 30 frames per second is only in the range between 1.5Gbytes and
17Gbytes. Such result was possible because SD could skip more than 50% of
empty space on the average and SD improved cache hit rate on both the tex-
ture and the pixel caches. As we mentioned before, the miss rate was sharply
decreased when the cache size is over the 64Kbytes for the 323 sub-volume and
when the cache size is over the 32Kbytes for the 163 sub-volume. Thus, the re-
quired bandwidth for rendering 30 frames per second was from 2 to 3Gbytes in
this case. The bandwidth was reduced up to 30 times, compared with NSD in
the best case (when the cache size is 128Kbytes for Skull).

5 Conclusion

In this paper, we proposed a bandwidth-effective volume rendering scheme which
divides the volume into uniform sized sub-volumes and transmits them to the
texture mapping units in visibility order. Simulation results showed that the
proposed scheme is effective for 3D texture-based volume rendering on commod-
ity graphics hardware by reducing internal memory bandwidth substantially.
Because this scheme manages the sub-volumes, it is expected to be applied to
three dimensional volumetric effects such as volumetric lighting, fire, and clouds.

References

1. Gelder, A.V., Kim, K.: Direct Volume Rendering with Shading via Three-
Dimensional Textures. In Proc. of ACM Symposium on Volume Visualization (1996)
23-30

2. Engel, K., Kraus, M., Ertl, T.: High-Quality Pre-Integrated Volume Rendering Us-
ing Hardware-Accelerated Pixel Shading. In Proc. of Eurographics/SIGGRAPH
Workshop on Graphics Hardware (2001) 9-16

3. Kniss, J., Kindelmann, G., Hansen, C.: Interactive Volume Rendering Using Multi-
Dimensional Transfer Functions and Direct Manipulation Widgets. In Proc. of IEEE
Visualization (2001) 255-262

4. Knittel, G.: TriangleCaster: extensions to 3D-texturing units for accelerated volume
rendering. In Proc. of Eurographics/SIGGRAPH Workshop on Graphics Hardware
(1999) 25-34

5. Dinero III, http://www.cs.wisc.edu/ larus/warts.html

6. Silva, C.T., Kaufman, A.E., Pavlakos, C.: PVR: High-Performance Volume Render-
ing. IEEE Computating in Science and Engineering, Vol. 3, No. 4 (1996) 18-28

7. Ray, H., Silver, D.: The Race II Engine for Real-Time Volume Rendering. In Proc.
of Eurographics/SIGGRAPH Workshop on Graphics Hardware (2000) 129-136

8. Meiner, M., Kanus, U., Wetekam, G., Hirche, J., Ehlert, A., Straer, W., Doggett,
M., Forthmann, P., Proksa, R.: VIZARD II: A Reconfigurable Interactive Volume
Rendering System. In Proc. of Eurographics/SIGGRAPH Workshop on Graphics
Hardware (2002) 137-146

9. Kniss, J., McCormick, P., McPherson, A., Ahrens, J., Painter, J., Keahey, A.,
Hansen, C.: TRex: Interactive Texture Based Volume Rendering for Extremely
Large Datasets. IEEE Computer Graphics & Applications, Vol. 21, No. 4, July
(2001) 52-61

10. Ertl, T., Westermann, R., Grosso, R.: Multiresolution and Hierarchical Methods
for the Visualization of Volume Data. Future Generation Computer Systems, Vol.
15, No. 1 (1999) 31-42

11. Boada, I., Navazo, I., Scopigno, R.: Multiresolution Volume Visualization with a
Texture-Based Octree. The Visual Computer, Vol. 17, No. 3 (2001) 185-197

12. Schneider, J., Westermann, R.: Compression Domain Volume Rendering. In Proc.
of IEEE Visualization (2003) 293-300

13. Cochran, W.O., Hart, J.C., Flynn, P.J.: Fractal Volume Compression. IEEE Trans.
Visualization and Computer Graphics, (1996) December 313-322

14. Nguyen, K.G., Saupe, D.: Rapid High Quality Compression of Volume Data for
Visualization. Computer Graphics Forum, Vol. 20, No. 3 (2001)

Fig. 3. Some snapshot of our rendering scheme

Fig. 4. Datasets rendered images with our simulator. HeadMR, Foot, Skull

15. Guthe, S., Wand, M., Gonser, J., Straer, W.: Interactive Rendering of Large Vol-
ume Data Sets. In Proc. of IEEE Visualization (2002) 53-60

16. Hadwiger, M., Kniss, J.M., Engel, K., Rezk-Salama, C.: High-Quality Volume
Graphics on Consumer PC Hardware. In Proc. of Eurographics/SIGGRAPH Work-
shop on Graphics Hardware, Course Note (2002)

17. Li, W., Mueller, K., Kaufman, A.: Empty Space Skipping and Occlusion Clipping
for Texture-Based Volume Rendering, In Proc. of IEEE Visualization (2003) 317-324

18. Lichtenbelt, B., Crane, R., Naqvi, S., Introduction to Volume Rendering, Prentice
Hall PTR (1998)

19. GeForce FX 5900, http://www.nvidia.com/page/fx 5900.html

20. ATI’s RADEON 9800 Pro,
http://mirror.ati.com/products/pc/radeon9800pro/index.html

21. Hakura, Z.S., Goopta, A.: The design and Analysis of a Cache Architecture for
Texture Mapping, In Proc. of 24th International Symposium on Computer Archi-
tecture (1997) 108-120

